Ditemukan 77999 dokumen yang sesuai dengan query
Simatupang, Eva Rida Meilyna
"Dalam skripsi ini membahas mengenai model regresi antara variabel penjelas dengan variabel dependent kontinu dimana variabel dependent yang diketahui merupakan variabel dependent ordinal yang dibentuk dari variabel kontinu tersebut, sedangkan nilai dari variabel kontinu tidak diketahui. Penaksiran parameter dalam model dilakukan dengan menggunakan metode maximum likelihood. Pengujian kegunaan model dilakukan dengan uji rasio likelihood. Pengujian terhadap masing-masing koefisien regresi dilakukan dengan uji z. Untuk mengukur kecocokan model digunakan koefisien determinasi R2. Metode tersebut diterapkan untuk melihat hubungan antara variabel kemampuan seseorang untuk mengalihkan stress (dinamakan Avoid) yang bersifat kontinu dengan variabel kemampuan seseorang untuk menikmati kegiatan (dinamakan Distract) dan variabel kemampuan seseorang untuk mendapatkan dukungan dari orang lain (dinamakan Social) dimana data variabel Avoid yang diketahui berupa data kategori ordinal yang dibentuk dari data variabel Avoid kontinu yang tidak diketahui nilainya."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Simatupang, Eva Rida Meilyna
"Dalam skripsi ini membahas mengenai model regresi antara variabel penjelas dengan variabel dependent kontinu dimana variabel dependent yang diketahui merupakan variabel dependent ordinal yang dibentuk dari variabel kontinu tersebut, sedangkan nilai dari variabel kontinu tidak diketahui. Penaksiran parameter dalam model dilakukan dengan menggunakan metode maximum likelihood. Pengujian kegunaan model dilakukan dengan uji rasio likelihood. Pengujian terhadap masing-masing koefisien regresi dilakukan dengan uji z. Untuk mengukur kecocokan model digunakan koefisien determinasi 2 R. Metode tersebut diterapkan untuk melihat hubungan antara variabel kemampuan seseorang untuk mengalihkan stress (dinamakan Avoid) yang bersifat kontinu dengan variabel kemampuan seseorang untuk menikmati kegiatan (dinamakan Distract) dan variabel kemampuan seseorang untuk mendapatkan dukungan dari orang lain (dinamakan Social) dimana data variabel Avoid yang diketahui berupa data kategori ordinal yang dibentuk dari data variabel Avoid kontinu yang tidak diketahui nilainya."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27697
UI - Skripsi Open Universitas Indonesia Library
Iffatul Mardhiyah
"Data panel tidak lengkap merupakan kumpulan data dari beberapa individu yang terobservasi dari waktu ke waktu dimana pada setiap waktu banyaknya individu yang terobservasi berbeda-beda. Dalam tugas akhir ini akan dibahas mengenai penaksiran parameter model regresi data panel tidak lengkap dengan komponen error dua arah. Komponen error model data panel tidak lengkap diasumsikan NIID (Normal Independent Identically Distributed). Dalam penaksiran parameter model regresi data panel tidak lengkap diperlukan taksiran komponen variansi error. Oleh karena itu, sebelum menaksir parameter model akan ditaksir komponen variansi error terlebih dahulu. Penaksiran komponen variansi error dilakukan dengan menggunakan metode Minimum Variance Quadratic Unbiased Estimation (MIVQUE). Selanjutnya, parameter model ditaksir dengan metode Maximum Likelihood Estimation (MLE)"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27713
UI - Skripsi Membership Universitas Indonesia Library
Stevani Wijaya
"Dalam analisis data, saat data mempunyai outlier dan outlier yang ada bukan merupakan suatu kesalahan, taksiran parameter yang diperoleh dengan metode Ordinary Least Square (OLS) akan bias karena metode OLS tidak robust terhadap adanya outlier. Oleh karena itu, dicari metode lain yang robust terhadap adanya outlier, salah satunya ialah metode regresi robust dengan menggunakan fungsi Huber. Pada skripsi ini akan dibahas mengenai taksiran parameter pada model regresi robust sederhana dan berganda dengan menggunakan fungsi Huber. Selain itu, akan dibandingkan antara taksiran parameter model regresi robust dengan menggunakan fungsi Huber dan taksiran parameter yang didapat dengan metode OLS dilihat dari nilai effisiensi taksiran parameter. Hasil yang diperoleh dari contoh penerapan menunjukkan bahwa untuk data ada outlier taksiran parameter yang diperoleh dengan metode regresi robust dengan fungsi Huber lebih effisien dibandingkan metode OLS, sedangkan untuk data tanpa outlier taksiran parameter yang diperoleh dengan metode OLS lebih effisien dibandingkan metode regresi robust dengan fungsi Huber."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27712
UI - Skripsi Open Universitas Indonesia Library
Dwi Rani Puspa Artha
"Pada model regresi data panel spasial dinamis terdapat lag dari variabel dependen dan spatial lag dari variabel dependen yang berperan sebagai variabel eksplanatori. Hal ini menyebabkan variabel eksplanatori berkorelasi dengan error, variabel jenis ini disebut variabel endogen eksplanatori. Dengan adanya variabel ini, estimasi secara ordinary least squares menjadi bias dan tidak konsisten. Oleh karena itu sebelum menaksir parameter pada model regresi data panel spasial dinamis harus dilakukan first-difference untuk menghilangkan efek individu dan selanjutnya dilakukan instrumental variabel pada variabel endogen eksplanatori. Kemudian untuk mendapatkan unbiased and consistent estimator, model ini ditaksir dengan metode Arrelano dan Bond yang menggunakan prinsip generalized method of moments optimal."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Amanda Putri Tiyas Pratiwi
"Model Cox merupakan model yang sering digunakan untuk menganalisis time-tovent data, yaitu data yang pengamatannya bergantung pada waktu. Terkadang, Selain informasi tentang waktu, data time-to-event juga dilengkapi dengan informasi tambahan (variabel penjelas). Analisis data waktu ke acara seperti ini dengan menggunakan model Cox akan menghasilkan perkiraan bahaya. Model Cox memiliki dua komponen utama yaitu baseline hazard dan mengandung fungsi eksponensial koefisien regresi. Bahaya didefinisikan sebagai produk antara dua komponen ini. Untuk dapat memperoleh bahaya spesifik, bahaya baseline dan koefisien regresi di model Cox harus diperkirakan. Dalam tesis ini, asumsi konstanta akan didefinisikan sebagai bahaya dasar dari model Cox. Kemudian, konstanta dan koefisien regresi dimasukkan Model ini akan diestimasi dengan menggunakan metode Bayesian dimana sampel diambil Parameter distribusi posterior dilakukan dengan menggunakan metode Markov chain Monte Carlo dengan algoritma pengambilan sampel Gibbs. Untuk metode Bayesian, distribusi sebelumnya untuk Bahaya baseline diasumsikan mengikuti distribusi gamma dan untuk koefisien regresi diasumsikan mengikuti distribusi normal. Data EKG (echocardiogram) yang terdiri dari
106 observasi dan enam variabel penjelas digunakan dalam analisis. Mendapatkan hasil bahwa estimasi parameter yang diperoleh konvergen.
The Cox model is a model that is often used to analyze time-to-event data, namely data whose observations are time dependent. Sometimes, in addition to information about time, time-to-event data is also supplemented with additional information (explanatory variables). Analysis of time-to-event data like this using the Cox model will yield hazard estimates. The Cox model has two main components, namely the baseline hazard and contains an exponential regression coefficient function. Hazard is defined as a product between these two components. In order to obtain a specific hazard, the baseline hazard and regression coefficient in the Cox model must be estimated. In this thesis, the constant assumption will be defined as the basic hazard of the Cox model. Then, the constants and regression coefficients are entered. This model will be estimated using the Bayesian method where the sample is taken. Posterior distribution parameters are carried out using the Markov chain Monte Carlo method with the Gibbs sampling algorithm. For the Bayesian method, the previous distribution for baseline hazard is assumed to follow the gamma distribution and for the regression coefficient it is assumed to follow a normal distribution. EKG (echocardiogram) data which consists of106 observations and six explanatory variables were used in the analysis. Obtain the result that the parameter estimates obtained are convergent."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Bernadeta Nismawati
"Dalam model panel data dinamis terdapat lag dari variabel dependen yang menyebabkan variabel eksplanatori berkorelasi dengan error. Lag dari variabel dependen tersebut dinamakan variabel endogen eksplanatori. Dengan adanya variabel endogen eksplanatori, estimasi secara OLS menjadi bias dan inkonsisten. Oleh karena itu sebelum menaksir parameter pada model panel data dinamis harus dilakukan first-difference untuk menghilangkan efek individu dan selanjutnya dilakukan instrumental variabel pada variabel endogen eksplanatori. Kemudian untuk mendapatkan taksiran yang unbiased, konsisten, dan efisien, model ini ditaksir dengan metode Arellano dan Bond yang menggunakan prinsip GMM optimal."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Ilmiyati Sari
"Estimasi parameter model autoregressive dapat diperoleh dengan beberapa metode, salah satunya adalah metode Marginal Likelihood. Untuk memperoleh fungsi marginal likelihood, proses autoregressive dapat dinyatakan sebagai structural model (Fraser, 1968). Dalam structural model, data runtun waktu stasioner dinyatakan sebagai kombinasi linear dari mean proses dan variabel error yang tidak terobservasi. Dengan mengganggap variabel error sebagai proses circular dan noncircular, diperoleh sifat distribusi dari variabel error yang tidak bergantung pada parameter populasi, sehingga data runtun waktu mengikuti model Location-scale. Melalui model Location-Scale dapat dibuktikan bahwa vektor data runtun waktu yang distandarisasi merupakan ancillary statistic. Ancillary statistic ini menjadi dasar untuk membangun fungsi marginal likelihood karena distribusi dari ancillary statistic bebas dari parameter populasi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27810
UI - Skripsi Open Universitas Indonesia Library
Rahmanita
"Variabel Moderator merupakan variabel yang tidak terdapat dalam model (tidak mempengaruhi variabel respon), tetapi mempengaruhi kekuatan hubungan antara variabel prediktor dan variabel respon. Dalam hal variabel moderator merupakan variabel katagorik, pengidentifikasian variabel moderator tersebut dilakukan dengan membandingkan koefisien regresi linear yang didapat dari model regresi linear untuk setiap katagori dari variabel tersebut. Hal ini dilakukan dengan uji Chow. Jika koefisien regresi linear untuk setiap katagori berbeda maka variabel tersebut merupakan variabel moderator dan analisis regresi linear sederhana dilakukan secara terpisah untuk setiap katagori dari variabel moderator."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Nuri Rahmawati
"Model regresi ordinal dua level merupakan model yang digunakan untuk menganalisis data respon ordinal tercluster dan longitudinal. Dalam hal ini variabel respon ordinal yang diketahui, dibentuk dari suatu variabel laten kontinu yang tak diketahui nilainya. Nilai batas kategorik (threshold) pada variabel laten perlu diestimasi bersama-sama dengan koefisien regresi ordinal dua level. Untuk mengestimasi parameter-parameter dan threshold pada model regresi ordinal dua level, digunakan metode estimasi maximum marginal likelihood (MMLE) melalui pendekatan numerik dengan metode Fisher scoring. Pada setiap iterasi metode Fisher Scoring, digunakan Gauss-Hermite Quadrature untuk menghitung secara numerik persamaan marginal likelihood. Untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal tercluster, digunakan data TVSFP di mana siswa bersarang dalam kelas. Sedangkan untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal longitudinal, akan digunakan data psikiatrik di mana pasien diklasifikasikan pada beberapa tingkat keparahan penyakit terhadap beberapa titik waktu (time points). Struktur data dua level yang digunakan untuk data longitudinal adalah perulangan observasi bersarang dalam individu (pasien)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27701
UI - Skripsi Open Universitas Indonesia Library