Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 142161 dokumen yang sesuai dengan query
cover
Desy Rhobiatul Adhawiyah
"Sistem panasbumi lapangan "D" merupakan sistem panasbumi tipe kaldera yang terbentuk karena aktivitas tektonik dan vulkanik. Formasi batuannya merupakan formasi sedimen berumur tersier di bagian bawah, dengan formasi batuan beku berumur kuarter di bagian atasnya. Manifestasi permukaan yang ada berupa fumarol di atas Gunung Taf dan Gunung "D" serta mata air panas pada arah tenggara dari pusat sistem. Data MT menunjukkan adanya up-dome shape sedangkan data gravity menunjukkan keberadaan reservoar yang ditandai dengan anomali gravitasi rendah. Untuk memahami karakteristik reservoar, letak sumber panas, serta hidrogeologi, dilakukan pemodelan sistem panasbumi lapangan "D". Pemodelan dilakukan secara forward dengan software TOUGH2 dan inversi dengan software iTOUGH2. Input pemodelan forward dibuat berdasarkan data geologi, geofisika, geokimia, dan data sumur.
Output yang dihasilkan digunakan sebagai input untuk proses inversi dengan tujuan optimalisasi model Natural State yang ingin dicapai. Ketercapaian kondisi natural state ditunjukkan dengan adanya kesesuaian antara profil temperatur sumur dengan hasil pemodelan. Hasil pemodelan menunjukkan bahwa sumber panas berada di bawah Gunung Taf dan Gunung "D", dengan outflow ke arah tenggara, serta keberadaan zona recharge di sebelah barat daya dari sistem. Top reservoar diperkirakan berada pada elevasi 0 m. Dari profil temperatur juga diberikan rekomendasi wilayah yang tepat sebagai sumur produksi dan sumur reinjeksi.

Geothermal system at field "D" is a caldera-type system which was developed by volcanism and tectonism activities. The "D" area composed of pre-Tertiary-Tertiary sedimentary formation in the lower part, and unconformably covered by Quaternary volcanic rock formation. Surface manifestations present in this area are fumaroles right above Mount Taf and Mount "D" and hot-springs in north east and south east direction from the center of the system. MT data inform the present of up-dome shape, while gravity data show the reservoir location with low gravity anomaly. For understanding the characteristic of reservoir, heat source location, and hydrogeology, the modeling of geothermal system at field "D" was conducted using TOUGH2 and iTOUGH2 simulator in forward and inverse modeling respectively. Input for forward modeling were composed based on geological, geophysical, geochemical and well-bore data.
The calculated output from forward modeling was then used as input data for inversion process in order to optimize the Natural State condition being obtained. Natural State condition is reached when the temperature profiles of the model show relatively good agreement with measured temperature from wells. The result indicates that the heat source is located beneath Mount Taf and Mount "D", with present outflow to the south east and north east direction outward the system, while recharge zones are located at south west and north west from the system. Top of reservoir was estimated to be 200 m above sea level. Recommendation for production and reinjection wells is also given based on measured temperature profiles.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S45940
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rivan Tri Yuono
"Lapangan geotermal Ulumbu berada di bagian selatan dari wilayah vulkanik tua Mandasawu ndash; Ranakah dan Poco Leok. Lapangan ini memproduksi energi listrik sebesar 4 x 2.5 MW pada tahun 2014 sampai sekarang. Sistem geotermal lapangan ini termasuk ke dalam jenis sistem dua fasa, dengan nilai temperatur reservoir sekitar 230 ndash; 240 oC. Penelitian ini bermaksud untuk melakukan simulasi reservoir lapangan Ulumbu. Proses simulasi reservoir ini bertujuan untuk mengetahui karakteristik dari sistem reservoir geotermal. Simulasi reservoir ini diawali dengan membuat model konseptual sebagai hasil dari interpretasi data geosains geologi, geokimia, dan geofisika. Tahap pertama yaitu melakukan pengolahan data magnetotelluric MT sebagai data utama dan digabungkan dengan hasil analisis data pendukung lainnya sehingga menghasilkan model konseptual. Model konseptual ini akan menjadi data input pada pemodelan numerik. Tahap kedua yaitu melakukan simulasi reservoir yaitu mengubah model konseptual menjadi model numerik. Penelitian ini berhasil membuat model natural state lapangan Ulumbu. Profil tekanan dan temperatur sangat representatif dengan data di ketiga sumur. Model natural state ini kemudian digunakan untuk membantu melakukan skenario pengembangan lapangan geotermal yaitu, menghitung cadangan sumber daya dan membuat rekomendasi zona pengeboran berikutnya.

Ulumbu geothermal field were located in the south of Mandosawu Ranakah Old volcanics and Pocoleok, Flores Island. This field produces 4 x 2.5 MW electric power in 2014 until now. The type geothermal system is natural two phase, with temperature between 230 ndash 240 oC. This study aims to perform reservoir simulation in the Ulumbu field. The reservoir simulation method aims to determine the reservoir characteristics of the geothermal field. This method begins by creating a conceptual model as a result of interpretation of geosciences data geology, geochemistry, geophysics. The first step is processing of Magnetotelluric MT data as the main data and then combine with the results of analysis supporting data so as to generate a conceptual model. This model will be the input data in numerical modeling. The second stage is doing reservoir simulation that is changing the conceptual model into a numerical model. This research succeeded in making natural state model of Ulumbu reservoir. The pressure and temperature profiles are very representative with the data in the three wells. The natural state model is then used to help undertake a geothermal field development scenario, that is, to calculate resource reserves and to make recommendations for subsequent drilling zones."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50546
UI - Tesis Membership  Universitas Indonesia Library
cover
Faris Maulana Yunus
"Wilayah geothermal Tulehu ditandai oleh kemunculan manifestasi permukaan. Tidak ada manifestasi yang mengindikasikan zona upflow. Survei geosains telah dilakukan dan diikuti oleh pengeboran 4 sumur eksplorasi. Namun, penggambaran zona upflow suhu tinggi yang terkait dengan sumber panas masih sulit. Hal ini karena area survei geosains yang dilakukan belum mencakup keseluruhan sistem geotermal (daerah upflow dan outflow). Dugaan keberadaan sumber panas kemungkinan menuju G. Eriwakang seperti yang ditunjukkan oleh distribusi temperatur dari data sumur. Berdasarkan studi data geosains yang tersedia, diintegrasikan dengan data sumur yang ada, maka dibuat model konseptual yang mencakup kemungkinan keberadaan sumber panas (zona upflow) di sekitar G. Eriwakang dan kemunculan manifestasi permukaan sebagai zona outflow. Untuk menyelidiki kemungkinan lokasi sumber panas sistem geotermal Tulehu, maka simulasi reservoir dilakukan berdasarkan model konseptual yang telah dibuat dengan menggunakan simulator TOUGH2/iTOUGH2. Hasil simulasi setelah mencapai kondisi natural state menunjukkan bahwa sumber panas dimungkinkan berada di bawah G. Eriwakang. Hal ini ditunjukkan dengan kesesuaian kurva temperatur vs kedalaman antara hasil simulasi dengan data sumur. Untuk mengkonfirmasi hasil penelitian ini, maka direkomendasikan untuk dilakukan survei geosains lebih lanjut.

Tulehu geothermal area is characterised by surface manifestations. Fumarole and other steam-type manifestations are absent. Geoscientific surveys covering thermal manifestations area have been conducted followed by exploration drillings. However, delineation of high temperature up-flow zone associated with heat source is still challenging, even drilling data from 4 wells could not answer the question yet. Possible existence of the heat source is likely toward Mt Eriwakang as indicated by temperature distribution from wells. Based on the geoscientitic data study, integrated with the existing well data, a conceptual model was developed that includes the possibility of the existence of a heat source (upflow zone) around G. Eriwakang and the appearance of surface manifestations as the outflow zones. To investigate the possible location of the heat source of the Tulehu geothermal system, reservoir simulations using TOUGH2/iTOUGH2 simulator were carried out based on the conceptual model that has been made. Simulation results, after achieving natural state conditions, indicate that the heat source is possibly located under Mt. Eriwakang. This is indicated by the suitability of the temperature vs. depth curve between the simulation results and the well data. Furthermore, to confirm the existence of the heat source, further geoscientific surveys are recommended to be carried out in this area."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lendriadi Agung
"Area prospek geothermal Tawau, Sabah, Malaysia salah satu daerah prospek di Malaysia yang terbentuk karena proses tektonik di daerah Sulu, dengan formasi batuan kuarter. Area prospek geothermal ini memiliki mata air panas tipe klorida, mata air panas tipe steam-heated, dan mata air panas tipe bikarbonat yang keseluruhannya tersebar di sekitar area prospek. Dari hasil perhitungan geotermometri diperoleh area prospek geothermal Tawau memiliki temperatur 190-236 0C, yang dapat dikategorikan sebagai moderate to high temperature geothermal system. Untuk mengetahui mengenai batas, kedalaman, dan geometri dari reservoir yang ada, dilakukan pengukuran dengan metode Magnetotellurik (MT) dan Time Domain Electromagnetic (TDEM). Pengukuran dilakukan dengan desain gridding agar dapat diketahui penyebaran resistivitas dari arah Utara-Selatan maupun Barat-Timur. Data MT tersebut dikoreksi terlebih dahulu terhadap efek statik dan noise dengan menggunakan TDEM dan Remote Reference sebelum nantinya siap diinterpretasi. Pemodelan sistem geothermal dari data magnetotellurik dengan menggunakan analisa 2-dimensi dan visualisasi 3-dimensi. Diperoleh hasil area prospek geothermal ini memiliki luas reservoir sekitar 15 km2, dan potensi untuk dikembangkan menjadi pembangkit listrik mencapai 84 MW, dengan rekomedasi pengeboran yang berada di dekat gunung Maria di bagian Utara Tawau.

Geothermal prospect area in Tawau, Sabah, Malaysia is one of the prospect area developed by tectonic process in Sulu, with quaternary formation. This geothermal prospect area has chloride, steam-heated, and bicarbonate hot springs. Based on geothermometry calculation the geothermal prospect area of Tawau has temperature 190-236 0C which is categorized as a moderate to high temperature geothermal system. To estimate the boundary, depth, and geometry of the reservoir, Magnetotelluric (MT) and Time Domain Electromagnetic (TDEM) methods were used. Data acquisition was designed gridding method to delineated resistivity distribution in North-South or West-East orientation. MT data was then corrected for static effect and possible noise using TDEM and remote reference before comprehensive interpretation. Modeling of the geothermal system was carried out by using 2-dimensional MT resistivity and 3-dimensional visualization. As a result we could delineated the geothermal prospect area is about 15 km2 with its potential of up to 84 MWe. In addition, the with drilling recommendation is proposed is the promising zone (close to Mt. Maria flank)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S29365
UI - Skripsi Open  Universitas Indonesia Library
cover
Riri Oktobiyanti
"Lapangan geothermal Sibayak terletak di kawasan utara Great Sumatra Fault Zone (GSFZ) yang memiliki topografi yang tinggi di dalam kaldera Singkut. Ditinjau dari kondisi geologinya, lapangan ini memiliki prospek geothermal yang ditandai dengan keberadaan manifestasi panas berupa solfatara, fumarole, chloride springs dan silica sinters. Untuk menginvestigasi struktur bawah permukaan secara lebih detail, maka dilakukan reinterpretasi data magnetotellurik dan gravitasi. Dari pemodelan 2-Dimensi MT yang menggunakan software MT2Dinv dan 3-Dimensi MT menggunakan software GeoSlicer-X maka dapat diketahui clay cap mempunyai nilai resistivitas 5-10 Ωm. Zona reservoir diindikasikan dengan harga resistivitas 50- 200 Ωm yang terdapat di bawah zona clay cap dan berada pada kedalaman sekitar 1600m. Pusat reservoir terdapat pada daerah yang meliputi Gunung Sibayak dan Gunung Pratektekan dengan luas yang diperkirakan sekitar 4 km². Pemodelan data gravitasi mendukung gambaran stuktur utama yang berupa kaldera Singkut dan sesarsesar yang berarah barat laut-tenggara. Berdasarkan studi ini dapat direkomendasikan sumur produksi diarahkan pada pusat reservoir, sedangkan reinjeksi ditempatkan di daerah dekat reservoir tetapi yang diduga memiliki hubungan permeabilitas, yaitu di sekitar batas kaldera sebelah selatan.

Sibayak geothermal field is situated in the northern Great Sumatra Fault Zone (GSFZ), which has high topography inside Singkut caldera. From the geological point of view, Sibayak field is a potential geothermal area supported by the occurrence of surface manifestations such as solfataras, fumaroles, chloride springs and silica sinters. To investigate subsurface geological structure, reinterpretation of the Magnetotelluric and gravity data were carried out. Two-dimensional modeling of MT data using MT2Dinv software and 3-D visualization of the MT data using GeoSlicer-X have delineated clay cap with resistivity of 5-10 ohm. Reservoir zone is indicated by slightly higher resistivity (50 - 200 ohm-m) below the clay cap located in the depth of about 1600m. Center of reservoir is probably located in the area between Mt Sibayak and Mt Pratektekan covering about 4 km². The gravity data modeling supports the existence of main structures, those are Singkut caldera and faults zone oriented in the northwest - southeast direction. Based on this study, it is recommended that the production wells shoud be located to the central of reservoir and reinjection wells should be sited to the area close to the main reservoir which has permeability connection, that is in the southern caldera boundary."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S29441
UI - Skripsi Open  Universitas Indonesia Library
cover
Harry Al Anshory
"Geothermal System Modeling has been illustrates Using Magnetotelluric Method. This method utilize a natural source Waves which are come from solar Wind, or the other Electromagnetic Waves in an ionosphere. Earlier data has been process with frequency sorting for gets the right signal points and remove noises. Then the Cokriging method utilized to remove the distortion effect With Static shift correction. After Data processing phases are finished, 2D Inversion, and 3D visualization of MT data are needed. And then for illustrates good geothermal system modeling, We must integrated MT and the others data, like geology or geochemistry data.

Dilakukan pemodelan sistem geothermal dengan menggunakan metode Magnetotelluric (MT). Metode ini menggunakan sumber alami gelombang (natural Source) yang berasal dari solar Wind, ataupun gelombang elektromagnetik lainnya yang ada di ionosfer. Pengolahan data dilakukan dengan melakukan pemilahan frekuensi yang tepat untuk mendapatkan sinyal yang dapat merepresentasikan keadaan subsurface serta untuk menghilangkan noise. Dilakukan pula koreksi pergeseran static menggunkan metode cokriging untuk menghilangkan efek distorsi. Setelah tahap pengolahan data selesai dilakukan proses inversi data MT, Visualisasi 3-Dimensi, serta dilakukan integrasi terpadu terhadap data-data yang lain, baik geologi ataupun geokimia guna mendapatkan pemodelan dari suatu system geothermal."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S29413
UI - Skripsi Open  Universitas Indonesia Library
cover
Sibarani, Martha Relitha
"[Kegiatan eksplorasi geothermal bertujuan mengetahui sistem geothermal daerah penyelidikan yang meliputi model dan batas prospek, karakteristik dan potensial reservoir dan hidrogeologi, untuk penentuan target pemboran, dilanjutkan dengan pemboran eksplorasi.Hasil inversi 3-dimensi data MT akan menyajikan distribusi struktur resistivitas bawah permukaan.
Pemboran eksplorasi geothermal bertujuan untuk membuktikan adanya sumber daya geothermal dan menguji model sistem geothermal yang telah dibuat. Kriteria target pemboranadalah area yang memiliki temperature dan permeabilitas yang tinggi. Pada waktu pemboran sumur panas bumi ditembusnya zona bertemperatur tinggi yang disertai atau diikuti dengan terjadinya loss of circulation sangat diharapkan (permeabilitas tinggi), karena merupakan suatu indikasi telah ditembusnya rekahan-rekahan yang diharapkan merupakan zona produksi (feed zone).
Untuk menguji model sistem yang dibuat dilakukan korelasi antara data hasil pemboran dengan inverse 3D data MT, khususnya nilai resistivity lapisandengan data temperatur, kandungan mineral alterasi, geokimia dari data pemboran.
Dari hubunganantar parameter akan terlihat karakteristik sistem geothermal di daerah penyelidikan, yang memperlihatkan zona prospek yang berhubungan dengan temperature dan permeabilitas yang tinggi. Dari hasil evaluasi akan dilakukan rekonstruksi system geothermal daerah penyelidikan, yang lebih mendekati kondisi bawah permukaan dan dapat dipergunakan untuk membuat rekomendasi pemboran selanjutnya dan arah pengembangan di masa yang akan datang;Geothermal exploration activities aimed at knowing the geothermal system that includes model and boundary the prospects, potential and reservoir characteristics and also hydrological system. By using 3D inversion of MT data, subsurface resistivity distribution structure can be obtained and with the addition of other geosciences data, LumutBalai geothermal system can be constructed. Futhermore, drilling targets zone can be identified from geothermal system which then followed by exploration drilling .
Geothermal exploration drilling is carried out to verify the existence of geothermal resources and test the geothermal systems which previously has been made. Drilling target criteria is the area which consist of high temperature and permeability. During geothermal drilling, it is expected that high temperature zone shall be encountered. It will be followed by loss circulation zone which indicates that fractures have already been penetrated and confirm that feed zone has been discovered.
In order to test constructed model, correlation between drilling data and 3D MT inverse is carried out, particularly values of resistivity layer with temperature data, alteration mineralcomposition, and geochemical data derived from drilling.
Parameter correlation will explain geothermal system characteristics in study area which delineates prospect zones and its association with high temperature and permeability. The evaluation results of this study will reconstruction geothermal system the investigation area, which can be used to develop a recommendation of subsequent drilling and further development direction;Geothermal exploration activities aimed at knowing the geothermal system that includes model and boundary the prospects, potential and reservoir characteristics and also hydrological system. By using 3D inversion of MT data, subsurface resistivity distribution structure can be obtained and with the addition of other geosciences data, LumutBalai geothermal system can be constructed. Futhermore, drilling targets zone can be identified from geothermal system which then followed by exploration drilling .
Geothermal exploration drilling is carried out to verify the existence of geothermal resources and test the geothermal systems which previously has been made. Drilling target criteria is the area which consist of high temperature and permeability. During geothermal drilling, it is expected that high temperature zone shall be encountered. It will be followed by loss circulation zone which indicates that fractures have already been penetrated and confirm that feed zone has been discovered.
In order to test constructed model, correlation between drilling data and 3D MT inverse is carried out, particularly values of resistivity layer with temperature data, alteration mineralcomposition, and geochemical data derived from drilling.
Parameter correlation will explain geothermal system characteristics in study area which delineates prospect zones and its association with high temperature and permeability. The evaluation results of this study will reconstruction geothermal system the investigation area, which can be used to develop a recommendation of subsequent drilling and further development direction, Geothermal exploration activities aimed at knowing the geothermal system that includes model and boundary the prospects, potential and reservoir characteristics and also hydrological system. By using 3D inversion of MT data, subsurface resistivity distribution structure can be obtained and with the addition of other geosciences data, LumutBalai geothermal system can be constructed. Futhermore, drilling targets zone can be identified from geothermal system which then followed by exploration drilling .
Geothermal exploration drilling is carried out to verify the existence of geothermal resources and test the geothermal systems which previously has been made. Drilling target criteria is the area which consist of high temperature and permeability. During geothermal drilling, it is expected that high temperature zone shall be encountered. It will be followed by loss circulation zone which indicates that fractures have already been penetrated and confirm that feed zone has been discovered.
In order to test constructed model, correlation between drilling data and 3D MT inverse is carried out, particularly values of resistivity layer with temperature data, alteration mineralcomposition, and geochemical data derived from drilling.
Parameter correlation will explain geothermal system characteristics in study area which delineates prospect zones and its association with high temperature and permeability. The evaluation results of this study will reconstruction geothermal system the investigation area, which can be used to develop a recommendation of subsequent drilling and further development direction]"
Universitas Indonesia, 2015
T44477
UI - Tesis Membership  Universitas Indonesia Library
cover
Ery Priyono
"Gunung Arjuno-Welirang merupakan gunung api yang berada di Provinsi Jawa Timur yang memiliki potensi energi panas bumi. Secara geologi, batuan penyusun pada umumnya berjenis andesit-basaltik yang berasal dari beberapa pusat erupsi seperti gunung Arjuno, Welirang, Kembar I – II, gunung Bakal, gunung Pundak dan gunung Bulak. Untuk mengetahui keberadaan struktur patahan di bawah permukaan, dilakukan analisis data gayaberat. Zona struktur patahan dapat diketahui dari peta kontur anomali residual, yang ditunjukkan dari adanya nilai anomali positif dan negatif yang dibatasi dengan kontur yang rapat. Identifikasi daerah panas bumi dengan data gaya berat perlu dilakukan untuk mengestimasi kedalaman sekitar 4400 m menggunakan analisis spektrum.
Berdasarkan hasil pemodelan 2 dimensi yang telah dikorelasikan dengan data geologi, penampang inversi 3D Magnetotellurik dan hasil analisis second vertical derivative digunakan untuk mengidentifikasi keberadaan serta jenis patahan dan struktur naik yang kemungkinan ada di daerah Padusan dan patahan turun yang berada pada struktur kaldera Arjuno-Welirang. Sistem panas bumi dicirikan dengan munculnya manifestasi berupa air panas dengan temperatur sekitar 50ºC, pH netral, solfatara dan fumarol dengan temperatur hingga 137 ºC dan alterasi batuan.

Arjuno-Welirang Mountain, the volcanoes which located in East Java, had the potential of geothermal energy. In geology, rocks constituents in general had basaltic andesite type that derived from several eruption centers, such as mountain Arjuno, Welirang, Kembar I–II, Bakal mountain, Bulak mountain and Pundak mountain. To identify the presence of a fault under surface, gravity data analysis was done. Fault zone structures can be seen from the residual anomaly contour map, that show the presence of positive and negative anomalous values that constrained by a tight contours. Identification of geothermal areas with gravity data was important to be done in order to estimate depth around 4400m by using spectrum analysis.
Based on Two-dimensional modeling results that has been correlated with geological data, the cross-sectionals 3D magnetotelluric inversion and vertical second derivative analysis was used to identify the presence and type of fracture and also the ascended stuctures that could be exist on Padusan area and the descended faults that exist in Caldera’s stucture on Arjuno-Welirang. Geothermal system was characterized by the existance of hot water’s manifestations with temperature about 50º C, neutral acidity, Solfatara and Fumaroles that have temperature up to 137 º C and rock alteration.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47789
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erwin Pribadi
"Lapangan geothermal Awibengkok, juga dikenal dengan nama Salak, berlokasi sekitar 60 km dari selatan Jakarta di pulau Jawa, Indonesia. Awibengkok merupakan lapangan dengan reservoir penghasil energi geothermal terbesar di Indonesia. Area reservoir terbukti yaitu 18 km2 dengan sumber potensial sebesar 377 MWe. Untuk mengeksploitasi energi tersebut maka dibuat sumur-sumur produksi serta sumur injeksi guna meningkatkan kelangsungan reservoir dalam menghasilkan uap panas yang nantinya dikonversi menjadi tenaga listrik. Aktivitas dari sumur-sumur tersebut memicu terjadinya gempa mikro (mikroseismik). Pengamatan mikroseismik dilakukan menggunakan SMART-24D. Selanjutnya data mikroseismik hasil pengamatan ini diolah ke dalam software Seisplus sehingga diperoleh data berupa waktu, koordinat, elevasi, dan magnitudo gempa yang telah terjadi. Setelah data-data tersebut diperoleh maka dibuat peta episenter menggunakan software WinGLink, dimana posisi gempa diproyeksikan ke dalam bidang datar horisontal. Pada software tersebut juga dibuat persebaran gempa mikro dalam tampilan 2 dimensi yaitu berupa penampang melintang (cross section). Untuk hasil interpretasi dalam tampilan 3-dimensi digunakan software Geoslicer-X, sehingga diperoleh model persebaran mikroseismik di lapangan Awibengkok. Dari model persebaran mikroseismik tersebut terlihat adanya delineasi zona rekahan yang digambarkan dengan even mikroseismik yang berkumpul membentuk suatu kelompok (cluster) di sebelah barat lapangan Awibengkok. Sehingga dapat disimpulkan bahwa mekanisme gempa yang dominan terjadi di lapangan Awibengkok banyak dipengaruhi oleh adanya aktivitas injeksi dan produksi.

The Awibengkok geothermal field which is also known as Salak,is located in Java island, 60 km southern Jakarta. This place is the largest producer of geothermal power in Indonesia. The proven reservoir in this place is about 18 km2 with 377 MWe potential source. In order to exploring that area, people make many production and injection wells. They made it in order to enduring the reservoir performance in producing hot vapor, which will be converted into electric supply. The activity from those wells triggering the microseismic event to happen. The observation of the microseismic is carried out using SMART-24D. Then, the data result of the observation is processed in Seisplus software, so there will be new datas such as time, position, elevation, and magnitude of the microseismic event which had been occured. After those datas are collected, the epicenter map is ready to be made by using WinGLink. In WinGLink the microseismic position is projected in the horizontal flat surface and also the view of microseismic spreading in 2-dimensional view which have cross section shaped. For the interpretation result in 3-dimensional view, Geoslicer-X software is used here, so that the spreading model of microseismic in Awibengkok field is obtained. From the spreading model, the delineation fracture zone is seen in western Awibengkok which is described with microseismic event. In conclusion, the mechanism of the microseismic event which always happens in Awibengkok is caused by injection and production activities."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S29504
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>