Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81169 dokumen yang sesuai dengan query
cover
Ario Sunar Baskoro
"Dalam penelitian ini telah dikembangkan sistem pengelasan otomatis Tungsten Inert Gas (TIG) dengan menggunakan sensor vision pada pengelasan pipa aluminum. Penelitian ini mempelajari proses pengelasan cerdas pipa paduan aluminum 6063S-T5 dalam posisi tetap dengan obor las (welding torch) bergerak dan menggunakan mesin las AC. Model Jaringan Syaraf Tiruan (neural network) untuk pengendalian kecepatan pengelasan telah dikembangkan agar dapat bekerja secara otomatis. Untuk melatih Jaringan Syaraf Tiruan ini diperlukan cukup banyak data dari penelitian sehingga memerlukan waktu dan dana yang cukup besar. Penelitian ini menawarkan proses baru untuk memperkirakan dan mengendalikan penetrasi pengelasan dalam pengelasan pipa paduan aluminum. Penetrasi las diperkirakan dengan menggunakan metode perkiraan secara hibrida yaitu dengan mengombinasikan simulasi pengelasan dan pengamatan visual menggunakan sensor vision. Dari hasil eksperimen didapatkan bahwa sistem pengendalian cukup efektif untuk mendeteksi kolam las (molten pool) dan menghasilkan pengelasan yang baik.

This research has developed an automatic welding system Tungsten Inert Gas (TIG) using sensor vision on aluminum pipe welding. This research studied the process of intelligent welding of alloy pipe aluminum 6063S-T5 in a fixed position with a welding torch to move and use the AC welding machines. The neural network model to control the speed of the welding has been developed in order to work automatically. The neural network train need quite a lot of data from studies that require time and substansial funds. This research offers a new process for estimating and controlling welding penetration in welding of aluminum alloy pipe. Weld penetration was estimated by using the approximate hybrid method that combines the simulations of welding and visual inspection using sensor vision. The experiment results that the control system is effective enough to detect the molten pool and produce a good weld."
Depok: Fakultas llmu Komputer Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Ario Sunar Baskoro
"Dalam penelitian ini telah dikembangkan sistem pengelasan otomatis Tungsten Inert Gas (TIG) dengan menggunakan sensor vision pada pengelasan pipa aluminum. Penelitian ini mempelajari proses pengelasan cerdas pipa paduan aluminum 6063S-T5 dalam posisi tetap dengan obor las (welding torch) bergerak dan menggunakan mesin las AC. Model Jaringan Syaraf Tiruan (neural network) untuk pengendalian kecepatan pengelasan telah dikembangkan agar dapat bekerja secara otomatis. Untuk melatih Jaringan Syaraf Tiruan ini diperlukan cukup banyak data dari penelitian sehingga memerlukan waktu dan dana yang cukup besar. Penelitian ini menawarkan proses baru untuk memperkirakan dan mengendalikan penetrasi pengelasan dalam pengelasan pipa paduan aluminum. Penetrasi las diperkirakan dengan menggunakan metode perkiraan secara hibrida yaitu dengan mengombinasikan simulasi pengelasan dan pengamatan visual menggunakan sensor vision. Dari hasil eksperimen didapatkan bahwa sistem pengendalian cukup efektif untuk mendeteksi kolam las (molten pool) dan menghasilkan pengelasan yang baik.

This research has developed an automatic welding system Tungsten Inert Gas (TIG) using sensor vision on aluminum pipe welding. This research studied the process of intelligent welding of alloy pipe aluminum 6063S-T5 in a fixed position with a welding torch to move and use the AC welding machines. The neural network model to control the speed of the welding has been developed in order to work automatically. The neural network train need quite a lot of data from studies that require time and substansial funds. This research offers a new process for estimating and controlling welding penetration in welding of aluminum alloy pipe. Weld penetration was estimated by using the approximate hybrid method that combines the simulations of welding and visual inspection using sensor vision. The experiment results that the control system is effective enough to detect the molten pool and produce a good weld.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Ashadi
"Pada skripsi ini, akan dilalcukan pemodelan sistem kardiovaskular manusia dengan menggunakan prinsip-prinsip dasar fisika. Model matematis yang diperoleh selanjutnya akan disimulasikan dengan menggunakan program Matlab 6.5.
Kemudian, juga dimodelkan dan disimulasikan proses regulasi tekanan darah yang terjadi pada sistem kardiovaskulan Simulasi akau dilakukan dengau mcnggunakan gabungan model sistem kardiovaskular dan model sistem regulasi tekanan darah.
Selanjumya, dirancang dan disimulasikan suatu pacu jantung rare-adaptif berbasis Jaringan Syaraf Tiruan Jaringan Syaraf Tiruan berfnmgsi untuk menenlukan besamya periode impuls yang dikeluarkan pacu jantung. Jaringan Syaraf Tiruan yang digunakan terdiri dari tiga layer. Perancangan dilakukan dalam dua tahapan, yaitu proses pelatihan dan proses pengujian. Pada pelatihan, digunakan data basil simulasi sistem kardiovaskular yang telah dilengkapi dengan sistem regulasi sebagai data pelatihan, dan digunakan algoritma backpropagation sebagai algoritma pelatihan. Pada pengujian, akan dilihat kinerja pacu jantung berbasis Jaringan Syaraf Tiruan ketika digunakan pada sistem kardiovaskular.
Hasil perancangan menunjukkan perfonna pacu jannmg yang mendekati fungsi denyut jantung tubuh sebenarnya."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40103
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melisa Mulyadi
"ABSTRAK
Perubahan karakteristik pada Heat Exchanger akibat adanya endapan
kotoran yang melapisi pennukaan perpindahan panas, membuat sistem
rnenjadi sulit untuk dikendalilcan. Untuk mengatasi masalah tersebut dipilih pengendali PID (Proporsional. Integral dan Diferensial) sebagai pengendali sistem, dengan bantuan Jaringan Syaraf Tiruan (JST) untuk menentukau parameter pengendalinya. Proses belajar JST menggunakan algoritma backpropagation dengan arsitektur jaringan yang terdiri dari tiga lapis neuron. Pada proses belajar dilakukan cara pelatihan dengan memberikan bobot yang berbeda pada tiap Iapisannya dan dicari pola keluaran yang paling mendekati pola target yang ditetapkan. Pada penelitian ini program sirnulasi dibuat dalam bahasa pernrogratnan Pascal. Dari basil simulasi dapat dilihat bahwa JST mampu rnenentukan parameter pengendali PID yang dapat memperbaiki karakteristik sistem, bila terjadi perubahan pada parameter proses.
"
1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Budi Setiyawan
Bogor: [publisher not identified], 2003
006.32 SET p
Buku Teks  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1992
S41116
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Sistem Pengaturan Lampu Lalu Lintas Terdistribusi adalah sebuah sistem lampu lalu lintas yang ditujukan untuk memenuhi kebutuhan akan kinerja pengaturan lampu lalu lintas yang cerdas dengan pengambilan data secara real-time. Sistem ini dapat melakukan penjadwalan dan pengaturan jaringan banyakpersimpangan secarareal-time yang tidak bisa dilakukan oleh sistem pengaturan lampu lalu lintas konvensional. Penerapan klasifikasi di dalam sistem ini digunakan untuk meningkatkan akurasi dari pengenalan mobil. Proses klasifikasi diimplementasikan menggunakan tiga algoritma Jaringan Syaraf Tiruan, yakni Backpropagation, FLVQ, dan FLVQ-PSO. Berdasarkan hasil ujicoba, dapat ditunjukkan bahwa algoritma Backpropagationmemiliki performa akurasi yang lebih baik dibandingkan dua algoritma JST yang lainnya.

Abstract
Distributed Traffic Light Control System is a traffic light system intended to meet the need for setting the performance of intelligent traffic lights with real-time data capturing. The system can perform scheduling and network settings of multi-junction in real time that can not be done by a conventional traffic light settings system. Application of classification within this system is used to improve the accuracy of the car recognition. Classification process is implemented using three neural network algorithms, namely Backpropagation, FLVQ, and FLVQ-PSO. Based on the test results, it can be shown that the Backpropagation algorithm performs better accuracy than the other two algorithms."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Sistem Pengaturan Lampu Lalu Lintas Terdistribusi adalah sebuah sistem lampu lalu lintas yang ditujukan untuk memenuhi kebutuhan akan kinerja pengaturan lampu lalu lintas yang cerdas dengan pengambilan data secara real-time. Sistem ini dapat melakukan penjadwalan dan pengaturan jaringan banyakpersimpangan secarareal-time yang tidak bisa dilakukan oleh sistem pengaturan lampu lalu lintas konvensional. Penerapan klasifikasi di dalam sistem ini digunakan untuk meningkatkan akurasi dari pengenalan mobil. Proses klasifikasi diimplementasikan menggunakan tiga algoritma Jaringan Syaraf Tiruan, yakni Backpropagation, FLVQ, dan FLVQ-PSO. Berdasarkan hasil ujicoba, dapat ditunjukkan bahwa algoritma Backpropagationmemiliki performa akurasi yang lebih baik dibandingkan dua algoritma JST yang lainnya."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Tujuan utama dari penelitian yang dilakukan adalah melakukan pengenalan pola isyarat tangan statis dalam bahasa Indonesia. Pengenalan pola isyarat tangan statis dalam bentuk citra secara garis besar dilakukan dalam 3 tahapan yang meliputi: 1) Segmentasi bagian citra yang akan dikenali berupa tangan dan wajah, 2) ekstraksi ciri, dan 3) klasifikasi pola. Data citra yang diterapkan ada 15 kelas kata isyarat statis. Segmentasi dilakukan dengan menggunakan filter HSV
dengan ambang berdasarkan warna kulit. Ekstraksi ciri dilakukan dengan dekomposisi wavelet Haar filter sampai level 2. Klasifikasi dilakukan dengan menerapkan sistem jaringan syaraf tiruan perambatan balik dengan arsitektur 4096 neuron pada lapisan input, 75 neuron pada lapisan tersembunyi dan 15 neuron pada lapisan output. Sistem diuji dengan menggunakan 225 data validasi dan akurasi yang dicapai adalah 69%.

Abstract
The main objective of this research is to perform pattern recognition of static hand gesture in Indonesian sign language. Basically, pattern recognition of static hand gesture in the form of image had three phases include: 1) segmentation of the image that will be recognizable form of the hands and face, 2) feature extraction and 3) pattern
classification. In this research, we used images data of 15 classes of words static. Segmentation is performed using HSV with a threshold filter based on skin color. Feature extraction performed with
the Haar wavelet decomposition filter to level 2. Classification is done by applying the back propagation system of neural network architecture with 4096 neurons in input layer, 75 neurons in hidden layer and 15 neurons in output layer. The system was tested by using 225 data validation and accuracy achieved was 69%."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Universitas Jenderal Soedirman. Fakultas Sains dan Teknik], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Arnando Ferdian
"ABSTRAK
Sistem pendeteksian wajah pada citra telah berkembang pesat sampai saat ini.
Tujuan dari deteksi wajah adalah untuk mengindentifikasi dan menempatkan
wajah manusia dengan pasisi. skala,oarientasi dan kondisi pencahayaan tertentu. Berbagai metode telah diajukan sampai saat ini. Salah satu pengembangan lebih lanjutnya adalah dengan menggunakan jaringan syaraf tiruan (neural network). Pada paper ini dibahas sistem deteksi wajah berdasarkan jaringan syaraf tiruan dengan metode training propagasi balik dengan momentum. Jaringan syaraf tiruan menguji setiap window dari citra, dan memmtukan apakah setiap window berisi wajah atau tidak. Setelah itu sistem menentukan window terbaik, yang akan disimpulkan sebagai wajah. Sistem inl dapat mendeteksi wajah frontal pada citra grayscale dengan latar belakang yang kompleks dan skala yang bervariasi. Agar dapat menguji citra masukan untuk ukuran wajah yang berbeda-beda, maka dilakukan metode piramida terhadap citra masukan.
Pada skripsi ini, ststem deteksi dengan jaringan syaraf tiruan diuji dengan perubahan pada parameter jumlah lapisan tersembunyi dan jumlah epoch yang dilakukan pada proses training. Sistem akan dianalisa kinerjanya berdasarkan lamanya waktu deteksi serta ketepatan hasil proses deteksi. Dari hasil pengujian didapatkan waktu deteksi sangat dipenganthi oleh ukuran citra, dan ketepatan proses deteksi sangat dipengaruhi oleh jumlah lapisan tersembunyi dan banyaknya epoch pada proses training, serta karakteristik dari citra masukan

"
2001
S39932
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>