Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3079 dokumen yang sesuai dengan query
cover
Michaelino Mervisiano
"Tugas akhir ini membahas mengenai distribusi invers gaussian yang merupakan distribusi probabilitas kontinu yang dapat mengatasi masalah kemencengan dan long-tail. Pembahasan meliputi fungsi kepadatan probabilitas, fungsi distribusi, fungsi survival, fungsi hazard, serta membentuk fungsi pembangkit momen. Kemudian, dicari bentuk mode, mean, variansi, kemencengan, dan kurtosis distribusi invers gaussian. Terakhir, dicari taksiran parameter dan distribusi dari taksiran parameter menggunakan MLE. Data Jug Bridge mengenai drainase digunakan sebagai ilustrasi.

This paper discusses about Inverse Gaussian Distribution, the continued probability distribution which can solve skew and long tail problem. At first, we study about probability density function, cumulative distribution function, survival function, hazard function, and form moment generating function. Then, we seek mode, mean, variance, skewness, and kurtosis of inverse gaussian distribution. Finally, we try to discover parameter estimation and distribution of parameter estimation using MLE. Jugde Bridge data about drianage will be used as illustration.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47095
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamdi Ranuharja
"Pemodelan jumlah klaim mengklaim salah satu topik paspor adalah praktik lapangan. masalah ini sering ditemukan dalam model ingthataatais persebaran. Poisson dributiontion yang digunakan dalam pemodelan sumber klaim tidak dapat digunakan sebagai fakta overproperti penyebaran.Oleh karena itu, distribusi yang distandarisasi di luar negeri dapat dimanfaatkan
jumlah klaim yang mengklaim pengungkapan properti yang dibutuhkan. Dalam tulisan ini, analternatif menerima distribusi yang dihasilkan, yaitu Distribusi Umum Biomial Negatif-Negatif Distribusi adalah distribusi distribusi negatif negatif dan distribusi Membalik Gaussie dan distribusi metameterisasi pada parameter negatif Distribusi binomial yaitu p = exp (), di mana nilai variabel acak acak yang didistribusikan Inverse Gaussian. Distribusi eksternal ini adalah unimodal, hasa tebal thailand hasa positif menghasilkan kewajiban koefisien. Dalam tesis tingkat bawah, kemungkinan serangan dan komitmen faktorial dari distribusi NB-IG yang didistribusikan. Berarti, varians, skewness danurturtasthasic properties ofNB-IG distribusi disajikan dan parameter pengujian diperlakukan melalui survival maksimum maksimum metode estimasi. Kepenuhan distribusi NB-IG diilustrasikan oleh data nyata set.

One topic of passports is field practice. this problem is often found in modeling the data distribution. tion used in modeling claims sources cannot be used as a fact of overproperty distribution. Therefore, standardized distributions abroad can be used the number of claims claimed In this paper, accept the resulting distribution, namely General Negative-Negative Biomial Distribution, Distribution is negative negative distribution and Gaussie Reverse distribution and metameterization distribution on negative parameters, binomial distribution ie p = exp (), where the variable value Varies Published InverseGaussian. This external distribution is immunodal, Thailand has a positive potential to produce the coefficient obligation. In the lower-level thesis, attacks and factorial commitments from the distributed NB-IG distribution are published. Means, variants, skewness and strictness of the properties of NB-IG distribution are presented and test parameters are approved through maximum maximum survival estimation method. The fullness of the NB-IG distribution is illustrated by real data sets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fariz Parahita Rustam
"Statistika inferensi merupakan metode penarikan kesimpulan tentang keseluruhan informasi dalam populasi berdasarkan data sampel. Statistika inferensi sangat erat kaitannya dengan distribusi probabilitas. Distribusi invers Gaussian merupakan salah satu distribusi probabilitas kontinu yang memfasilitasi masalah kemencengan dan long-tail. Distribusi ini memiliki dua parameter yaitu dan . Dalam tugas akhir ini dibahas beberapa inferensi parameter dari distribusi invers Gaussian antara lain taksiran titik terbaik, taksiran interval, pengujian hipotesis parameter. Bagian akhir dari tugas ini membahas pengujian one-way Analysis of Reciprocal (ANORE).

Inference statistics is the method to draw conclusion about information of population based on sample. Inference statistcs has close relationship with the probability distribution. Inverse Gaussian distribution is one of the distribution probability that can facilitate skewed and long-tail data. The distribution has two parameters, and .This paper discusses some parameter inference of inverse Gaussian distribution, such as best point estimator, interval estimation, and hypotesis test. The last part of this paper explains detail of one-way Analysis of Reciprocal (ANORE).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56727
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wikanda Phaphan
"The Birnbaum-Sanders (BS) distribution was first introduced in 1969 by Birnbaum and Saunders as a combination of inverse Gaussian distributions with a length-biased inverse Gaussian distribution. Later, in 2008, Ahmed et al. introduced a new parametrization of the BS distribution based on Birnbaum-Sanders, and they also proposed a parameter estimation using the method of moments and regression-quantile estimation. In this paper, we emphasize the Birnbaum-Sanders distribution presented by Ahmed et al., and we develop an EM-algorithm to estimate two unknown parameters of this distribution. The EM-algorithm is a general method used to estimate the parameters when the probability density function is complicated and it is the best alternative for the estimation of a mixture distribution. We assumed that this problem has a missing value, and maximized complete data log-likelihood function instead log-likelihood function because it is analytically easier. Moreover, some simulation experiments were conducted in order to examine the performance of the proposed parameter estimation, and it was observed that the performances were quite satisfactory. Specifically, the MSE, variance and bias tend to decrease as n increases."
King Mongkut?s University of Technology North Bangkok. Faculty of Applied Science, 2017
500 TIJST 22:1 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Samorodnitsky, Gennady
New York: Chapman & Hall, 1994
519.2 SAM s
Buku Teks SO  Universitas Indonesia Library
cover
Gina Nuryani Putri
"Analisis regresi digunakan untuk mengetahui hubungan antara satu variabel respon dan satu atau lebih variabel penjelas. Ketika variabel respon berupa data count yaitu data yang berupa bilangan bulat non-negatif, analisis regresi yang sering digunakan adalah analisis regresi Poisson. Pada regresi Poisson terdapat asumsi kesamaan nilai mean dengan nilai variansinya. Dalam data count sering didapati kondisi dimana nilai variansi lebih besar dari nilai meannya atau disebut overdispersi. Pada data yang overdispersi, regresi Poisson kurang tepat jika digunakan karena nilai standard error dari taksiran parameter yang dihasilkan akanunderestimate sehingga beresiko memberikan kesimpulan yang tidak tepat. Model regresi Poisson-Inverse Gaussian dapat digunakan pada data count yang overdispersi dan memiliki tail panjang. Penaksiran parameter model regresi Poisson-Inverse Gaussian menggunakan metode maksimum likelihood dan solusi dari fungsi log -likelihood-nya menggunakan pendekatan numerik yaitu Newton-Raphson. Uji kesesuaian model yang digunakan mencakup statistik pseudo R-Squared, uji rasio likelihood, dan Uji Wald.

Regression analysis is used to investigate the relationship between one response variable and one or more regressor variables. If the response variable is count data, that has non negative integer value, the regression analysis that usually used is Poisson Regression. Poisson regression has an assumption that mean of response variable equal to its variance. On count data frequently found that the variance is greater than mean, or called overdispersion. On overdispersion case, poisson regression is inconvenient to used because it may underestimate the standard error of regression parameters and consequently it risk to give misleading inference. Poisson Inverse Gaussian regression model can be used on overdispersion and long tail count data. Parameter estimation of Poisson Inverse Gaussian Regression Model can be obtained through the maximum likelihood method and the solution of log likelihood function may be solved by using numerical method called Newton Raphson. Goodness of fit testing of this model includes pseudo R Squared, rasio likelihood test, and Wald test."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68659
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning, to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. "
Heidelberg : Springer, 2012
e20420471
eBooks  Universitas Indonesia Library
cover
Ratu Mutiara Pakungwati
"Tugas akhir ini berisi pembahasan mengenai distribusi Invers Weibull Marshall-Olkin IWMO yang merupakan distribusi probabilitas untuk peubah acak kontinu. Distribusi IWMO dibentuk dari distribusi Invers Weibull IW dengan metode Marshall-Olkin, metode ini adalah metode penambahan parameter yang diperkenalkan oleh Albert W Marshall dan Ingram Olkin pada tahun 1997. Distribusi IW sendiri diperoleh dari distribusi Weibull dengan melakukan tranformasi terhadap peubah acak. Distribusi IWMO mampu menggambarkan bentuk data seperti distribusi asalnya dalam hal ini distribusi IW dan bentuk data dari distribusi invers Eksponensial selain itu distribusi IWMO dapat menjelaskan data outlier lebih baik dibandingkan distribusi IW disebabkan oleh penambahan parameter Marshall-Olkin. Selanjutnya akan dibahas mengenai fungsi kepadatan probabilitas, fungsi distribusi, Moment Generating Function MGF, momen ke-r, mean, variansi, koefisien skewness, koefisien kutrosis, kuantil dan median dari IWMO. Penaksiran parameter menggunakan metode maksimum likelihood. Distribusi Weibull, IW dan IWMO akan diterapkan pada data yang memiliki outlier. Perbandingan model menggunakan log likelihood, AIC, BIC menunjukan distribusi IWMO sesuai dengan data lebih baik dibandingkan Weibull dan IW.

This final project contains a discussion of the distribution of Inverse Weibull Marshall Olkin IWMO which is the probability distribution for continuous random variables. The IWMO distribution is formed from the Inverse Weibull IW distribution by Marshall Olkin method, this method is the parameter addition method introduced by Albert W Marshall and Ingram Olkin in 1997. IWull distribution itself is obtained from the Weibull distribution by transforming the random variables. IWMO distribution able to describe data form like its original distribution that is IW distribution and data form from Exponential inverse distribution beside that IWMO distribution can explain data outlier better than IW distribution caused by addition of Marshall Olkin parameter. The next will be discussed about probability density function, distribution function, Moment Generating Function MGF, rth moment, mean, variance, skewness coefficient, coefficient kutrosis, quantitative and median from IWMO. Parameter estimation using likelihood maximum method. Weibull, IW and IWMO distributions will be applied to data that has an outlier. Comparison of models using log likelihood, AIC, BIC shows IWMO distribution in accordance with better data than Weibull and IW. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Julio Majesty Rasjid
"Analisis mengenai data waktu tunggu memiliki peran penting dalam berbagai bidang disiplin ilmu. Pada umumnya data waktu tunggu memiliki pola penyebaran yang menceng. Distribusi Weibull merupakan salah satu distribusi yang sering digunakan untuk memodelkan data waktu tunggu. Namun, distribusi Weibull tidak sesuai digunakan untuk memodelkan data dengan fungsi hazard non-monoton, salah satunya bentuk upside-down bathtub. Menurut Sharma et al. (2015), invers dari beberapa distribusi probabilitas dapat memodelkan data dengan fungsi hazard berbentuk upside-down bathtub, salah satunya adalah distribusi invers Weibull. Pada penelitian ini, dibahas distribusi Alpha Power Invers Weibull (APIW) yang merupakan generalisasi dari distribusi invers Weibull. Distribusi ini dibentuk dengan menggunakan metode Alpha Power Transformation. Modifikasi dilakukan dengan penambahan parameter shape pada distribusi invers Weibull dengan tujuan untuk meningkatkan fleksibilitasnya. Beberapa karakteristik distribusi Alpha Power Invers Weibull yang dibahas meliputi fungsi kepadatan peluang, fungsi distribusi, fungsi survival, fungsi hazard, dan momen ke-r. Fungsi kepadatan peluang dari distribusi APIW berbentuk menceng kiri dan unimodal. Lebih lanjut, fungsi hazard dari distribusi APIW berbentuk upside-down bathtub. Penaksiran parameter distribusi dilakukan dengan menggunakan metode maksimum likelihood. Terakhir, diberikan data waktu hingga pasien penderita kanker lambung meninggal yang dimodelkan dengan distribusi invers Weibull dan distribusi Alpha Power Invers Weibull sebagai ilustrasi. Hasil pemodelan menunjukkan bahwa distribusi Alpha Power Invers Weibull lebih baik dalam memodelkan data waktu hingga pasien penderita kanker lambung meninggal dibandingkan dengan distribusi invers Weibull.

Lifetime data analysis has an essential role in various fields of science. In general, lifetime data have a skewed distribution pattern. The Weibull distribution is one of the frequently used distributions for modelling lifetime data. However, the Weibull distribution is not suitable for modelling data with non-monotonous hazard functions, one of which is an upside-down bathtub shape. According to Sharma et al. (2015), the inverse version of several probability distributions can model the data with an upside-down bathtub shape, one of which is the inverse Weibull distribution. This study explained the Alpha Power Inverse Weibull (APIW) distribution as a generalized version of the inverse Weibull distribution. This distribution is constructed by using the Alpha Power Transformation method. The modification is done by adding a shape parameter to the inverse Weibull distribution to increase flexibility. The characteristics of Alpha Power Inverse Weibull distribution discussed include probability density function, distribution function, survival function, hazard function, and the r-th moment. The probability density function of APIW distribution is left-skewed and unimodal. In addition, the hazard function of APIW distribution has an upside-down bathtub shape. The distribution parameter estimation is done by using the maximum likelihood method. Finally, for illustration purposes, the data about the time until gastric cancer patients die are modelled with the inverse Weibull distribution, and the Alpha Power Inverse Weibull distribution is given. The modelling result shows that the Alpha Power Inverse Weibull distribution is better at modelling the time until gastric cancer patients die data than the inverse Weibull distribution."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bremono Indrodewo
Depok: Fakultas Teknik Universitas Indonesia, 1993
S38446
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>