Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 38346 dokumen yang sesuai dengan query
cover
Farah Inayati
"Hubungan antara geometri kompor dengan performa yang dimiliki harus dilakukan untuk mengetahui kesempurnaan dari reaksi pembakaran. Peneliti terdahulu telah melakukan simulasi pada kompor biomassa dengan udara primer dan sekunder diatur dengan menggunakan 1 penyuplai udara. Pada penenilitian ini, dimodelkan ruang pembakaran kompor gas-biomassa berprinsip upside downdraft gasification dengan bahan bakar berupa gas hasil pirolisis dari biopellet kayu karet dengan udara primer dan sekunder yang independent satu sama lain.
Penelitian ini dilakukan untuk melihat profil kecepatan, konsentrasi CO2 sebagai produk pembakaran, dan temperatur ruang pembakaran pada kecepatan udara primer konstan. Semakin besar kecepatan udara sekunder maka kecepatan pada bagian atas ruang pembakaran semakin besar, semakin banyak CO2 sebagai produk reaksi pembakaran yang terbentuk, dan semakin rendah temperatur ruang pembakaran.

Analyzing relation between geometric of stove and its performance has to be done in order to get to know combustion reaction inside of the stove. The latest research done in simulation of biomass stove whose air supply for primary and secondary air is only one. Combustion chamber of upside downdraft gasification biomass gas-stove is used as geometric of this simulation. This stove has primary and secondary air which is not dependent on each other. Pyrolysis gas from biopellet of rubber wowd used as fuel.
Objective of this simulation is to analyze the behaviour of fluid in combustion and get the velocity, concentration, and temperature profil in constant primary air velocity. Velocity at the outlet boundary of combustion chamber is getting more as secondary air increased also the more reaction happened though it decreasing temperature.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35125
UI - Tesis Membership  Universitas Indonesia Library
cover
Farah Inayati
"Mekanisme pembakaran pada kompor biomassa yang menyertakan pembakaran fasa padat dengan 1 blower pemasok udara masih menghasilkan CO di atas ambang batasnya, 25 ppm. Peneliti merancang kompor gas-biomassa dengan mekanisme pembakaran fasa gas saja menggunakan 2 blower pemasok udara primer dan sekunder, mengakomodasi preheating udara sekunder dan efek turbulensi. Penelitian bertujuan mendapatkan rancangan kompor biomassa dengan rasio udara terbaik sehingga dihasilkan emisi CO rendah dan warna api biru. Penelitian diawali dengan perancangan kompor lalu membakar gas pirolisis yang dihasilkan dari devolatilisasi biomassa. Kondisi terbaik kompor berdiameter dalam ruang pembakaran 15 cm dengan tinggi ruang pembakaran 58 cm adalah pada rasio aliran udara sekunder terhadap udara primer 6,29 dengan emisi CO rata-rata 14 ppm dan efisiensi termal 52,8 %.

Existing biomass stoves using combustion in solid phase with 1 blower as an air supplier produce CO well above the minimum allowable CO emission (25 ppm). In this research, combustion mechanism occurs only in gas phase, the stove uses 2 blower as primary and secondary air supplier, accommodates preheating secondary air and turbulency effect. The objective of this research was to get biomass-gas stove design with the best air ratio that produces low CO emission and blue flame. First step of this research is to design he stove and then to burn pyrolysis gas produced of biomass devolatilization. The best condition of the biomass gas stove, which has dimension 15 cm inner diameter for combustion chamber and 58 cm height of combustion chamber is that the flow ratio of secondary air to primary air is 6,29 which has average CO emission at 14 ppm and thermal efficiency at 52,8%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42561
UI - Skripsi Open  Universitas Indonesia Library
cover
Resiana Winata
"Kompor biomassa konvensional yang ada saat ini masih memiliki permasalahan dengan emisi gas CO yang tinggi dibandingkan kompor LPG. Pada penelitian ini, dirancang suatu kompor gas-biomassa menggunakan prinsip Top- Lit Up Draft Gasifier yang diharapkan menghasilkan emisi gas CO yang rendah dengan membakar gas pirolisis dari pelet biomassa. Kompor memiliki diameter dalam sebesar 15 cm, diameter luar 20 cm, tinggi reaktor gasifikasi 51 cm, dan tinggi keseluruhan 95 cm. Kompor menggunakan pelet biomassa dari limbah bagas yang mengandung volatile matter tinggi. Dengan memvariasikan rasio antara laju alir udara sekunder dan udara primer, didapatkan emisi gas CO ratarata terendah, 16,4 ppm (dengan emisi gas CO maksimum yang diperbolehkan adalah 25 ppm), yang terjadi pada rasio 11:1. Perbandingan antara nilai rasio tersebut menunjukkan suhu api maksimum tertinggi yang dicapai adalah 544,44°C pada rasio 6:1. Menggunakan Water Boiling Test, efisiensi termal tertinggi yang dicapai adalah 55%, dimana waktu tersingkat untuk mendidihkan 1 L air adalah 6 menit. Api kompor berwarna kuning menunjukkan pembentukan jelaga.

Nowadays conventional biomass stoves still have a problem of having high CO gas emission compared to LPG stoves. In this research, a biomass-gas stove has been designed using Top-Lit Up Draft Gasifier principle, which had been expected to have low CO gas emission by burning pyrolysis gas from biopellets. The stove has 15 cm inner diameter, 20 cm outer diameter, 51 cm gasification reactor height, and 95 cm overall height. The stove uses biopellet made of bagasse waste, which have high volatile matters content. By varying the ratio of secondary air flow to primary air flow, it was found that the lowest CO gas emission, 16,4 ppm (with maximum CO gas emission allowable is 25 ppm), occurred at the ratio of 11:1. Comparison of different values of the ratio shows that the highest maximum flame temperature achieved was 544,44oC occurring at the ratio of 6:1. Using Water Boiling Test, the highest thermal efficiency achieved was 55%, which corresponds to the shortest time to boil 1 L of water (6 minutes). The stove has yellow flame that indicates the formation of soot."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43082
UI - Skripsi Open  Universitas Indonesia Library
cover
Ivan Sanjaya
"Kelemahan dari penggunaan biomassa sebagai bahan bakar kompor biomassa adalah tingginya emisi CO yang dihasilkan akibat pembakaran yang kurang sempurna yang terjadi pada biomassa tersebut. Penelitian yang telah dilakukan menunjukkan bahwa dengan membuat kompor biomassa dengan metode Top Lit-Up Draft Gasifier, dapat mengurangi emisi CO sampai dibawah 20 ppm dan waktu ignisi kompor yang lebih cepat sekitar kurang dari 1 menit. Metode penelitian yang akan digunakan adalah membuat modifikasi sistem pencampuran udara dengan bahan bakar di ruang pembakaran menggunakan gas wick sehingga menghasilkan pembakaran lebih sempurna. Gas wick yang digunakan memiliki diameter masing-masing 9 cm dan 11 cm sehingga akan membentuk anulus pada ruang pembakaran dengan luas penampang anulus yang berbeda pada masing-masing gas wick tersebut, yaitu dengan luas bukaan anulus sebesar 23,78% dan 48,98%. Gas analyzer digunakan untuk mengetahui emisi CO serta metode water boiling test untuk mengetahui efisiensi termal kompor. Hasil menunjukkan dengan gas wick berdiameter 11 cm dengan rasio antara udara primer dan sekunder sebesar 1,773 menunjukkan kinerja kompor yang paling baik dengan efisiensi termal sebesar 65,734%, suhu api rata-rata yang paling tinggi sebesar 702oC, dan rata-rata emisi CO fase pembakaran sebesar 20,692 ppm.

The disadvantages of the use of biomass as fuel biomass gas stoves is the high CO emissions generated as a result of imperfect combustion that occurs in the biomass. Research that has been conducted shows that by making the biomass stove method Top Lit-Up Draft Gasifier, can reduce CO emissions to below 20 ppm and the time of ignition stove faster about less than 1 minute. To overcome these problems, modification of mixing system need to be made to make the air mixing with the fuel in the combustion chamber using gas wick resulting in more complete combustion. Gas wick that be used in this research had a diameter of 9 cm and 11 cm, respectively, so that it will form an annulus in the combustion chamber with different annulus cross-sectional area of ​​each gas wick, with the cross-sectional area of annulus are 23.78% and 48.98%, respectively. Gas analyzer is used to determine the emissions of CO and water boiling test method to determine the thermal efficiency of the stove. The results show the gas wick with diameter of 11 cm and the ratio between the primary and secondary air for 1.773, show the best stove performance with the termal efficiency of 65,734%, the average flame temperature of 702oC, and the average emission of CO on combustion phase of 20,692 ppm."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54828
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizka Widya Ariani
"Energi alternatif yang berkesinambungan dan terbarukan serta berpotensi menjadi bahan bakar adalah biomassa. Biomassa cangkang kakao dipilih karena ketersediannya yang melimpah di Indonesia dan memiliki nilai kalor dan volatile matter yang cukup tinggi. Pembakaran volatile matter dari biomassa akan meminimalkan emisi CO daripada metode pembakaran langsung pada fasa padatan. Kompor Top-Lit Up Draft (TLUD) Gasifier dirancang menggunakan dua buah blower masing-masing untuk udara primer untuk devolatilisasi dan udara sekunder untuk menyempurnakan pembakaran.
Penelitian ini bertujuan untuk mengetahui pengaruh variasi laju kedua udara terhadap optimasi hasil pembakaran meliputi suhu api, emisi CO dan efisiensi termal. Pembakaran mendekati stoikiometrik didapatkan pada rasio 3,00 yang menghasilkan suhu api rata-rata tertinggi 543,67oC. Emisi CO terendah didapatkan pada rasio 3,0 sebesar 61,857 ppm. Efisiensi termal tertinggi pada rasio 2,0 sebesar 21,25%.
Pengaruh total udara yang semakin tinggi akan memaksimalkan pencampuran sehingga reaksi pembakaran menuju sempurna dan emisi CO yang dihasilkan rendah. Namun fluktuasi juga dapat terjadi pada laju alir udara yang besar sehingga emisi CO dapat tinggi. Pembentukan jelaga akibat kekurangan udara sekunder memperkuat radiasi dalam kompor. Efisiensi termal yang tinggi dipengaruhi besar oleh radiasi dari dalam kompor.

Another sustainable and renewable alternative energy sources for fuel is biomass. Cocoa pod husk (CPH) is one of biomass that available in Indonesia in huge quantity. CPH has high calorific value and high volatile matter content so it is potential to be fuel source. Burning of volatile matter from biomass will minimize CO emission inspite of burning the solid phase directly. The Top-Lit Up Draft Gasifier Stove was designed with two blowers that will supply primary air as devolatilization air and secondary air as combustion air.
This research is proposed to measure the optimization of stove combustion using CPH pellets under variation of air flow rate affection, including flame temperature, CO emission, and thermal efficiency. The result is, the near-stoichiometric combustion is reached at ratio 3.00 which resulted highest mean flame temperature at 543.67 oC. The lowest CO emission is obtained at ratio 3.0 as 61.86 ppm. The highest thermal efficiency is obtained through ratio 2,0 at 21.25%.
Effect of increasing the total air flow rate will maximize the mixing of air so that combustion goes to complete and CO emission will be lower. Beside that, fluctuation also can exists in higher air flow rate so CO emission will be higher. The formation of soot that is caused by leak of secondary air will strengthen the radiation inside the stove. The higher thermal efficiency is affected by radiation inside the stove.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47267
UI - Skripsi Membership  Universitas Indonesia Library
cover
Picunang, Badaruddin Andi
"Kebijakan diversifikasi energi menjadi faktor penting dalam upaya pemanfaatan bahan bakar gas sebagai pengganti bahan bakar minyak. Dengan demikian upaya optimasi penentuan harga gas perlu dilakukan khususnya di wilayah JADETABEK. Pada penelitian ini, upaya optimasi dilakukan dengan pendekatan simulasi Monte Carlo dalam penentuan harga gas. Hasil dari Optimasi harga dengan pendekatan simulasi montecarlo ini diharapkan dapat menjadi referensi tambahan dalam upaya konversi bahan bakar minyak ke bahan bakar gas sehingga didapatkan harga bahan bakar gas yang optimal.

Energy diversification policy is an important factor in efforts to use natural gas instead of fuel oil. Accordingly gas pricing optimization efforts need to be done, especially in the region JADETABEK. In this study, the optimization is conducted by the Monte Carlo simulation approach in determining the price of gas. The results from the price Optimization of Monte Carlo simulation approach is expected to be an additional reference in an effort to fuel conversion of fuel to gas fuel so that the fuel price obtained optimum gas."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45501
UI - Tesis Membership  Universitas Indonesia Library
cover
Harahap, Gihon Andre Asmitra
"Biomassa merupakan salah satu energi alternatif yang secara luas digunakan sebagai bahan bakar kompor di daerah pedesaan. Data menyebutkan bahwa sekitar 55% dari masyarakat Indonesia menggunakan biomassa sebagai bahan bakar kompor dan jumlahnya semakin meningkat. Namun masalah yang ditemukan ketika menggunakan biomassa adalah tingginya emisi CO yang merugikan penggunanya. Penelitian ini bertujuan untuk mendapatkan nilai optimum dari rasio laju alir dari udara sekunder terhadap primer dan untuk mengetahui pengaruh dari peningkatan jumlah udara primer pada jumlah udara yang tetap terhadap emisi CO dan efisiensi termal. Dalam penelitian ini, sebuah kompor gas biomassa dibuat dengan prinsip top lit-up draft gasification (TLUD) dimana api muncul pada bagian atas kompor oleh pembakaran dengan pencampuran gas pirolisa dari tumpukan pellet TKKS dan udara sekunder. Hasil yang didapatkan bahwa operasi kompor mendekati keadaan stoikiometrik ketika mencapai rasio laju alir udara 4,06 dengan emisi CO sebesar 88,33 ppm , suhu api rata-rata 532,074oC dan efisiensi termal 29,52%. Emisi CO rata-rata terendah sebesar 66,56 ppm pada rasio 6,64. Efisiensi termal tertinggi sebesar 30,04% pada rasio 6,64. Didapatkan pengaruh laju alir udara bahwa semakin besar rasio udara akan semakin kecil emisi CO yang dihasilkan, dan semakin besar laju alir udara primer emisi CO yang dihasilkan akan semakin besar. Selain itu emisi CO juga meningkat ketika fluktuasi suhu api terjadi. Perpindahan panas dominan di dalam kompor adalah radiasi, yang muncul akibat pembentukan jelaga. Radiasi juga memberikan pengaruh pada suhu api dan efisiensi termal dari kompor.

Biomass is one of alternative energy that has widely used as stove?s fuel particularly in remote area. One data notes that around 55% of all Indonesian people are using biomass as the fuel of their stove and the amount is still increasing. The problem encountered of using conventional biomass stoves which currently use direct combustion of biomass is still emitting much higher CO consequently the emission is not safe for the stove users. This research is proposed to obtain optimum value of secondary to primary air flow ratio and to see effect of increasing primary air flow rate to CO emission and thermal efficiency. In this research, a biomass gas stove has made with top lit-up draft (TLUD) principle where the flame is occured at the top of the stove by combustion of pyrolise gas comes out from the PEFB pellets and secondary air mixing. The result has obtained that near-stoichiometric condition is achieved when the ratio is 4,06 with CO emission is 88,33 ppm, average flame temperature is 532,074oC and thermal efficiency is 29,52%. The lowest average CO emission is 66,56 ppm at ratio of 6,64. The highest thermal efficiency is 30,04% at ratio of 6,64. This research also obtains that increasing air flow ration will decrease CO emission and increasing primary air flow rate will be increasing CO emission also. Another result is CO emission is increasing when flame fluctuation is occured. The dominant heat transfer on the stove is radiation, which is occured by soot formation. Radiation also affects the flame temperature and thermal efficiency of the stove."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52758
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Sina Putra
"Gas Gas burner merupakan salah satu proses akhir dari tahapan gasifikasi yang berfungsi untuk mencampur bahan bakar dengan udara atau oksidator yang digunakan untuk membentuk nyala api pembakaran. Belum banyak yang meneiliti mengenai karaktersitik api yang dihasilkan. Selain itu, api yang dihasilkan dari burner yang ada belum merata ke seluruh ruang bakar. Salah satu cara untuk membantu penyebaran api adalah dengan menambahkan konis yang terletak ditengah selubung inlet dari syngas.
Pada skripsi ini akan dilakukan simulasi gas burner dengan konis yang menggunakan bahan bakar dari gasifikasi biomassa untuk mengetahui pengaruh dari konis tersebut terhadap penyebaran api yang dihasilkan. Ada beberapa parameter yang perlu diasumsikan agar simulasi berjalan lancer, antara lain adalah fraksi massa dari syngas tetap, yaitu N2 51,5%. CO 25%, H2 12%, dan CH4 1,5%. Dengan kecepatan syngas dan udara 1 m/s dan variasi 3 m/s, 6m/s, 9m/s. Temperatur syngas dan udara adalah 473K dan 303K. Sudut konis adalah sebesar 90o. Dari hasil simulasi didapatkan bahwa dengan adanya konis, belum tentu menghasilkan api yang lebih merata pada ruang bakar.

Gas burner is the end of process of gasification that works for mixing fuel with air combined to form the flame burning. There is no many research about flame characteristic that produced. One method that can help flame spread evenly is using cone in the middle of inlet of syngas.
In this thesis will be simulate gas burner with cone that using fuel from biomass gasification. To make simulation done, we need to make some assumption, including composition of the gas mass faction in the syngas remain, namely, N2 51,5%. CO 25%, H2 12%, and CH4 1,5%. and speed syngas is remain constant at 1 m/s while the speed of air injection varies from 3m/s, 6 m/s, dan 9 m/s. Temperature syngas is 473K and temperature air tangential is 303K. That was obtained by using cone, is not certain that the flame is spread evenly in combustion chamber.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50785
UI - Skripsi Open  Universitas Indonesia Library
cover
Manurung, Efendi
"Kebutuhan energi di perdesaan dapat dihasilkan turbin gas berbahan bakar bioenergi mengingat bahan baku bioenergi cukup tersedia , sehingga dengan tersedianya energi di perdesaan tercipta kegiatan yang sifatnya produktif untuk membuka lapangan kerja dan mengurangi kemiskinan. Sektor properti di perkotaan yang merupakan salah satu penyerap energi terbanyak dapat juga menggunakan turbin gas berbahan bakar bioenergi sehingga tercipta bangunan yang dapat mencukupi kebutuhan energinya sendiri dari sumber energi terbarukan, hal ini merupakan konsep Zero Energy Building. Turbin gas yang diharapkan mengatasi ketersediaan energi mempunyai keunggulan yakni intalasi cepat, ukuran sistem, massa, dan biaya investasi relatif lebih rendah; dapat dioperasikan dalam keadaan dingin ; getaran yang dihasilkan jauh lebih kecil; pelumasan yang lebih sederhana; efisiensi mekanis lebih baik; dapat menggunakan bermacammacam bahan bakar; gas buangnya bersih; serta gas buang dari turbin gas dapat dimanfaatkan untuk melakukan destilasi bioetanol. Tetapi, turbin gas juga mempunyai kelemahan-kelemahan, diantaranya efisiensi termal yang rendah; degradasi komponen yang terlalu cepat; dan bencana kegagalan sistem. Kelemahan tersebut diakibatkan ketidakstabilan pembakaran yang disebabkan oleh panas yang dihasilkan oleh ruang bakar tidak tetap. Sehingga muncul pertanyaan apakah bahan bakar yang ada di dalam ruang bakar tersebut sudah terbakar maksimal; karakteristik gas yang dihasilkan oleh proses pembakaran pada ruang bakar; besarnya thermal stress yang dialami oleh ruang bakar tersebut. Metodologi yang dilakukan menjawab pertanyaan tersebut adalah melakukan percobaan dengan menggunakan turbin gas mikro Proto X-1, membuat pemodelan dan simulasi dari ruang bakar, kemudian hasil percobaan tersebut dijadikan sebagai input simulasi model ruang bakar dengan menggunakan perangkat lunak CFDSOF. Sehingga diketahui karakterisitik distribusi temperatur, distribusi bahan bakar, distribusi udara dan distribusi produk gas.

Energy need in rural area can be filled with the use of bioenergy gas turbine, considering the bioenergy fuel availability with its raw material, which the production of bioenergy fuel can also reduce poverty by employing local laborer. Also, bioenergy gas turbine can also supply the energy need in urban property sector ? the most energy absorber. This condition help the building to meet its own energy needs with renewable energy source, called Zero Energy Building Concept (ZEB). With its advantages, i.e. quick installation, system dimension, weight, low investment cost, cold operation, lower lubricating parts, better mechanical efficiency, fuel variations operating, cleaner exhaust gas, the gas turbines are expected to carry the energy availabilities. Besides, high temperature of the exhaust gas can be used for bioethanol distillation system. However, the gas turbine also have weakness, i.e. low thermal efficiency, rapid components degradation, and system failure which caused by instability combustion as a result of unstable combustor temperature. This conditions arises whether the existing fuel in the combustion chamber is converted to fire; exhaust gas characteristics; thermal stress magnitude of the combustion chamber. A Prototype of Micro Gas Turbine Proto X-1 is designed and combustion CFD simulation has done to answer. Experimental results from the Proto X-1 are used as the input of the combustion CFD simulation which done by CFDSOF software resulting the temperature distribution, fuel distribution, air distribution, and exhaust gas distribution. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29553
UI - Tesis Open  Universitas Indonesia Library
cover
Agustina Rahayu
"Pencampuran biomassa dengan batubara dewasa ini dianggap menjadi solusi bagi lamanya waktu penyalaan batubara dan besarnya emisi CO yang dihasilkan. Tujuan dari penelitian ini adalah mengetahui kinerja dari pencampuran batubara dan biomassa tandan kosong kelapa sawit pada pembakaran di dalam kompor dilihat dari waktu penyalaan briket pemasakan, emisi CO yang dihasilkan, dan efisiensi termal pembakaran. Komposisi biomassa divariasikan pada 50%, 75%, dan 100% biomassa serta kecepatan superfisial 0,29 m/s, 0,42 m/s, dan 0,54 m/s.
Hasil penelitian menunjukkan baik waktu penyalaan maupun emisi CO dipengaruhi oleh komposisi biobriket dan kecepatan forced. Waktu penyalaan tersingkat dialami oleh pembakaran biobriket dengan komposisi 100% biomassa pada kecepatan 0,42 m/s (0,5 menit). Sedangkan, emisi CO terendah didapat dari pembakaran biobriket dengan komposisi 100% biomassa dengan kecepatan 0,54 m/s (rata-rata 312,81 ppm). Serta efisiensi termal tertinggi dicapai oleh pembakaran biobriket pada komposisi 50% biomassa, (1,27%). Perhitungan entalpi pembakaran membuktikan bahwa pembakaran biobriket di semua komposisi pada kecepatan superfisial 0,54 m/s terjadi pembakaran yang lebih sempurna sehingga menghasilkan emisi CO terendah dan entalpi pembakaran tertinggi.

Nowadays, mixture of biomass and coal has been considered to solve the problem of long ignition delay and high CO emissions in coal combustion. This research aims to study combustion performance in mixture of empty palm bunches and coal concerning of its ignition delay, CO emissions, and thermal efficiency. The content of biomass in biobriquettes was varied at 50%; 75%; and 100% biomass content; and superficial air velocity at 0.29 m/s; 0.42 m/s; and 0.54 m/s.
The result showed that both ignition delay and CO emissions were influenced by biomass composition and superficial air velocity. The shortest ignition delay occured at combustion involving biobriquettes 100% biomass content with superficial air velocity at 0.42 m/s (0.5 minutes). The lowest CO emissions was obtained by burning biobriquettes 100% biomass content with 0.54 m/s superfisial air velocity (average 312.81 ppm). The highest thermal efficiency was reached by burning of biobriquettes with 50% biomass content (1.27%). Combustion enthalpy calculation showed that compared to those at low air velocity 0.54 m/s had higher enthalpy and produced lowest CO emission at all combustion runs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42894
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>