Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 87609 dokumen yang sesuai dengan query
cover
Anastia Dewi L.
"Model regresi logistik dua level merupakan analisis multilevel yang digunakan untuk menganalisis data yang mempunyai struktur hirarki dua level dengan data respon biner (bernilai 0 atau 1). Yang dimaksud dengan data hirarki adalah data dengan unit-unit observasi yang bersarang pada unit yang lebih tinggi. Dalam skripsi ini, bentuk model regresi logistik dua level difokuskan pada model regresi logistik dua level dengan random intercept. Metode penaksiran parameter yang adalah metode Penalized Quasi Likelihood order pertama (PQL-1). Prinsip umum dari metode ini adalah melinierkan bagian yang non-linier dari model regresi logistik dua level dengan perluasan deret Taylor order pertama sehingga didapat model linier 2-level untuk kemudian dilakukan pengestimasian parameter menggunakan Iterative Generalized Least Square (IGLS). Prosedur tersebut dilakukan secara iteratif sampai konvergen. Metode ini diaplikasikan pada data survey di Eropa mengenai faktor-faktor yang mempengaruhi seseorang dalam penggunaan hak pilihnya dalam pemilu. Data terdiri dari 3300 individu yang diambil secara acak dari 20 negara di Eropa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anastia Dewi L.
"Model regresi logistik dua level merupakan analisis multilevel yang digunakan untuk menganalisis data yang mempunyai struktur hirarki dua level dengan data respon biner (bernilai 0 atau 1). Yang dimaksud dengan data hirarki adalah data dengan unit-unit observasi yang bersarang pada unit yang lebih tinggi. Dalam skripsi ini, bentuk model regresi logistik dua level difokuskan pada model regresi logistik dua level dengan random intercept. Metode penaksiran parameter yang adalah metode Penalized Quasi Likelihood order pertama (PQL-1). Prinsip umum dari metode ini adalah melinierkan bagian yang non-linier dari model regresi logistik dua level dengan perluasan deret Taylor order pertama sehingga didapat model linier 2-level untuk kemudian dilakukan pengestimasian parameter menggunakan Iterative Generalized Least Square (IGLS). Prosedur tersebut dilakukan secara iteratif sampai konvergen. Metode ini diaplikasikan pada data survey di Eropa mengenai faktor-faktor yang mempengaruhi seseorang dalam penggunaan hak pilihnya dalam pemilu. Data terdiri dari 3300 individu yang diambil secara acak dari 20 negara di Eropa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27691
UI - Skripsi Open  Universitas Indonesia Library
cover
Gamar Aseffa
"Model regresi data panel spasial error dinamis adalah model regresi data panel yang melibatkan lag dari variabel dependen dan komponen dependensi spasial error. Karena terdapat korelasi antara lag dari variabel dependen dan komponen error, estimasi dengan Ordinary Least Squares menjadi bias dan tidak konsisten. Oleh karena itu, dibutuhkan metode lain untuk menaksir parameter dalam model. Metode yang dapat digunakan adalah perluasan metode Arellano dan Bond yang mencakup metode instrumental variabel menggunakan variabel instrumen yang disarankan oleh Mutl (2006) dan prinsip Generalized Method of Moments (GMM). Kemudian ditambah dengan metode pendekatan Kapoor, Kelejian, dan Prucha (KKP) sehingga dihasilkan taksiran yang konsisten.

The dynamic spatial error panel data regression model is panel data regression model which involves lag of the dependent variable and error spatial dependence. Because there is correlation between the lag of the dependent variable and error components, the ordinary least squares estimator becomes biased and inconsistent. Therefore, we need another method to estimate parameters in the model. The method which can be used is the extended method of Arellano and Bond covering instrumental variable method using instrument variables suggested by Mutl (2006) and the principle of the Generalized Method of Moments (GMM). Then the method is coupled with the method of Kapoor, Kelejian, and Prucha (KKP) approach so that it produces consistent estimators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S86
UI - Skripsi Open  Universitas Indonesia Library
cover
Nuri Rahmawati
"Model regresi ordinal dua level merupakan model yang digunakan untuk menganalisis data respon ordinal tercluster dan longitudinal. Dalam hal ini variabel respon ordinal yang diketahui, dibentuk dari suatu variabel laten kontinu yang tak diketahui nilainya. Nilai batas kategorik (threshold) pada variabel laten perlu diestimasi bersama-sama dengan koefisien regresi ordinal dua level. Untuk mengestimasi parameter-parameter dan threshold pada model regresi ordinal dua level, digunakan metode estimasi maximum marginal likelihood (MMLE) melalui pendekatan numerik dengan metode Fisher scoring. Pada setiap iterasi metode Fisher Scoring, digunakan Gauss-Hermite Quadrature untuk menghitung secara numerik persamaan marginal likelihood. Untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal tercluster, digunakan data TVSFP di mana siswa bersarang dalam kelas. Sedangkan untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal longitudinal, akan digunakan data psikiatrik di mana pasien diklasifikasikan pada beberapa tingkat keparahan penyakit terhadap beberapa titik waktu (time points). Struktur data dua level yang digunakan untuk data longitudinal adalah perulangan observasi bersarang dalam individu (pasien)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27701
UI - Skripsi Open  Universitas Indonesia Library
cover
Hakiim Nur Rizka
"Model regresi logistik spasial membangun persamaan dengan jenis variabel dependen adalah biner serta mempertimbangkan dependensi spasial pada data. Proses estimasi parameter pada model ini memerlukan algoritma EM. Namun, bentuk ekspektasi dari complete log-likelihood pada E-step tidak tersedia dalam closed-form. Dalam menangani permasalahan ini, metode terbaru yang sedang diteliti oleh Cecille Hardouin memanfaatkan pendekatan deterministik dikenal dengan metode variasional. Metode variasional merupakan metode aproksimasi distribusi yang memanfaatkan suatu batas bawah fungsi distribusi yang akan diaproksimasi lalu mengoptimalkan batas bawah ini. Metode variasional untuk estimasi parameter model regresi logistik spasial bekerja dengan mencari suatu batas bawah dari complete log-likelihood lalu memaksimumkan fungsi ini terhadap parameter model. Dalam studi literatur, didapatkan bahwa metode variasional memiliki akurasi lebih baik daripada algoritma EM dengan aproksimasi Laplace ketika dependensi spasial pada data relatif besar.

The spatial logistic regression model builds equations in which the dependent variable is binary and considers the spatial dependency on the data. Estimation procedure of the parameters in this model require EM algorithm. However, the expected form of the complete log-likelihood on the E-step is not available in closed-form. In order to deal with this problem, a recent method being researched by Cecille Hardouin utilizes a deterministic approach known as the variational method. The variational method is a distribution approximation method that utilizes a lower bound of the distribution function to be approximated and then optimizes this lower bound. The variational method for estimating the parameters of the spatial logistic regression model works by finding a lower limit of the complete log-likelihood and then maximizing this function to the model parameters. In the literature study, it was found that the variational method has better accuracy than the EM algorithm with Laplace's approximation when the spatial dependence on the data is relatively large."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitti Anindya
"Model regresi data panel balanced dinamis dengan fixed effect merupakan model regresi data panel yang melibatkan lag dari variabel respon sebagai variabel penjelas. Asumsi model regresi data panel dinamis yang dibahas adalah balanced panel, yaitu tiap individu diamati untuk panjang waktu yang sama. Dengan asumsi fixed effect, heterogenitas dapat terlihat pada intersep model. Metode penaksiran yang digunakan dikenal sebagai LSDV (least square dummy variable) namun taksiran yang dihasilkan bias. Taksiran ini juga tidak konsisten ketika periode waktu berhingga. Oleh karena itu, dibutuhkan metode lain untuk menaksir parameter dalam model. Metode yang dapat digunakan adalah metode bias terkoreksi. Estimasi bias terkoreksi diperoleh dari koreksi bias asimtotik taksiran LSDV dengan bias asimtotik didapat melalui bentuk ketidakkonsistenan penaksir. Secara intuitif, koreksi bias ini menghilangkan bentuk tidak konsistennya taksiran LSDV sehingga menjadi taksiran yang konsisten. Prosedur iteratif digunakan untuk mendapatkan taksiran bias terkoreksi. Teknik bias terkoreksi ini diaplikasikan dalam analisis empiris dari model dinamis tingkat pengangguran di negara bagian Amerika Serikat pada periode 1991-2000.

Regression model of balanced dynamic panel data with fixed effect is a regression model of panel data involving lag of response variable as explanatory variable. Assumption regression model of dynamic panel data discussed is balanced panel, that is each individual observed for the same length of time period. Assuming a fixed effect, heterogeneity can be seen on the intercept model. The assessment method used is known as LSDV (least square dummy variable) however the resulting estimates generated bias. These estimators will also inconsistent for finite number of time period. Therefore, other methods are needed to estimate parameters in model. A method that can be used is bias corrected method. Bias corrected estimation is derived from the asymptotic bias correction LSDV estimator which the asymptotic bias obtained through the form of inconsistent of estimator. Intuitively, this bias correction eliminates the form of inconsistent of LSDV estimator so as to be consistent. Iterative procedure are used to obtain this bias corrected estimator. The proposed technique is applied in an empirical analysis of unemployment rate model dynamics at the U.S. state level for the 1991-2000 period."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47006
UI - Skripsi Membership  Universitas Indonesia Library
cover
Effendi Bochari
"Tugas akhir ini membahas model regressi logistic yang digunakan untuk menganalisa dan memodel hubungan antara variabel respon kualitatif dikotomi dan variabel - variabel bebas."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1992
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fevi Novkaniza
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2000
S27508
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novi Andra
"Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan antar variabel yang diekspresikan dalam bentuk persamaan antara variabel dependen dengan variabel bebas. Dalam analisis regresi terdapat beberapa asumsi yang harus dipenuhi. Spasial dependen pada suatu kumpulan data sampel berarti observasi pada suatu lokasi berkorelasi dengan observasi pada lokasi lain. Sehingga asumsi error antar observasi yang saling bebas tidak terpenuhi. Oleh karena itu, dibutuhkan suatu model yang memperhitungkan adanya korelasi spasial yaitu model spasial dependen. Model spasial dependen terbagi dua yaitu spasial lag dan spasial error. Model spasial lag merupakan model regresi linier dimana pada variabel dependennya terdapat korelasi spasial sedangkan model spasial error merupakan model regresi linier dimana pada errornya terdapat korelasi spasial. Penaksiran parameter menggunakan metode maksimum likelihood. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S27679
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christ Holy Phillgrad Tatipatta
"ABSTRAK
Angka kematian ibu didefinisikan sebagai jumlah kematian ibu pada saat masa kehamilan atau dalam kurun waktu 42 hari setelah masa kehamilan berhenti setiap seratus ribu kelahiran hidup. Salah satu tujuan dari Millenium Development Goals MGDs Indonesia adalah untuk mengurangi angka kematian ibu. Salah satu faktor yang menentukan angka kematian ibu adalah jumlah kematian ibu. Menurut profil kesehatan Indonesia tahun 2014 provinsi Jawa Barat, Jawa Tengah, dan Jawa Timur berkontribusi 26 persen dari total jumlah kematian ibu di Indonesia. Variabel-variabel yang diduga memengaruhi kematian ibu adalah jumlah tenaga kesehatan, program pemberian beras miskin, ketersediaan air bersih, jumlah penduduk yang buta huruf, dan jumlah kelahiran yang dibantu oleh tenaga kesehatan. Data yang digunakan adalah data spasial yang merupakan data yang memiliki informasi koordinat di dalamnya. Menurut Cressie 1993, kejadian di suatu wilayah cenderung dipengaruhi oleh kejadian di sekitarnya dan ketergantungan spasial seringkali ditemukan di dalam analisis regresi. Oleh karena itu diduga bahwa jumlah kematian ibu di suatu wilayah dipengaruhi oleh jumlah kematian ibu di wilayah lainnya yang berdekatan. Pemodelan jumlah kematian ibu dilakukan dengan pendekatan regresi spasial menggunakan model Spatial Autoregressive dan Spatial Error, sehingga dapat diketahui variabel apa saja yang signifikan serta seberapa besar faktor spasial memengaruhi jumlah kematian ibu di Jawa Barat, Jawa Tengah, dan Jawa Timur. Pada ketiga daerah tersebut, juga akan dideteksi Kabupaten/kota mana saja yang memiliki jumlah kematian ibu tertinggi secara statistik menggunakan metode Spatial Scan Statistics. Hasil pemodelan menunjukkan bahwa jumlah tenaga kesehatan, program pemberian beras miskin, dan jumlah penduduk buta huruf merupakan faktor yang signifikan memengaruhi jumlah kematian ibu dan didapatkan cluster daerah yang memiliki jumlah kematian ibu tertinggi secara statistik.

ABSTRACT
Maternal mortality is defined as the number of maternal deaths during pregnancy or within 42 days of termination of pregnancy every hundred thousands live births. One of the Millennium Development Goals MGDs of Indonesia was to reduce maternal mortality. One of the factors that determine maternal mortality is the number of maternal deaths. According to Indonesia 39s health profile in 2014, West Java, Central Java and East Java provinces contributed 26 percents of the total number of maternal deaths in Indonesia. The variabels suspected affect maternal deaths are the number of health workers, poor rice programs, the availability to access clean water, the number of illiterate people, and the number of births assisted by health personnel. The data is spatial data which has coordinate information in it. According to Cressie 1993, events in a region tend to be influenced by surrounding events and spatial dependence is often found in spatial data. Therefore it is suspected that the number of maternal deaths in a region is affected by the number of maternal deaths in other surrounding areas. Maternal deaths data was analyzed by spatial regression approach using Spatial Autoregressive and Spatial Error Model to know which variabels are significant and to know whether spatial factor influences the number of maternal deaths in West Java, Central Java, and East Java. In all three areas, the highest number of maternal deaths will also be detected statistically using the Spatial Scan Statistics method. The modeling results showed that the number of health workers, poor rice program, and the number of illiterate people were significant factors that affect the number of maternal deaths and the cluster areas that have highest number of maternal deaths were obtained statistically. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>