Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 120561 dokumen yang sesuai dengan query
cover
Febrini Cesarina
"Dekomposisi katalitik metana merupakan salah satu metode yang paling sering digunakan dalam memproduksi carbon nanotube (CNT). Penggunaan reaktor unggun tetap untuk reaksi dekomposisi katalitik metana cukup banyak diminati karena desainnya yang sederhana dan ekonomis. Agar kinerja reaktor yang optimal dapat diperoleh, perlu dilakukan serangkaian uji coba terhadap pengaruh dari berbagai kondisi operasi melalui pemodelan dan simulasi.
Pada penelitian ini, dibentuk suatu pemodelan dan simulasi reaktor unggun tetap untuk reaksi dekomposisi katalitik dengan memvariasikan berbagai parameter operasi yang dapat mempengaruhi kinerja reaktor. Konversi metana dan yield hidrogen yang dapat dicapai pada saat reaksi 60 menit adalah sebesar 34.4% dan 42.7%. Kenaikan pada tekanan, laju alir, komposisi umpan dan radius partikel akan memperkecil konversi dan yield, sementara kenaikan pada temperatur umpan berlaku sebaliknya. Kondisi operasi yang memberikan konversi dan yield terbesar, yaitu 43.3% dan 51.5%, adalah pada saat temperatur umpan sebesar 1023 K dengan radius partikel sebesar 0.10 mm.

Catalytic decomposition of methane (CDM) is one of the most popular method used in producing carbon nanotube (CNT). The use of fixed bed reactor in catalytic reaction is common for its simple design and low prices. In order to get an optimal condition to the reactor, observing which parameters gives influence most to the reactor is needed to be done by modelling and simulation.
This thesis is proposed a modelling and simulation of fixed bed reactor for catalytic decomposition of methane by varying the values of operating parameters which influence the reactor performance. The methane conversion dan hydrogen yield obtained at 60 minutes reaction are 34.4% dan 42.7%. The increasing feed pressure, velocity, particle radius and composition decrease conversion and yield significantly, while the decreasing feed temperature results in opposite. An optimal condition obtained when using feed temperatur at 1023 K and radius particle at 0.10 mm, which gives highest conversion and yield, 43.3% and 51.5% in result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32582
UI - Tesis Membership  Universitas Indonesia Library
cover
Ernawati Munir
"Nanokarbon merupakan salah satu produk nanoteknologi yang dapat diperoleh melalui Dekomposisi Katalitik Metana atau Methane Decomposition Reaction (MDR). Penentuan kondisi optimum proses diperlukan untuk menghasilkan nanokarbon dengan kualitas baik. Pada penelitian ini dilakukan analisis korelasi dan signifikansi variabel proses terhadap respon konversi metana menggunakan metode ANOVA. Kondisi operasi yang divariasikan adalah suhu reaksi dengan rentang 650°C-750°C, waktu reaksi rentang 5-40 menit dan laju alir metana pada 120 mL/menit - 160 mL/menit. Proses penentuan kondisi optimum dilakukan dengan metode respon permukaan. Eksperimen dilakukan dalam 2 tahap, yaitu orde I dan orde II. Desain eksperimen pada tahap orde satu menggunakan desain faktorial dua level, sedangkan desain eksperimen pada tahap orde dua menggunakan Central Composite Design (CCD). Hasil penelitian menunjukkan aplikasi metode respon permukaan pada eksperimen mendapatkan konversi optimum nanokarbon pada suhu reaksi 716°C dengan laju alir 118 mL/menit dan waktu reaksi 20 menit.

Nanocarbon,as one of the nanotechnology product is produced by Methane Decomposition Reaction (MDR). Identification of optimum process required to produce nanocarbon with good quality. In this experiment conducted a correlation analysis and significance of process variable on the response of methane conversion using ANOVA methode. Operation parameter for reaction temperature was varied in the range 650°C-750°C, reaction time on the range 5-40 minutes and methane flow rate at 120 mL/minute - 160 mL/minute. Optimum process was conducted with Response Surface Methodology. The experiments was done in two steps, that's first orde and second orde. Design of experiment on the first orde was done with two level factorial design and design of experiment on the second orde was done using Central Composite Design (CCD). The results of experiment show that response surface methodology application in experiment give optimum conversion of the methane at 716°C reaction temperature with a flow rate 118 mL/minute and reaction time 20 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43199
UI - Skripsi Open  Universitas Indonesia Library
cover
Haris Fasanuyasirul
"Gas sintesis (syngas) dari gas bumi merupakan bahan baku masa depan untuk industri energi dan kimia dalam teknologi Gas to Liquid (GTL). Konsep produksi syngas melalui reformasi autotermal ditemukan oleh Lurgi and Haldor Topsoe (1996) untuk mengatasi masalah konsumsi energi dengan cara menggabungkan proses oksidasi dan reformasi kukus metana dalam satu reaktor. Dalam penelitian ini dilakukan pemodelan dan simulasi reaktor unggun tetap untuk reformasi autotermal dengan menggunakan kinetika Xu dan Froment (1989) untuk reformasi Metana dan Ma dkk (1996) untuk oksidasi Metana.
Penelitian ini dilakukan karena dalam melakukan desain, optimisasi dan scale-up reaktor perlu dilakukan prediksi dan estimasi untuk mengetahui berbagai parameter yang terlibat dalam sistem sehingga dapat merekayasa sistem pada kondisi yang seefisien mungkin. Validasi model dilakukan dengan data-data eksperimen skala laboratorium (Scognamiglio dkk., 2009) dan simulasi dilakukan dengan bantuan program COMSOL.
Hasil validasi pada temperatur 970 K, tekanan 2 atm dan rentang laju alir 2,5x10-4 - 1x10-4 Nm3/s menunjukkan deviasi rata-rata sebesar 0,74% pada konversi Metana dan kesesuaian yang bagus untuk selektivitas produk. Hasil simulasi menunjukkan kondisi optimum yaitu pada laju alir 1x10-4 Nm3/s, tekanan 400 kPa dan rasio S/C = 0 dengan perolehan konversi metana dan yield syngas masing-masing 0,96 dan 0,66.

Synthesis gas (syngas) from natural gas is a future energy and chemical industry feedstock in Gas To Liquid technology. Syngas production concept via autothermal reforming is found by Lurgi and Topsoe to overcome energy consumption by combining oxidation and steam reforming process in one reactor. In this research, packed bed reactor modeling and simulation conducted for autothermal reforming using kinetics model and parameter suggested by Xu and Froment (1989) for reforming reactions and Ma et al (1996) for oxidation reaction.
This research held because in reactor design, optimization and scale-up, it is necesarry to predict the reactor performance so that the design can be done efficienly. Model validation conducted using laboratory scale experimental data (Scognamiglio et al, 2009) and the simulation aimed by COMSOL Multiphysics software.
The validation result at 970 K, 2 atm, flow range 2,5x10-4 - 1x10-4 Nm3/s shows average deviation 0,74% on methane conversion and good agreement on the product selectivity. The simulation result shows that the optimum condition is at flow rate 1x10-4 Nm3/s, pressure 400 kPa and S/C ratio = 0 with methane conversion and syngas yield attained respectively 0,96 and 0,66.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S42375
UI - Skripsi Open  Universitas Indonesia Library
cover
Francy
"Scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity menghasilkan laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter gauze 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm 2. Penelitian ini bertujuan untuk memproduksi nanokarbon dan hidrogen dengan katalis terstruktur gauze melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al. Pada reaktor katalis terstruktur gauze ini dilakukan uji aktifitas selama 20 menit dan uji stabilitas selama 17 jam pada suhu 700°C. Untuk uji stabilitas dengan 20 L/jam metana, konversi metana tertinggi adalah 96,77% dan kemurnian hidrogen tertinggi adalah 97,46%. Yield karbon yang dihasilkan oleh 1,83 gram katalis adalah 170,36 gram karbon. Untuk uji aktivitas dengan laju alir metana 6 L/jam diperoleh konversi metana tertinggi adalah 76,1% dan kemurnian hidrogen tertinggi adalah 79,3%. Yield karbon yang dihasilkan oleh 1,81 gram katalis adalah 57,34 gram karbon. Dari hasil percobaan diperoleh bahwa kapasitas reaktor ini adalah 393,19 gram/hari.

Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity results in 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm gauze diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to produce nanocarbon and hydrogen by gauze-type structural catalyst through catalytic decomposition of methane with Ni-Cu-Al catalyst. Two experiment that have already done are stability test for 17 hours and activity test for 20 minutes at 700°C. In stability test with 20 L/h methane flow, the highest conversion of methane is 96,77% and the highest hydrogen purity is 97,46%. Yield carbon that produced by 1,83 gram catalyst is 170,36 gram carbon. In activity test with 6 L/h methane flow, the highest conversion of methane is 76,1% and the highest hydrogen purity is 79,3%. Yield carbon that produced by 1,81 gram catalyst is 57,34 gram carbon. From the experiment, the production capacity of the reactor is 393,19 gram C/day."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52239
UI - Skripsi Open  Universitas Indonesia Library
cover
Anindya Adiwardhana
"Optimasi desain reaktor merupakan salah satu tahap penting dalam usaha peningkatan produksi karbon nanotube dan hidrogen melalui reaksi dekomposisi katalitik metana. Untuk mendukung hal ini, maka diperlukan suatu persamaan kinetika matematis yang akurat dan berlaku untuk kondisi operasi yang lebar. Pada penelitian, dilakukan studi kinetika reaksi dekomposisi katalitik metana menggunakan katalis Ni-Cu-Al dengan target komposisi 2:1:1 yang dipreparasi dengan metode kopresipitasi menggunakan presipitan larutan sodium karbonat.
Penelitian diawali dengan memformulasikan beberapa model persamaan kinetika dengan pendekatan analisis kinetika mikro (adsorpsi isotermis). Masing-masing model persamaan kinetika kemudian diuji dengan data kinetika yang diperoleh secara eksperimental. Data kinetika eksperimental diambil dengan variasi temperatur dari 650 °C sampai 750 °C pada tekanan amosferik kemudian data tersebut lalu diuji dengan model kinetika mikro yang diturunkan dari mekanisme reaksi permukaan katalis dan didapat model kinetika yang paling representatif dengan eksperimen adalah model kinetika reaksi adsorpsi metana sebagai tahap pembatas laju reaksi dengan energi aktivasi yang dibutuhkan 40.6 kJ/mol dan faktor pra-eksponensial sebesar 0.02.

Optimization of reactor design is one important step in efforts to increase production of carbon nanotubes and hydrogen via methane catalytic decomposition reaction. To support this, it needs an accurate mathematical kinetic equation and is valid for a wide operating conditions. In the study, carried out the reaction kinetics study of catalytic decomposition of methane using the catalyst Ni-Cu-Al with a target composition of 2:1:1 which was prepared with coprecipitation method using sodium carbonate as a precipitating solution.
The research began by formulating a model kinetic equation with kinetic microanalysis approach (adsorption isotherm). Each kinetic equation model was then tested with kinetic data obtained experimentally. Experimental kinetic data were taken with temperature variation from 650 °C to 750 °C at atmospheric pressure Then data can then be tested with a micro kinetic model derived from the surface of the catalyst and the reaction mechanism obtained the most representative model of the kinetics experiment is a model adsorption of methane as a limiting step reaction rate with activation energy 40.6 kJ / mol and pre-exponential factor of 0.02.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51022
UI - Skripsi Open  Universitas Indonesia Library
cover
Wihardi Setyo Wicaksono
"Carbon nanotube (CNT) adalah bentuk baru dari karbon murni yang memiliki banyak kegunaan. Perengkahan metana adalah salah satu proses untuk sintesis hidrogen dan CNT yang memiliki kelebihan tidak menghasilkan karbon monoksida dan karbon dioksida. Sebelum memproduksi CNT dan hidrogen berbasis reaksi dekomposisi katalitik metana dengan skala pabrik, diperlukan simulasi dan pemodelan dari hasil eksperimen reaktor lab.
Tujuan dari penelitian ini adalah untuk mendapatkan model matematika tak berdimensi reaktor unggun tetap yang valid dan menganalisis pengaruh dari variasi kondisi operasi terhadap konversi metana. Metode untuk penelitian adalah mengembangkan model persamaan-persamaan matematika berdasarkan neraca massa, momentum, dan energi. Persamaan-persamaan tersebut kemudian di-running pada perangkat lunak COMSOL Multiphysics® versi 4.4.
Konversi metana pada waktu reaksi 315 menit adalah 97,1% dan yield karbon yang didapatkan setelah 315 menit adalah 1,12 g karbon/g katalis. Kenaikan pada tekanan umpan, laju alir umpan, dan fraksi mol hidrogen akan memperkecil konversi metana. Kenaikan temperatur dinding reaktor dan panjang reaktor akan memperbesar konversi metana.

Carbon Nanotube (CNT) is a new form of pure carbon that have a lot of usefulness. Methane cracking is one of process for the synthesis of hydrogen and CNT which have advantage to not produce carbon monoxide and carbon dioxide. Before producing CNT and hydrogen base on the reaction of methane catalytic decomposition in plant scale, it is needed to done simulation and modelling from result of lab reactor experiment.
Purpose of this research is to get valid dimensionless model of fixed bed reactor and to analyze the variation effect of operation condition to methane conversion. Method for this research is develop model of mathematic equations based on mass, momentum, and energy balance. Software COMSOL Multiphysics® version 4.4 then used to running the equations.
Methane conversion at 315 minutes reaction time is 97.1% and carbon yield obtained after 315 minutes reaction time is 1.12 g carbon/g catalyst. Increasing feed pressure, velocity, and hydrogen mole fraction will decrease methane conversion. Increase of reactor wall temperature and reactor length will increase methane conversion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59617
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ajeng Nurcahyani
"Produksi Carbon Nanotube (CNT) mengalami permasalahan dengan terbatasnya hasil CNT jenis Aligned yang dikarenakan oleh banyaknya parameter desain yang mempengaruhi proses sintesis. Penelitian dengan tujuan untuk mendapatkan ACNT dilakukan dengan memvariasikan parameter desain yang digunakan, yaitu konsentrasi metana, jenis substrat, dan penghilangan hidrogen dari proses sintesis. Sintesis ACNT dilakukan dengan menggunakan Floating Catalyst CVD (FC-CVD) melalui reaksi dekomposisi katalitik metana. Hasil karakterisasi FE-SEM belum menunjukkan adanya CNT yang terbentuk sempurna dikarenakan proses deposisi katalis yang belum tepat terjadi sehingga menyebabkan karakteristik karbon berdiameter besar dan berbentuk amorf. Konsentrasi metana yang digunakan adalah 0,003M; 0,006 M; 0,012 M; 0,0148 M. Peningkatan konsentrasi metana menghasilkan peningkatan ukuran diameter CNT dari 28,28 nm untuk konsetrasi terendah hingga 66,72 nm untuk konsentrasi tertinggi. Konversi metana dan kemurnian hidrogen untuk 0,003 M adalah 80,57% dan 38,37% dan terus menurun untuk konsentrasi 0,0148 M mencapai 30,46% dan 19,21%. Sintesis dengan substrat SiO2 dan Al2O3 menghasilkan kualitas CNT, konversi metana, serta kemurnian hidrogen yang lebih baik dan lebih tinggi untuk SiO2. Nilai konversi metana serta kemurnian hidrogen yang dihasilkan pada reaksi tanpa hidrogen menghasilkan nilai yang rendah, yaitu 9,00% dan 1,26%. Hal tersebut secara signifikan menunjukkan bahwa peran hidrogen pada proses sintesis ACNT dengan metode FC-CVD sangat besar karena hidrogen mampu menurunkan suhu perengkahan ferrocene.

The production of Carbon Nanotubes (CNT) are having problem with the limited results of the Aligned CNT due to multiplicity of design parameters that affect the process of synthesis. Research with the goal to get the ACNT performed by varying the design parameters are used, namely methane concentration, type of substrate, and the removal of hydrogen from the process of synthesis. ACNT synthesis performed using Floating Catalyst CVD (FC-CVD) through catalytic decomposition of methane. Results of the characterization of FE-SEM has not shown the existence of CNT formed perfect due to the catalyst deposition process that has not exactly happened that caused a large diameter and amorphous-shaped carbon characteristics. Methane concentration used was 0,003 M; 0,006 M; 0,012 M; 0,0148 M. Increasing concentrations of methane generating augmenting the size of CNT diameter, out of the lowest concentrations was 28,28 nm to 66,72 nm for the highest concentration. Methane conversion and hydrogen purity to 0,003 M was 80,57% and 38,37% and continues to decline reach 30,46% and 19,21% for concentration of 0,0148 M. Synthesis with SiO2 and Al2O3 substrates produced quality of CNT, methane conversion, and hydrogen purity as well as a better and higher for SiO2. The value of methane conversion as well as the purity of the hydrogen produced in the reaction without hydrogen produces a low value, i.e. 9,00% and 1,26%. This significantly indicating that the role of hydrogen in ACNT process synthesis with FC-CVD method is enormous because hydrogen is able to lower the temperature of ferrocene decomposition."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41849
UI - Tesis Membership  Universitas Indonesia Library
cover
Praswasti Pembangun Dyah Kencana Wulan
"Penelitian ini bertujuan memproduksi hidrogen (H2) dan carbon nanotube (CNT) secara simultan melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-AL. Secara garis besar, penelitian dibagi menjadi dua tujuan besar yaitu studi kinetika intrinsik dan pemodelan reaktor. Studi kinetika didekati dengan tiga cara. Model reaktor yang dibuat adalah reaktor pelat sejajar. Studi kinetika dengan internal reaktor pelat sejajar menghasilkan kinetika non-intrinsik. Pelapisan katalis pada pelat sebanyak 4 kali tidak mempunyai pengaruh yang signifikan pada loading katalis.
Hasil eksperimen diverifikasi menggunakan kriteria-kriteria limitasi tahanan massa dan panas (eksternal dan internal). Hasil verifikasi menunjukkan bahwa kinetika pelat sejajar tidak mampu mengatasi limitasi tahanan internal. Studi kinetika diperbaiki dengan internal reaktor berupa katalis serbuk. Studi kinetika serbuk menghasilkan kinetika intrinsik. Tetapi hasil ini tidak akurat karena deposisi karbon dihitung melalui neraca karbon terhadap waktu (pendekatan dinamik) padahal rata-rata 43,45% karbon hilang di akhir reaksi. Studi kinetika dilanjutkan menggunakan reaktor yang dilengkapi dengan microbalance. Kinetika model ini dapat mengukur pertambahan karbon sebagai fungsi waktu dan suhu pada tekanan atmosfer.
Hasil penelitian sebelum deaktivasi menunjukkan bahwa tahap pembatas laju reaksi adalah tahap adsorpsi. Energi aktivasi yang diperoleh sebesar 67,76 kJ/mol dan faktor pre-eksponensial 5,15 x 1018. Model persamaan kinetika deaktivasi katalis mempunyai persamaan laju deaktivasi orde satu. Reaktor katalis terstruktur pelat sejajar dimodelkan tiga dimensi (3D) kondisi stedi. Model 3 dimensi diselesaikan dengan program aplikasi computional fluid dynamics (CFD) yaitu COMSOL. Konversi metana dan yield hydrogen digunakan sebagai data validasi antara model dan data hasil eksperimen. Hasil simulasi mempunyai persentase kesalahan konversi total metana dan yield H2 berturut-turut 0,77% dan 2,38%. Validasi menunjukkan bahwa hasil model reaktor sesuai dengan data hasil percobaan laboratorium.

This study aims to produce hydrogen (H2) and carbon nanotube (CNT) simultaneously through methane decomposition reaction over a Ni-Cu-Al catalyst. The research is divided into two major objectives namely intrinsic kinetics study and reactor modeling. Kinetics studies were approached in three ways. Reactor model is made parallel flat plate reactor.
The result of kinetics study using internal reactor parallel-plate was nonintrinsic kinetics. Coating 4 times on the parallel plate had no significant effect on catalyst loading. The experimental results are verified using the criteria for limitation of mass and heat resistance (external and internal). Verification results show that kinetics of parallel-plate are not able to overcome the internal resistance limitation. Kinetics studies corrected with the reactor's internal form of the catalyst powder.
This experiment result is not accurate because of carbon deposition is calculated by carbon balance versus time (dynamic approach) whereas the average 43.45% of carbon lost by the end of the reaction. The last study using the reactor which is equipped with a microbalance. This model can measure carbon growth as a function of time and temperature at atmospheric pressure. The results before deactivation suggests that the limiting step is the adsorption. The activation energy of 67.76 kJ/mol and preexponential factor of 5.15 x 1018. Deactivation kinetics model have first order. Parallel-plate structured catalyst reactor is modeled three-dimensional (3D) with steady condition. 3-dimensional model solved by the application program computational fluid dynamics (CFD) namely COMSOL. Methane conversion and hydrogen yield used as validation between model and experimental data. The simulation results have an error percentage of the total methane conversion and H2 yield respectively 0.77% and 2.38%. Validation showed that the model in line with experimental data."
Depok: Fakultas Teknik Universitas Indonesia, 2011
D1276
UI - Disertasi Open  Universitas Indonesia Library
cover
Irene Ariani
"Pembuatan Carbon nanotube (CNT)sangat sulit dan mahal untuk dilakukan dalam skala industri. Oleh karena itu, pada penelitian ini reaktor dari skala laboratorium dimodelkan untuk menurunkan resiko kegagalan scale-up. Persamaan yang diperoleh dari penelitian kinetika dikombinasikan dengan prinsip peristiwa perpindahan menggunakan program Computational Fluid Dynamics (CFD) yaitu, COMSOL Multiphysics sehingga didapatkan sebuah model reaktor. Model disimulasikan dengan variasi space-time untuk melihat pengaruh parameter-parameter tersebut terhadap suhu dan produksi CNT.
Hasil simulasi menunjukan pola aliran fluida, profil suhu, konsentrasi, dan konversi sebagai fungsi jarak dan waktu. Pola aliran fluida dipengaruhi tekanan dan faktor friksi dengan dinding dan pelat;sedangkan profil suhu dipengaruhi oleh reaksi, panas furnace dan kontak dengan lingkungan. Konversi metana meningkat akibat peningkatan space-time (9%). Berdasarkan hasil simulasi didapatkan konversi metana tertinggi pada space-time 0,006 gr.min/ml.

Production Carbon nanotubes (CNTs) are expensive and hard to do in industrial scale. Therefore, in this research the laboratorium scale reactor is being modeled to reduce the scale-risk of failure. The equations obtained from kinetic studies combined with the principle of transport phenomenon using Computational Fluid Dynamics (CFD) program Multiphysics to obtain a reactor model. Model simulated with space-time variation to study the effect of that parameter on the reactor temperature and CNT production.
The results obtained from the simulation are fluid flow pattern, temperature, consertration and conversion profile as a function of time and distance. The fluid flow pattern affected by pressure drop and friction factor between wall and plates. Meanwhile, the temperature profile is affected due to the reaction, heat from the furnace and contact with environment. Conversion of methane increased due to enhancement in space-time (9%). The greatest conversion of methane on space-time 0.006 gr.min/ml.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S54144
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmi Nuzuliyah
"ZSM-5 mesopori disintesis dengan menggunakan double template dimana TPAOH dan PDDA sebagai template. TPAOH sebagai template pertama digunakan sebagai pengarah struktur MFI dan PDDA sebagai template kedua digunakan sebagai template pengarah mesopori. Zeolit ZSM-5 mesopori kemudian dianalisis dengan XRD, FTIR, SEM-EDX dan BET. Preparasi katalis Cu/ZSM-5 dilakukan menggunakan metode impregnasi basah dan dianalisa dengan EDX dan AAS. Analisa EDX menunjukkan hasil perbandingan Si/Al sebesar 22,96 dan loading Cu sebesar 3,92 sedangkan hasil analisa AAS menunjukkan loading Cu sebesar 2,245 . Tiga variasi jumlah katalis Cu/ZSM-5 serta tiga variasi jumlah regenarasi katalis Cu/ZSM-5 0,5 , 0,75 dan 1,00 gram dengan rasio CH4 :N2 sebesar 0.75 : 2 bar, T=1500C dan Volume reaktor = 300 m L. Untuk analisa produk yang terbentuk dilakukan menggunakan instrumen GC-FID dengan metode eksternal untuk mengetahui persen yield produk yang terbentuk. Hasil yang diperoleh menunjukkan bahwa katalis Cu/ZSM-5 baru dan regenerasi katalis yang optimum digunakan untuk reaksi oksidasi parsial metana menjadi metanol sebesar 0,75 gram dengan waktu reaksi optimum 120 menit. Pada reaksi dengan katalis Cu/ZSM-5 0,75 gram dengan waktu reaksi 120 menit dihasilkan persen yield sebesar 8,02 sedangkan reaksi dengan regenerasi katalis CuOx/ZSM5 0,75 gram dengan waktu reaksi 120 menit dihasilkan sebesar 8,46.

Mesoporous ZSM 5 zeolite waa synthesized using double template method, TPAOH and PDDA. First template, TPAOH was used as MFI structure directing template and PDDA was used as mesoporous directing agent. The as synthesized was ZSM 5 zeolite were analyzed by XRD, FTIR, SEM EDX and BET. Preparation of the catalyst Cu ZSM 5 was performed using wet impregnation method and analyzed with EDX and AAS. EDX analysis shows the comparison of Si Al of 22.96 and Cu loading of 3.92 while the AAS analysis results indicate Cu loading of 2.245 . Three variations of the amount of Cu ZSM 5 catalyst and the re used of Cu ZSM 5 catalyst 0.5, 0.75 and 1.00 gram more used in catalytic activity test with condition of CH4 N2 ratio of 0.75 2 bar, T 1500C, and vessel volume 300 mL. Product analysis performed using GC FID instrument with an external method to determine the was percent yield. The results obtained showed that the optimum weight of Cu ZSM 5 catalyst used for 120 minutes reaction was 0,75 gram. In that reaction percent yield of 8.02 was obtained with fresh catalyst was 0,75 gram. The optimum weight of re used catalyst needed for similar reaction was 0,75 gram and with re used catalyst the yield was 8,46."
Depok: Universitas Indonesia, 2016
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>