Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 37796 dokumen yang sesuai dengan query
cover
Priandanu Gilang Hadyaksa
"Skripsi ini membahas mengenai pengembangan sistem pengolahan dan perhitungan nilai kWh dari pemakaian listrik PLN oleh pelanggan yang diolah berdasarkan gambar yang didapat dari kWh Meter menggunakan kamera smartphone. Nilai kWh tersebut akan diolah menggunakan teknik pencitraan (image processing) dan otomatisasi pengolahan data menggunakan software LabVIEW 2009. Proses tersebut dimulai dengan tahap upload gambar, threshold gambar, penentuan Region of Interest (ROI) dari gambar, otomatisasi pembacaan nilai kWh, perhitungan nilai kWh berdasarkan perhitungan Tarif Dasar Listrik (TDL), dan terakhir adalah tahap pembuatan database menggunakan tabel. Berdasarkan proses tersebut, maka presentase hasil yang didapat dengan melakukan pengujian sebanyak 6 kali adalah 100% dan presentase kesalahan pada urutan kerja saat pengujian adalah 0%.

This research describes development of electric bill calculation system for PLN customers using image processing technique. The image of electric consumption taken from kWh meter by smartphone camera is then processed using software LabVIEW 2009. The process starts from image upload, image threshold, Region of Interest determination of image, automatic reading of electric consumption image, bill calculation based on Goverment Base Electric Tariff (Tarif Dasar Listrik - TDL), and finally database creation. From test result, it has shown that the percentage of error is 0 % for the calculation results and that process."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44140
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fikri Noerhadi
"Pada penelitian ini telah dikembangkan sistem pedometer dan penghitung detak jantung secara nirkabel berbasis Arduino untuk memantau aktivitas fisik seperti jumlah langkah, jarak tempuh, jumlah kalori terbakar dan detak jantung. Pemantauan jumlah langkah dan detak jantung secara nirkabel dapat memberikan keuntungan dalam pengolahan data secara langsung (real time) sehingga hasil analisa langsung terlihat. Pedometer atau penghitung langkah dirancang menggunakaan sensor accelerometer ADXL345 yang merasakan hentakan (percepatan) di pinggul sebagai langkah. Jumlah langkah dapat mennginformasikan jarak tempuh selama beraktivitas dan jumlah kalori yang terbakar. Detak jantung dihitung berdasarkan metode photoplethysmograph yang memanfaatkan perubahan intensitas cahaya aliran darah di ujung jari menggunakan led infra merah sebagai sumber cahaya dan fototransistor untuk menangkap intensitas cahaya. Dalam penelitian ini kami melakukan pengujian dengan berjalan/berlari dengan rentang kecepatan 3-10 km/jam. Dari penelitian ini terlihat bahwa detak jantung subjek saat berlari atau berjalan selama 5 menit yang divariasikan dengan kecepatan 3 km/jam hingga 10 km/jam tercatat mengalami kenaikan konstan mulai dari (mean ± SD) 90 ± 4 detak per menit sampai pada 10 km/jam tercatat sebesar 121 ± 5 detak per menit. Hal yang sama juga terlihat pada jumlah kalori terbakar yang terekam oleh alat meningkat mulai dari 13,9 kKal pada kecepatan 3 km/jam hingga 56,9 kKal saat berlari dengan kecepatan 10 km/jam.

Arduino wireless pedometer and heart rate monitoring system was developed for monitoring physical activities such as total step, distance travelled, calories burned and heart rate. One of the benefits of this wireless system is able to deliver a real time analysis. Pedometer or step counter is developed using ADXL345 digital accelerometer sensor which senses acceleration changing on the subject’s hip. The total step count can be derived to obtain other parameters for example distance travelled and calories burned. Heart rate is calculated based on photoplethysmograph method which recognizes the light intensity changing on fingertip blood vessel using an infra-red LED and a phototransistor. The system was tested on a subject running on a treadmill X which speeds are varied from 3-10 kph for five minutes each. The study’s results showed that subject’s heart rate are constantly increasing starting from (mean ± SD) 90 ± 4 beats per minute (BPM) when running at 3 kph until 121 ± 5 BPM at 10 kph. The total calories burned presents identical pattern that rising from 13,9 kCal after walking at 3 kph to 56,9 kKal after running at 10 kph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S45899
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novin Syahputra
"[ABSTRAK
Dalam penelitian ini, telah dibuat sebuah alat ukur yang dapat mengukur
panjang gelombang cahaya. Dengan memanfaatkan fenomena sifat cahaya,
penulis ingin mengetahui besar nilai panjang gelombang dan pola distribusi
intensitas difraksi pada cahaya yang melewati kisi difraksi apakah sesuai dengan
teori berdasarkan referensi. Sumber cahaya yang digunakan berupa sinar laser
merah monokromatik dan polikromatik yang menghasilkan warna RGB serta
lampu merkuri. Kisi difraksi dan sumber cahaya digerakkan dengan motor DC
yang dilengkapi rotary encoder untuk menentukan posisinya. Semua pergerakan
alat ini dikendalikan oleh program LabVIEW National Instrument dan
pengolahan gambar dilakukan dengan program Vision Assistant. Hasil yang
diperoleh dalam penelitian ini yaitu sumber cahaya merah monokromatik
dengan kisi difraksi 300 garis/mm, panjang gelombang cahaya yang dihasilkan
(640 - 676) nm dengan besar kesalahan relatif sebesar 0,32 %. Warna biru
dengan kisi 600 garis/mm, panjang gelombang cahaya yang dihasilkan (454 -
475) nm, dengan besar kesalahan relatif sebesar 0,31 %. Warna hijau dengan
kisi 600 garis/mm, panjang gelombang cahaya yang dihasilkan (524 - 547) nm,
dengan besar kesalahan relatif sebesar 0,19 %. Warna merah dengan kisi 600
garis/mm, panjang gelombang cahaya yang dihasilkan (654 - 697) nm, dengan
besar kesalahan relatif sebesar 0,34 %. Semakin besar orde difraksi maka
semakin lemah tingkat intensitas yang dihasilkan.

ABSTRACT
In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted.;In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted.;In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted., In this research, has created a measuring instrument which can measure
light intensity distribution pattern. By exploiting phenomenon the nature of
light, the author would like to know the value of wave l ength and the
intensity distribution of the diffraction pattern on laser light that passes through a
diffraction grating so it can be appropriate to reference theory. The source of
light use red of monochromatic, polychromatic light which produce RGB color
and mercury lamp. Grating diffraction and source of light are moved by DC
motor with go forward and go back moving, which next by rotary encoder
change distance become counter in partition. The all of these moving are manage
by LabVIEW National Instrument and processing of image is executed of
Vision Assistant program. The result of research is red monochromatic with
width diffraction grating 300 lines/mm, is produced wave length of light (640 -
676) nm with relative error 0,32 %. For blue color with width diffraction grating
600 lines/mm, is produced wave length of light (454 - 475) nm with relative
error 0,31 %. For green color with width diffraction grating 600 lines/mm, is
produced wave length of light (524 - 547) nm with relative error 0,19 %. For red
color with width diffraction grating 600 lines/mm, is produced wave length (654
- 697) nm with relative error 0,34 %. The greater order of diffraction then the
less level of intensity was resulted.]"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43429
UI - Tesis Membership  Universitas Indonesia Library
cover
Mirzan Ghulami
"Rancang bangun sistem pengukuran impedansi listrik pada temperatur rendah telah dibuat dari temperatur -110˚C hingga temperatur kamar. Pengukuran impedansi listrik menggunakan RCL meter fluke PM6306 yang dapat dikontrol melalui program mikrokontroler. Sistem pendingin dirancang agar mampu mendinginkan bahan uji secara non-kontak dengan menggunakan nitrogen sebagai cairan pendingin. Sistem pendingin juga dilengkapi dengan pemanas yang dapat dikendalikan secara Proporsional hingga temperatur 30˚C. Pengukuran impedansi listrik dilakukan dengan dua metode yaitu pada temperatur konstan dan pada saat peningkatan temperatur. Dari kedua metode pengukuran ini diperoleh impedansi listrik sebagai fungsi frekuensi, Z(f), dan temperatur, Z(T). antar-muka menggunakan LABVIEW melalui program pengendalian temperatur. hasil pengukuran berupa temperatur, impedansi dan sudut phase otomatis tersimpan dalam komputer dan ditampilkan dalam grafik T(t), Z(f), Z(T) dan plot Nyquist.

Low temperature system for electrical impedance measurement from -110˚C to room temperature has been made by using rcl meter fluke PM6306 controlled by microcontroller program. The cryostat was built to cool the sample without contact. Liquid nitrogen was used as liquid cooling. The cryostat also equipped by heater that can be controlled proportionally to heat up temperatur 30˚C. Impedance measurement can be carried out by two methods which are at constant temperature and during increasing temperature. From these methods, impedance as a function of frequency, Z(f), and as a function of temperature, Z(T), can be obtained. Interfacing was using labview through temperature controlling program. The results of measurement such as temperature, impedance, and its phase automatically recorded in computer and given in graphs T(t), Z(f), Z(T) and Nyquist plot. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S44139
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deki Setiyanto
"Telah dibuat prototype alat system electrical impedance tomografi untuk mendeteksi struktur internal dari suatu medium menggunakan frekuensi tunggal, medium itu berupa phantom berdiameter 130 mm, dengan sensor berupa plat tembaga didalam permukaan phantom itu sebanyak 16 buah dengan ketebalan 0.1 mm. Phantom dihubungkan dengan rangkaian demultiplekser untuk menginjeksikan arus constant dan multiplekser untuk pengukuran tegangan dengan kabel coaxial. Signal arus dihasilkan dari voltage controlled oscillator berupa tegangan sinusoidal dengan frekuensi 100 kHz menggunakan XR2206CP dan dikonversi menjadi arus menggunakan voltage control current source dengan rangkaian Howland secara kontinu. Arus sinusoidal itu dikirim ke demultiplekser yang dikendalikan oleh microcontroller Atmega 128 dan multiplekser memilih elektroda yang harus diukur tegngan pada elektroda. Hasil penseleksian elektroda ini kemudian diambil oleh osiloskop digital. Osiloskop ini diamati dengan PC melalui software LabVIEW yang dikembangkan dalam penulisan ini. Format data hasil pengamatan ini berupa format Excel untuk diintegrasi dengan proses open source EIDORS untuk menghasilkan citra tomografi. Model phantom yang dibuat ada 5 macam model, masing-masing dengan posisi yang berbeda diperoleh pencitraan yang cukup mendekati model tersebut.

A prototype of electrical impedance tomography system for detecting the internal structure of a medium using a single frequency has been made with, the medium of phantom with 130 mm diameter, with the surface sensor in the phantom of copper plate as many as 16 pieces with 0.1 mm thick. The Phantom was connected to the circuit demultiplexer to inject constants current and multiplexer for voltage measurement with coaxial cable connector. Current signal resulted from Voltage- Controlled Oscillator(VCO) using XR2206CP to produce sinusoidal voltage signal with 100 kHz frequency and then converted into current using a Voltage Control Current Source (VCCS) with a Howland Circuit. Sinusoidal currents were delivered to demultiplexer controlled by the microcontroller Atmega 128 and multiplexer to select voltage measured from phantom. Results from electrode was taken by a digital oscilloscope. Digital Oscilloscope is observed with a PC via LabVIEW software. These observation data was writen with Excel format to be integrated with the open source EIDORS to produce tomographic images. Phantom models have 5 model and different models, each with different positions obtained by imaging was adequate for imaging the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1435
UI - Skripsi Open  Universitas Indonesia Library
cover
Wells, Lisa K.
Englewood Cliffs, NJ: Prentice-Hall, 1995
006 WEL l
Buku Teks  Universitas Indonesia Library
cover
Nanang Sulistiyanto
"Dalam sistem giroskop serat optik, pengendalian suhu junction Super Luminance LED (SLED) sangat penting untuk menjaga akurasi pengukuran laju rotasi. SLED tersebut umumnya telah dilengkapi dengan pendingin termoelektrik (TEC) yang menyatu dalam satu kemasan metal. Dalam tesis ini, sistem pendingin termoelektrik tersebut dimodelkan berdasarkan fenomena fisika yang meliputi: efek Peltier, efek Joule, dan difusi termal. Persamaan diferensial yang terkait dengan fenomena fisika tersebut diaproksimasi dengan menggunakan metode Euler. Parameter model yang diperlukan ditentukan berdasarkan respon sistem terhadap perubahan arus SLED dan TEC yang diperoleh dari eksperimen dan hasil estimasi berdasarkan data sekunder yang diperoleh dari datasheet. Selanjutnya, model sistem pendingin tersebut disimulasikan untuk mengestimasi parameter PID dengan menggunakan metode pertama Ziegler-Nichols. Respon transien yang diperlukan diperoleh dengan cara mengubah secara mendadak arus operasi SLED dan TEC dari 0 menjadi 200 mA. Hasil estimasi parameter PID ini selanjutnya diimplementasikan ke dalam sistem FPGA (Spartan 6 LX9) yang dirancang sebagai sistem kendali PID digital 64 bit. Hasil pengujian mengindikasikan bahwa sistem pengendali suhu mampu mempertahankan suhu junction SLED pada suhu referensi tertentu dengan kepresisian sekitar 0,002°C. Suhu referensi tersebut dapat diubah mulai dari 20°C sampai 25°C, atau sebaliknya, secara bertahap dengan step maksimum tidak melebihi 1°C untuk menjamin agar sistem tetap stabil.

In fibre optic gyroscopes, controlling junction temperature of Super Luminance LED (SLED) is important for maintaining accuracy of rotation rate measurements. Commonly, the SLED dan a thermoelectric cooler (TEC) is embedded in a metal package. In this thesis, the TEC has been modelled based on physical fenomena including Peltier efect, Joule efect, and thermal diffusion. The differential equations related to the phenomena have been approximated by using Euler method. The parameters of the model have been deteminated based on system response to the changes of SLED and TEC currents obtained from experiments and an estimation based on secondary data obtained from datasheet. Furthermore, the model has been simulated to estimate PID parametes by using the first Ziegler-Nichols method. Required transient response has been obtained from changing of both SLED and TEC currents from 0 to 200 mA. The estimated results have then implemented into FPGA system (Spartan-6 LX9) that is designed as a 64-bit digital PID controller. Experiment results have indicated that the control system can maintain junction temperature at a set point with precision about 0,002°C. The set point can be gradually changed from 20°C to 25°C, or viceversa, at steps no more than 1°C to ensure system stability."
Depok: Fakultas Teknik Universitas Indonesia, 2012
T36028
UI - Tesis Membership  Universitas Indonesia Library
cover
Taufik Mulya Budiman. author
"[ABSTRAK
Telah berhasil dibuat rancang bangun modul praktikum sistem kendali yang dapat digunakan pada sistem Multiple-input-multiple-output. Pada rancang bangun digunakan mikrokontroller ATmega8 yang dikomunikasikan dengan komputer menggunakan perangkat lunak berbasis LabVIEW. Rancang bangun ini dapat digunakan untuk melakukan identifikasi proses dari suatu sistem tertentu. Sistem yang digunakan pada modul ini berupa sistem pengisian kapasitor, motor DC, dan temperatur. Sistem Multiple-input-multiple-output pada modul ini dirancang agar memiliki dua proses yang dapat saling berhubungan.
ABSTRACT
This research has been carried out the design and manufacture of control system practice module. Design of control system practice module can be used on systems Multiple-input-multiple-output. The design used ATmega8 microcontroller to communicated with a computer using software based on LabVIEW. This design can be used to identify the process of a particular system. The system in this module are used the capacitor charging system, the DC motor, and temperature. System Multiple-input-multiple-output in this module was designed to have two processes that can be interconnected.
, This research has been carried out the design and manufacture of control system practice module. Design of control system practice module can be used on systems Multiple-input-multiple-output. The design used ATmega8 microcontroller to communicated with a computer using software based on LabVIEW. This design can be used to identify the process of a particular system. The system in this module are used the capacitor charging system, the DC motor, and temperature. System Multiple-input-multiple-output in this module was designed to have two processes that can be interconnected.
]"
Universitas Indonesia, 2015
S61901
UI - Skripsi Membership  Universitas Indonesia Library
cover
Setyawan Ajie Sukarno
"[ABSTRAK
Meningkatnya interaksi manusia dengan komputer, perangkat teknologi dan jaringan, telah membawa pada kebutuhan akan adanya sistem lokalisasi multi divais pada sebuah area tertentu. Akan tetapi, saat ini belum ada sistem yang cukup tangguh, yang mampu melakukan lokalisasi divais dengan akurasi yang baik, dengan toleransi kurang dari 10 cm. Dalam konteks ini, kami meneliti sebuah teknik yang inovatif dalam usaha lokalisasi dalam ruangan yang berbasis komunikasi nirkabel, WiFi. Tantangannya adalah bagaimana cara melakukan lokalisasi divais tanpa melakukan modifikasi pada perangkat divais, baik itu perangkat keras dan lunak, juga pada perangkat jaringannya. Dan dalam rangkan menjawab tantangan itu, kami mengembangkan sistem lokalisasi dalam ruangan ini.
Proyek yang saya kerjakan ini khusus melakukan capture MAC address dari setiap divais yang berada pada lingkup area tertentu. Proyek ini menggunakan LabView sebagai bahasa pemrograman, dan NI-USRP dari National Instrument sebagai perangkat kerasnya.

ABSTRACT
The increase of human interaction to gadgets, computers and networks, has needed an ability to localize multi devices or gadgets in a certain area. But nowadays, no robust technology can estimate a position and localization with sufficient accuracy (<10cm). In this context, we wish to study the technique of indoor localization system based on innovative approach of communication media wireless (WiFi). The challenge is how to define multi devices localization without any modification in hardware, software and wireless device. To answer this challenge, we need to develop a system of internal localization.
The potential impact of this solution is significant to the general public, to extent that these networks are very common. And the concern of this project is how to recovery and capture the MAC Address from devices inside the area of WiFi localization, using LabView as the programming language and NI-USRP from National Instrument as the hardware.
;The increase of human interaction to gadgets, computers and networks, has needed an ability to localize multi devices or gadgets in a certain area. But nowadays, no robust technology can estimate a position and localization with sufficient accuracy (<10cm). In this context, we wish to study the technique of indoor localization system based on innovative approach of communication media wireless (WiFi). The challenge is how to define multi devices localization without any modification in hardware, software and wireless device. To answer this challenge, we need to develop a system of internal localization.
The potential impact of this solution is significant to the general public, to extent that these networks are very common. And the concern of this project is how to recovery and capture the MAC Address from devices inside the area of WiFi localization, using LabView as the programming language and NI-USRP from National Instrument as the hardware.
;The increase of human interaction to gadgets, computers and networks, has needed an ability to localize multi devices or gadgets in a certain area. But nowadays, no robust technology can estimate a position and localization with sufficient accuracy (<10cm). In this context, we wish to study the technique of indoor localization system based on innovative approach of communication media wireless (WiFi). The challenge is how to define multi devices localization without any modification in hardware, software and wireless device. To answer this challenge, we need to develop a system of internal localization.
The potential impact of this solution is significant to the general public, to extent that these networks are very common. And the concern of this project is how to recovery and capture the MAC Address from devices inside the area of WiFi localization, using LabView as the programming language and NI-USRP from National Instrument as the hardware.
, The increase of human interaction to gadgets, computers and networks, has needed an ability to localize multi devices or gadgets in a certain area. But nowadays, no robust technology can estimate a position and localization with sufficient accuracy (<10cm). In this context, we wish to study the technique of indoor localization system based on innovative approach of communication media wireless (WiFi). The challenge is how to define multi devices localization without any modification in hardware, software and wireless device. To answer this challenge, we need to develop a system of internal localization.
The potential impact of this solution is significant to the general public, to extent that these networks are very common. And the concern of this project is how to recovery and capture the MAC Address from devices inside the area of WiFi localization, using LabView as the programming language and NI-USRP from National Instrument as the hardware.
]"
Valenciennes, Prancis: Fakultas Teknik Universitas Indonesia, [2014;2014;2014;2014, 2014]
T43294
UI - Tesis Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>