Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 168559 dokumen yang sesuai dengan query
cover
cover
Fajar Rian Wulandari
"Negara Indonesia yang secara geografis terletak di wilayah ring of fire menjadikan wilayah yang tidak dapat dipisahkan dari fenomena alam gempa bumi dan aktivitas gunung berapi. Apalagi didukung dengan teknologi bangunan yang digunakan pada bangunan di Indonesia yang belum tahan gempa. Oleh karena itu, sangat penting untuk menerapkan pengetahuan konstruksi tahan gempa pada bangunan untuk meminimalkan kerugian dan memberikan keamanan lebih bagi penghuninya.
Tulisan ini mencoba untuk mengetahui konstruksi yang digunakan di Kepulauan Nias dalam menghadapi gempa. Kepulauan Nias berada di daerah rawan gempa karena berada pada pertemuan 2 lempeng yaitu lempeng Indo- Australia dan lempeng Eurasia. Metode yang digunakan adalah membuktikan bahwa konstruksi yang digunakan pada arsitektur tradisional Kepulauan Nias mengikuti prinsip konstruksi tahan gempa berdasarkan pedoman Dinas Pekerjaan Umum SNI 03-1726-2002, Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung, dan RSNI T – 02 - 2003, Metode Perencanaan Konstruksi Kayu Indonesia adalah denah sederhana dan simetris, bahan bangunan harus seringan mungkin, sistem konstruksi yang memadai.
Hasil yang ditemukan dalam tulisan ini adalah arsitektur tradisional Kepulauan Nias menggunakan sambungan tanpa paku dan pondasi umpak sehingga memiliki kelenturan terhadap gempa. Selain itu, denah persegi dan lonjong yang sederhana dan simetris, bahan ringan terdiri dari dinding kayu dan atap daun sagu, serta sistem konstruksi asli dan unik, yaitu kayu diagonal yang dikenal sebagai ndriwa, yang mengikat pilar vertikal dari rumah panggung agar lebih kokoh. Kesimpulannya, arsitektur tradisional di Kepulauan Nias telah memenuhi standar untuk dijadikan contoh konstruksi tahan gempa yang dapat meningkatkan ketahanan bangunan atau perumahan saat ini.

The country of Indonesia, which is geographically located in the ring of fire, makes it an area that cannot be separated from natural phenomena of earthquakes and volcanic activity. Moreover, it is supported by the building technology used in Indonesian buildings that cannot yet withstand earthquakes. Therefore, it is very important to apply knowledge of earthquake-resistant construction in buildings to minimize losses and provide more security for the occupants.
This paper tries to find out the construction used in the Nias Islands in the face of earthquakes. The Nias Islands are located in an earthquake-prone area because they are located at the confluence of 2 plates, namely the Indo-Australian and the Eurasian plate. The method used is to prove that the construction used in the traditional architecture of the Nias Islands is following the principles of earthquake-resistant construction based on the guidelines of the Public Works Service SNI 03-1726-2002, Procedures for Planning Earthquake Resistance for Buildings, and RSNI T – 02 - 2003, Indonesian Timber Construction Planning Methods are simple and symmetrical plans, building materials must be as light as possible, adequate construction systems.
The results found in this paper are that the traditional architecture of the Nias Islands uses joints without nails and pedestal foundations (umpak) so that they have flexibility against earthquakes. In addition, the simple and symmetrical square and oval plans, the lightweight materials consist of wooden walls and sago leaf roofs, as well as the original and unique construction system, namely diagonal wood (bracing) known as ndriwa, which binds the vertical pillars of the stilt house to make it sturdier. In conclusion, traditional architecture in Nias Islands has met the standards to be used as examples of earthquake-resistant construction that can improve the resilience of current buildings or housing.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teddy Boen
"Buku yang berjudul "Manual: bangunan tahan gempa (rumah tinggal) ini ditulis oleh Teddy Boen. Buku ini merupakan sebuah buku panduan mengenai pembangunan rumah tinggal yang tahan gempa. Selain itu buku ini juga dilengkapi dengan gambar-gambar tahap pembangunan."
[Place of publication not identified]: [publisher not identified], [date of publication not identified]
R 693.852 BOE m
Buku Referensi  Universitas Indonesia Library
cover
Wanda Heryudiasari
"Jembatan bentang panjang mempunyai perilaku kompleks apabila terkena gempa khususnya pada saat konstruksi sedang dilaksanakan. Pada penelitian ini, Jembatan Kabel Suramadu dipilih untuk menyajikan perilaku jembatan cable-stayed pada setiap tahapan konstruksi yang berjumlah 89 tahapan. Jembatan ditinjau pada 10 tahapan kritis yaitu tahapan ke-4, 9, 18, 27, 36, 45, 54, 63, 74, dan 89 (lengkap).Rekaman gempa terletak pada sepasang gempa arah memanjang struktur jembatan akan dikenai gempa timur - barat (gempa transversal) dan arah melintang struktur jembatan akan dikenai gempa utara - selatan (arah longitudinal) secara terpisah di sekitar Selat Madura yaitu Gempa Banyuwangi (23 Maret 2011), Gempa Jember (14 Februari 2011), dan Gempa Nusadua (18 Maret 2009). Analisis riwayat waktu dan respon spektrum menggunakan perbedaan ketiga elemen pada kabel yaitu elemen truss tension-only, cable linier (equivalent truss element), dan cable nonlinier (catenary cable element). Peninjauan nodal terletak pada pertemuan kabel-menara dan pertemuan kabel-gelagar sedangkan, peninjauan elemen terletak pada kiri dan kanan menara. Hasil penelitian menghasilkan kandungan frekuensi jembatan, periode alami struktur, respon perpindahan, gaya dalam aksial kabel, gaya dalam momen dan geser arah Z pada gelagar, dan tegangan normal kabel.

Long-span bridge has a complex behavior when exposed to the earthquake, especially when the construction is being carried out. In this study, Suramadu Cable Bridge chosen to present the behavior of cable-stayed bridge at each stage of construction totaling 89 stages. Bridges are reviewed at ten critical stages. These stages are 4th, 9th, 18th, 27th, 36th, 45th, 54th, 63rd, 74th, and 89th stage (final stage). Recorded earthquake the located on longitudinal direction of the bridge structure will be east - west earthquake (transverse earthquake) and the transverse direction of the bridge structure will be given north - south (longitudinal direction) earthquake separately around the Madura Strait those are Banyuwangi earthquake (March 23, 2011), Jember earthquake (February 14, 2011), and Nusadua earthquake (March 18, 2009). Time history and response spectrum analysis is done by using three different elements on the cable. Those are tension-only truss elements, linear cable (equivalent truss element), and the nonlinear cable (catenary cable element). The review of nodal located in joint tower-cable and joint cable-girder while the review of the element located on the left side and right side of the tower. The results of the study resulted in the bridge's frequency content, the natural period of the structure, the displacement response, axial force in the cable, moment and shear force in the Z direction on the girder, and the normal cable stress.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42612
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Zaki Risadi
"Indonesia merupakan negara yang tidak jarang mengalami gempa, karena itu desain struktur sebuah bangunan harus dibuat agar bisa menahan gaya lateral. Terdapat tiga jenis struktur baja penahan gaya lateral yaitu CBF (concentric braced frame), EBF (eccentrically braced frame) dan MRF (moment resisting frame). Penelitian ini dilakukan terhadap CBF karena memiliki kekakuan yang tinggi, sehingga dapat menghasilkan nilai-nilai yang perbedaannya terlihat dengan jelas. Kerusakan pada struktur dapat direpresentasikan oleh penurunan kekakuan struktur tersebut. Frekuensi alami, sebagai parameter yang merupakan fungsi dari kekakuan, dapat mengilustrasikan kerusakan dari struktur dengan baik. Damage index merupakan parameter yang dapat menilai kerusakan pada struktur secara kuantitatif. Parameter ini merupakan fungsi dari deformasi yang dialami struktur, yang juga dapat mengilustrasikan kerusakan struktur dengan baik.
Penelitian ini dibagi menjadi dua bagian. Bagian pertama merupakan perhitungan damage index, yang dilakukan dengan membuat kurva pushover monotonik dan semisiklik menggunakan OpenSEES. Bagian kedua dari penelitian ini adalah mencari frekuensi alami struktur dengan meninjau mekanisme keruntuhan struktur menggunakan SAP2000. Hasil dari penelitian ini menunjukkan bahwa dengan bertambahnya gaya lateral yang ditahan oleh struktur, frekuensi alami akan mengalami penurunan sedangkan damage index akan mengalami peningkatan. Pada grafik terdapat batas yang disebut critical limit, yaitu batas dimana jika struktur menerima beban melebihi batas tersebut, damage index struktur akan meningkat secara drastis."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhil Dzulfikar
"Struktur flat plate pada wilayah gempa tinggi di Indonesia masih jarang digunakan karena lemah terhadap geser pada sambungan kolom-slab. Dengan demikian dalam melakukan perencanaan struktur flat plate pada wilayah gempa tinggi harus dikombinasikan dengan sistem struktur penahan beban lateral yaitu kombinansi dinding geser struktural khusus dan perimeter frame SRPMK. Struktur flat plate hanya didesain sebagai struktur penahan beban gravitasi. Hubugan kolom-slab harus memiliki kapasitas untuk mampu mengikuti deformasi yang telah diperbesar oleh faktor defleksi Cd akibat beban gempa. Proporsi dimensi kolom akan menentukan besarnya gaya lateral yang diterima oleh kolom tersebut. Semakin kecil dimensi kolom maka semakin kecil gaya lateral yang diterima oleh kolom tersebut. Pada wilayah gempa menengah struktur flat plate dapat digunakan sebagai bagian dari sistem penahan beban lateral. Dalam perencanaan ini struktur flat plate dimodelkan sebagai equivalent slab-beam yang merupakan bagian sistem rangka pemikul momen menengah. Sistem penahan beban lateral pada perencanaan pada wilayah gempa menengah merupakan kombinasi dari dinding geser struktural khusus, perimeter frame SRPMM dan slab-column frame SRMM . Dari hasil analisa didapatkan bahwa jika perencanaan mengikuti kaidah perencanaan tersebut maka flat plate dapat digunakan pada wilayah gempa tinggi dan menengah dan struktur masih bersifat daktail.

Flat plate structure for high seismic risk region in Indonesia is not commonly used because it has high risk on shear failure on the slab column connection. Therefore the building design in high seismic risk region should be combined with lateral resisting system, a dual system combining shearwall and perimeter frame SMRF . Flat plate structure is only designed as gravity resisting system. Slab column connection should have capacity to follow the bigger deformation by deflection factor Cd caused by lateral force. The proportion of the interior column dimension would determine the amount of lateral force received. The smaller the column dimension, the smaller the lateral force accepted by the column itself. In an region with medium seismic risk, flat plate structure can be used as component to resist lateral force. In this kind of design, flat plate is modeled as equivalent slab beam which also a part of slab column moment frames. Lateral resisting system component in the medium seismic risk region is a combination of shear wall and slab column moment frames IMRF . From this design, the writer found that if the design follow the guidelines plan, the flat plate can be used both in high seismic risk region and medium seismic risk region and structure is still ductile.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66427
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arifia Indah Liany
"Getaran yang selalu terjadi dalam kehidupan sehari-hari dapat menimbulkan gangguan bagi kegiatan manusia. Getaran ini dapat disebabkan oleh fenomena alam seperti gempa. bumi, letusan gunung berapi, ataupun yang disebabkan oleh perbuatan manusia. Akibat getaran ini dapat memberikan perubahan kehidupan manusia bila getaran tersebut tidak terkontrol dan sangat kuat seperti getaran yang diakibatkan oleh gempa bumi dan ledakan nuklir. Namun adapula gangguan yang hanya menyebabkan ketidak nyamanan seseorang, seperti getaran akibat pemancangan tiang-tiang pracetak untuk pondasi, getaran akibat mesin mobil diesel model lama.
Kasus-kasus tersebut di atas menyebabkan pengetahuan getaran pada umumnya sangat diperlukan, sehingga perlu dilakukan pengamatan dan penelitian terhadap fenomena tersebut. Untuk kasus yang sederhana, salah satu cara untuk melakukan pengamatan dan penelitian adalah dengan melakukan pengukuran. Namun untuk pengukuran gempa bumi, pengukuran hanya akan mendapatkan data percepatan atau kecepatan tanah, bukan faktor penyebah gempa bumi Percepatan, kecepatan ataupun perpindahan dapat diperoleh dari salah satu jenis data yang ada, baik dari data percepatan ataupun dari data kecepatan tanah.
Dalam penulisan ini, akan dibahas teknik-teknik untuk mendapatkan sinyal kecepatan dan perpindahan dari suatu data percepatan. Teknik yang pertama adalah pengintegrasian data percepatan terhadap waktu, dengan cara ini proses perubahan satu sinyal ke sinyal lainnya dilakukan dalam domain waktu. Teknik yang kedua dilakukan dalam domain frekuensi, dalam hal ini fungsi waktu percepatan ditransformasikan ke dalam domain frekuensi melalui transformasi Fourier. Hasil transformasi dari kedua teknik ini akan dibandingkan satu dengan yang lainnya dengan data yang diambil dari data percepatan pelat tipis yang digetarkan. Frekuensi pribadi dari pelat tipis yang digetarkan akan dibandingkan pula dengan perhitungan secara numerik."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S34637
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christopher Kevinly
"ABSTRACT
Two types of reinforced concrete (RC) beam-column joint taken from an office building model designed in accordance to Indonesian Seismic Code SNI 1726:2012 and SNI 1726:2002 along with their corresponding RC code is tested in semi-cyclic loading scheme in order to determine its semirigidity behavior. Along with the loading, dynamic measurement is conducted to determine the natural frequency loss of both samples. The result of the experimental testing is then verified by comparing it to the numerical analysis by using DRAIN2DX fiber model analysis software. From both the testing and the numerical analysis, the joint made by using newer code has larger rotational stiffness compared to the one designed in accordance to the older code. Furthermore, experimental testing showed that the sample designed in accordance to the older code displayed more stiffness loss compared to its newer counterpart. This loss of stiffness is legimated by the loss of natural frequency of both samples from the dynamic measurement.

ABSTRAK
Dua sampel sambungan balok kolom yang dirancang menurut peraturan SNI 1728:2012 dan SNI 1728:2002 dengan peraturan beton bertulang yang berhubungan dikaji dengan memberika pembebanan semi-siklik pada sampel melalui percobaan eksperimental dan numerik. Seiringan dengan pengujian ekperimental, uji dinamik dilakukan. Sampel yang dirancang berdasarkan peraturan yang baru memiliki kekakuan rotasi yang lebih tinggi dibandingkan dengan yang didesain dengan peraturan lama, baik dalam uji eksperimental maupun numerik, beserta pola retak yang berbeda diantara kedua sampel. Frekuensi natural dari kedua sampel juga berkurang seiring dengan rusaknya sampel."
2016
S70012
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robiatul Adawiyah
"Gempabumi yang terjadi di Yogyakarta 27 Mei 2006 merupakan gempabumi besar dengan kekuatan Mw : 6, 2. Selain menyebabkan kematian sekitar 5000-an jiwa, juga mneyebabkan kerusakan infrastruktur serta mengakibatkan kerusakan geologi berupa hilangnya kekuatan tanah atau likuifaksi. Penelitian ini ingin mengungkapkan kaitan kejadian likuifaksi dengan geologi dan indeks keburukan likuifaksi serta pola wilayah bahaya likuifaksi di Daerah Istimewa Yogyakarta menggunakan metode deskriptif dengan pendekatan spasial (keruangan). Hasil penelitian menunjukkan sebaran titik kejadian likuifaksi cenderung mengelompok di tengah wilayah penelitian, sebarannya mengikuti : sebaran jenis batuan endapan Gunungapi Merapi muda, sebaran umur batuan kuarter. Seluruh titik kejadian likuifaksi dijumpai pada jarak kurang dari enam kilometer dari sesar utama dan sesar minor. Sebaran kejadian likuifaksi tidak selalu dijumpai pada wilayah dengan nilai LSI yang besar. Wilayah bahaya likuifaksi terbagi menjadi : wilayah bahaya likuifaksi sangat tidak aman, tidak aman, dan wilayah aman.

The Yogyakarta earthquake of May 27, 2006 has magnitude Mw : 6,2. This earthquake caused about 5000 died people and destroyed infrastructures also liquefaction. Focus of this study is interrelation between liquefaction occurance and geological condition and liquefaction severity index (LSI). This research is descriptive and spatial approach. The research shows that distribution of liquefaction occurrence is clustered in the centre part of Yogyakarta Special Province, it is related to young volcanic deposits of Merapi Volcano distribution and Quarternary deposits distribution. Liquefaction occurance is situated within 6 km distance from the major and minor fault zone.The distribution of liquefaction occurance it isn?t related to liquefaction severity index (LSI)."
2008
S34215
UI - Skripsi Open  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>