Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 48709 dokumen yang sesuai dengan query
cover
Lismanto
"Masalah penjadwalan kuliah adalah masalah optimasi yang komputasinya rumit karena terdapat sejumlah ruangan dengan kapasitas tertentu, sejumlah dosen, serta sejumlah mahasiswa yang akan mendefinisikan kendala hard dan soft (Salwani, 2007). Penjadwalan kuliah pernah dilakukan dengan Simulated anneling (Elfitriadi, 2001), tabu search (Herlina, 2000 ) dan iterated local search (Lourenco, Martin dan Stutzle, 2002). Simulated anneling kurang efektif dalam pencarian solusi kendala hard, algoritma genetika tidak menjamin solusi optimal global, sedangkan iterated local search kurang efektif dalam optimasi kendala soft. Dalam skripsi ini, pembuatan jadwal dilakukan
dengan menggabungkan algoritma genetika dan iterated local search disebut dengan algoritma memetika. Penambahan iterated local seacrh inilah yang memungkinkan dalam pencarian jadwal terbaik (optimal global). Data yang digunakan diperoleh dari departemen Matematika UI semester genap tahun 2008 dan hasilnya yaitu seluruh kendala hard cepat terpenuhi dan mencapai solusi optimal global dengan waktu komputasi pada komputer dual core 3.0GHz, 2GB RAM yang kurang dari 2 menit"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27770
UI - Skripsi Open  Universitas Indonesia Library
cover
"Nilai transaksi perdagangan pada pasar valuta asing di seluruh dunia mencapai 3 Trilliun US Dollar setiap harinya. Dengan latar belakang seperti ini, wajar jika dibutuhkan sebuah sistem yang dapat memprediksi nilai kurs valuta asing dengan akurat. Dalam tugas akhir ini akan digunakan algoritma memetika untuk memprediksi kurs valuta asing. Algoritma memetika merupakan gabungan dari algoritma genetika dengan algoritma pencarian lokal. Model regresi yang digunakan yaitu model autoregressive, dimana untuk memprediksi nilai kurs pada hari ke n+1 digunakan data n hari sebelumnya. Tujuan dari penulisan tugas akhir ini adalah untuk melihat
kemampuan dari algoritma memetika dalam memprediksi kurs valuta asing. Kemampuan dari algoritma memetika ini akan diukur berdasarkan persentase error yang relatif terhadap data kurs sebenarnya. Percobaan dilakukan menggunakan data kurs USD/IDR, USD/EUR, USD/GBP, USD/CHF, dan USD/JPY dari tahun 2000 sampai tahun 2007. Prediksi dilakukan dengan beberapa jenis data, yaitu data harian, mingguan, dan bulanan. Dari hasil percobaan, disimpulkan bahwa kemampuan algoritma memetika dalam memprediksi kurs valuta asing cukup baik. Persentase error terkecil didapat dari data 5 harian dengan kurs USD/IDR sebesar 0,3852 %, sedangkan
persentase error terbesar didapat dari data 6 bulanan dengan kurs USD/EUR sebesar 4,4766 %."
Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nola Marina
"Flowshop Scheduling Problem (FSP) adalah masalah penjadwalan yang berkaitan dengan pengurutan pemrosesan n pekerjaan pada m mesin, dimana setiap pekerjaan harus diproses tepat satu kali pada setiap mesin dalam urutan yang sama, dengan waktu proses tertentu. Permutation Flowshop Scheduling Problem (PFSP) adalah kasus khusus dalam FSP, dimana n pekerjaan diproses dalam urutan yang sama pada setiap mesin.
Pada tugas akhir ini akan dilihat kinerja kombinasi Algoritma Memetika (AM) dan metode Greedy Randomized Adaptive Search Procedure (GRASP) dalam menyelesaikan PFSP dengan tujuan meminimumkan makespan. Kinerja metode AM dan GRASP dilihat dari kedekatan solusi yang dihasilkan dengan Best Known Solution (BKS) pada Taillard’s Benchmark dan dari waktu komputasinya.
Berdasarkan pengujian, disimpulkan bahwa metode AM dan GRASP cukup kompetitif dalam meyelesaikan PFSP dengan error relatif tidak lebih dari 2 %. Selain itu, metode AM dan GRASP lebih cepat konvergen ke solusi optimal dibandingkan dengan metode AM dan metode GRASP sendiri-sendiri."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27769
UI - Skripsi Open  Universitas Indonesia Library
cover
Suryadi M.T.
Jakarta: Gunadarma, 1995
511.8 SUR p
Buku Teks  Universitas Indonesia Library
cover
Jacoueline, Irene
Depok: Fakultas Teknik Universitas Indonesia, 1992
S38256
UI - Skripsi Membership  Universitas Indonesia Library
cover
Betrianis
"Tabu Search merupakan salah satu metode pemecahan permasalahan optimasi kombinatorial yang tergabung ke dalam local search methods. Metode ini bertujuan untuk mengefektifkan proses pencarian solusi terbaik dari suatu permasalahan optimasi kombinatorial yang berskala besar (bersifat np-hard), contohnya permasalahan penjadwalan job shop, dengan waktu komputasi yang relatif lebih kecil, namun tanpa ada jaminan akan tercapainya solusi yang optimal.
Dalam penelitian ini, Tabu search diterapkan pada sebuah permasalahan penjadwalan job shop dengan tujuan untuk meminimalkan waktu proses total atau makespan (Cmax). Penjadwalan menggunakan algoritma Tabu Search ini dilakukan terhadap tiga kasus, yaitu paket pesanan bulan September, Oktober dan Nopember, dimana untuk setiap paket pesanan dilakukan variasi terhadap initial solution dan panjang tabu list.
Hasil penjadwalan ini kemudian dibandingkan dengan hasil penjadwalan lain yang menggunakan 4 macam metode basic dispatching rules , yaitu Shortest Processing Time (SPT), Earliest Due Date (EDD), Most Work Remaining (MWKR) dan First Come First Served (FCFS). Hasil pengolahan data menunjukkan bahwa penjadwalan yang menggunakan algoritma Tabu Search sensitif terhadap perubahan yang diberikan pada variabel yang ada didalamnya dan makespan yang dihasilkan secara keseluruhan lebih kecil apabila dibandingkan dengan hasil penjadwalan menggunakan ke-4 metode lainnya.

Application of Tabu Search Algorithm in Job Shop Scheduling. Tabu Search is one of local search methods which is used to solve the combinatorial optimization problem. This method aimed is to make the searching process of the best solution in a complex combinatorial optimization problem(np hard), ex : job shop scheduling problem, became more effective, in a less computational time but with no guarantee to optimum solution.
In this paper, tabu search is used to solve the job shop scheduling problem consists of 3 (three) cases, which is ordering package of September, October and November with objective of minimizing makespan (Cmax). For each ordering package, there is a combination for initial solution and tabu list length.
These result then compared with 4 (four) other methods using basic dispatching rules such as Shortest Processing Time (SPT), Earliest Due Date (EDD), Most Work Remaining (MWKR) dan First Come First Served (FCFS). Scheduling used Tabu Search Algorithm is sensitive for variables changes and gives makespan shorter than scheduling used by other four methods.
"
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Randolf
"Maraknya keberadaan minimarket di Jakarta khususnya di daerah perumahan seperti di kawasan Perumnas Klender Jakarta Timur membuat pihak manajemen dari suatu minimarket di daerah tersebut ingin melakukan kebijakan-kebijakan untuk meningkatkan penjualan. Salah satu kebijakannya adalah dengan merancang discount untuk pembelian suatu kombinasi produk tertentu. Untuk melakukan hal tersebut harus diketahui kombinasi produk apa yang diminati oleh pelanggan, Salah satu caranya dengan Metode Kaidah Asosiasi. Metode Kaidah Asosiasi menggunakan algoritma Apriori untuk menghasilkan aturan-aturan asosiasi. Aturan asosiasi ini akan memberikan informasi mengenai kombinasi produk yang diminati oleh pelanggan, sehingga pihak manajemen dapat melakukan kebijakan-kebijakan untuk menarik para pelanggan berbelanja di minimarketnya.
Kata kunci : Data transaksi, itemset, frequent, algoritma Apriori, support, confidence, aturan asosiasi.
ix + 39 hlm ; lamp
Bibliografi : 8 (1995-2006)"
Depok: Universitas Indonesia, 2008
S27765
UI - Skripsi Open  Universitas Indonesia Library
cover
Hasanudin
"Penelitian ini akan membahas masalah penjadwalan Job shop (Job shop scheduling problem). Kerumitan pada masalah penjadwalan job shop disebabkan karena pada proses setiap komponen memiliki aliran yang berbeda sehingga dibutuhkan penjadwalan untuk menentukan urutan pengerjaan setiap komponen. Karena kompleksnya masalah penjadwalan produksi, maka solusi penyelesaian terhadap masalah ini dilakukan dengan menggunakan pendekatan heuristik yaitu metode algoritma tabu search. Algoritma tabu search, yaitu suatu pendekatan heuristik dalam pencarian solusi berdasarkan pada metode optimasi, dimana algoritma ini menggunakan daftar tabu dan iterasi lokal untuk mencegah terjebak pada local optimal hingga tercapainya solusi mendekati terbaik. Pada model jobshop penelitian ini terdapat 5 job dengan 98 komponen yang di kerjakan di 8 mesin. Fungsi tujuan dari permasalahan ini ialah meminimalkan total waktu pengerjaan seluruh job. Hasil penjadwalan produksi yang diperoleh melalui algoritma tabu search setelah 20 iterasi menghasilkan minimal makespan seluruh job sebesar 197.50 jam. Jadi, jika dibandingkan dengan jadwal produksi yang lama, maka terjadi penurunan makespan yaitu sebesar 53,87 %.

This research will present Job shop scheduling problem. The complexity of the job shop scheduling problem is caused the process of each component having different flow process. that it takes to determine sequencing of processing for each component in the scheduling. Due to the complex problem of production scheduling, then the solution to the problem of settlement is done by using a heuristic approach to taboo search algorithm method. Taboo search algorithm, which is a heuristic search approach based on the solution methods of optimization, where this algorithm uses a local list of taboo and iterations to prevent getting stuck on a local optimum to the achievement of a solution approach the best. In this model there are 5 jobs with 98 components that are in working on the 8 machines. The purpose of this function is to minimize the problems of the total cost of makespan. Production scheduling results obtained through taboo search algorithm after 200 iterations produces minimal makespan whole job of 197.5 hours. So, when compared to the long production schedule, then decline the makespan of 53.87%."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S42363
UI - Skripsi Open  Universitas Indonesia Library
cover
Danang Wijayanto
"Arti penting penjadwalan perawatan unit pembangkit disebabkan oleh kenyataan bahwa keandalan dan biaya operasi dari sebuah sistem tenaga listrik sangat dipengaruhi oleh hilangnya pasokan daya dari unit pembangkit yang sedang dirawat. Beberapa metode yang biasa digunakan untuk penjadwalan adalah metode pemrograman integer, metode pemrograman dinamis, dan metode heuristik dengan menggunakan sistim pakar. Tesis ini akan membahas penggunaan metode Algoritma Genetik (AG) untuk penjadwalan perawatan unit pembangkit di sistem interkoneksi Jawa-Bali. AG adalah suatu metode optimalisasi yang ampuh dan cocok untuk digunakan dalam persoalan yang kompleks dan berskala besar. Algoritma ini meniru suatu mekanisme seleksi alam pada makhluk hidup yang ditemukan oleh Charles Darwin yaitu "Survival of the fittest", yang menyatakan individu yang kuatlah yang akan bertahan. Dari hasil eksekusi program diperoleh jadwal perawatan yang optimum dengan standar deviasi cadangan day a ± 8. 7 %. (934 ± 82 MW).

The importance of generator unit maintenance scheduling is due to the fact thaf reliability and operating cost of power system utilities are affected by the maintenance outage of generating facilities. Several methods have been used in finding maintenance scheduling, ie. integer programming, dynamic programming, and heuristic using expert system. This thesis will introduce an application of genetic algorithm on generator maintenance scheduling in the Java-Bali interconnected system. Genetic algorithm is a powerful/optimization method that can solve a large scale combinatorial optimization problem. This algorithm imitate a natural individu selection mechanism found by Charles Darwin, ie. "survival of the fittest" in which the strongest individu will survive. Program execution gives an optimum maintenance schedule with standard deviation of reserve capacity :t 8. 7 %. (934 :t 82 MW).
"
Depok: Fakultas Teknik Universitas Indonesia, 1999
T40702
UI - Tesis Membership  Universitas Indonesia Library
cover
TB M. Abrar Kautsar
"Nilai transaksi perdagangan pada pasar valuta asing di seluruh dunia mencapai 3 Trilliun US Dollar setiap harinya. Dengan latar belakang seperti ini, wajar jika dibutuhkan sebuah sistem yang dapat memprediksi nilai kurs valuta asing dengan akurat. Dalam tugas akhir ini akan digunakan algoritma memetika untuk memprediksi kurs valuta asing. Algoritma memetika merupakan gabungan dari algoritma genetika dengan algoritma pencarian lokal. Model regresi yang digunakan yaitu model autoregressive, dimana untuk memprediksi nilai kurs pada hari ke n+1 digunakan data n hari sebelumnya.
Tujuan dari penulisan tugas akhir ini adalah untuk melihat kemampuan dari algoritma memetika dalam memprediksi kurs valuta asing. Kemampuan dari algoritma memetika ini akan diukur berdasarkan persentase error yang relatif terhadap data kurs sebenarnya. Percobaan dilakukan menggunakan data kurs USD/IDR, USD/EUR, USD/GBP, USD/CHF, dan USD/JPY dari tahun 2000 sampai tahun 2007. Prediksi dilakukan dengan beberapa jenis data, yaitu data harian, mingguan, dan bulanan.
Dari hasil percobaan, disimpulkan bahwa kemampuan algoritma memetika dalam memprediksi kurs valuta asing cukup baik. Persentase error terkecil didapat dari data 5 harian dengan kurs USD/IDR sebesar 0,3852 %, sedangkan persentase error terbesar didapat dari data 6 bulanan dengan kurs USD/EUR sebesar 4,4766 %.
Kata kunci : algoritma genetika; prediksi; kurs valuta asing
x + 46 hlm.; lamp;
Bibliografi: 9 (1993 - 2007)"
Depok: Universitas Indonesia, 2008
S27762
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>