Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 39442 dokumen yang sesuai dengan query
cover
Farizan Rahmat Reksoprodjo
"Dengan semakin menipisnya cadangan dan produksi minyak di Indonesia, dibutuhkan sumber energi alternatif yang dapat menggantikan pemakaian BBM. Salah satunya adalah dimetil eter (DME). DME dapat digunakan sebagai substitusi bahan bakar diesel serta LPG. Selama ini DME disintesis dari metanol dan dimurnikan dalam dua kolom distilasi, dimana kolom ini menyumbang 50-70% dari total ongkos produksi. Dengan menggunakan proses distilasi reaktif, konversi metanol dapat ditingkatkan dengan signifikan sekaligus memurnikan produk DME pada waktu yang sama, sehingga dapat memangkas ongkos produksi DME dengan signifikan. Kendala dari penerapan distilasi reaktif adalah rumitnya gabungan fenomena perpindahan dan reaksi kimia yang terjadi pada zona reaksi. Pada penelitian ini dibuat simulasi CFD zona reaksi kolom distilasi reaktif untuk sintesis DME dari metanol menggunakan bantuan piranti lunak COMSOL Multiphysics. Hasil simulasi digunakan untuk menentukan pengaruh tinggi zona, komposisi umpan, dan temperatur umpan terhadap komposisi keluaran dari produk gas zona reaksi, konversi metanol, dan profil temperatur sepanjang zona. Hasil simulasi menunjukkan peningkatan konversi yang signifikan dengan peningkatan tinggi zona dan temperatur umpan, sementara komposisi umpan mempengaruhi kemurnian DME yang keluar dari zona secara signifikan. Gabungan ketiga parameter pada keadaan optimum menghasilkan konversi total metanol sebesar 99%.

With the decreasing amount of oil supply and production in Indonesia, a utilization of alternative energy is highly on demand. One of the promising energy source is dimethyl ether (DME). DME can be used as a diesel fuel and LPG substitute. Conventionally, DME is synthesized from methanol and purified using two distillation columns, which contributes about 50-70% to the cost of production. By using reactive distillation process, the conversion of methanol can be enhanced greatly while purifying the DME at the same time, thus cutting the cost of production significantly. The problem to apply this process is the complicated behavior from transport phenomena and chemical reaction inside the reaction zone. Therefore, in this research a reaction zone inside reactive distillation column is simulated using CFD software, with synthesis of DME from metanol as a base case. The simulation is done using COMSOL Multiphysics. The purpose of this research is to know the influence of zone height, feed composition, and feed temperature to the gas product of reaction zone, methanol conversion, and the temperature profile across the zone. Simulation results show a significant increase in conversion by increasing the zone height and feed temperature, while the feed composition greatly affect the gas product composition. Combination of this three parameter at its optimum value results in methanol total conversion about 99%."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44419
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Eka Perdana Putra
"Dimetil eter DME sebagai energi alternatif yang bersih telah mendapat perhatian dalam beberapa tahun terakhir. Produksi DME dengan distilasi reaktif memiliki potensi untuk menghemat biaya kapital dan penggunaan energi. Meski begitu, kombinasi sistem reaksi dan distilasi dalam satu kolom membuat proses distilasi reaktif menjadi sistem multivariabel yang kompleks dengan perilaku proses yang sangat non linear dan adanya interaksi antar variabel proses yang kuat. Studi ini menginvestigasi pengendalian proses distilasi reaktif DME dengan multivariable Model Predictive Control MPC berdasarkan struktur pengendalian suhu dua titik untuk menjaga kemurnian kedua aliran produk. Model proses diestimasi dengan model first-order plus dead time. Kemurnian DME dan air masing-masing dijaga dengan mengendalikan suhu tahap 5 di zona rektifikasi dan suhu tahap 47 pelucutan. Hasil simulasi menunjukkan bahwa nilai integral of squared error ISE untuk perubahan set point suhu tahap 5 dan 47 dapat dikurangi masing-masing 19,89 dan 18,26 untuk sistem dengan pengendali multivariable MPC dibandingkan dengan pengendali PI konvensional. Selain itu, pengendali multivariable MPC mampu menangani interaksi lup pengendalian yang ditunjukkan oleh respon yang lebih stabil dan tidak berosilasi.

Dimethyl ether DME as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control MPC based on two point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling stage 5 temperature in rectifying section and stage 47 in stripping section, respectively. The results show that the integral of squared error ISE values for the set point tracking in stages 5 and 47 temperatures can be reduced, respectively, 19.89 and 18.26 for the system under multivariable MPC controller compared to the conventional PI controllers. In addition, the MPC controller is able to handle the loop interactions that is shown by more stable and non oscillatory responses."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66799
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erwin Firmansyah Saputro
"ABSTRAK
Selama ini DME (dimetil eter) disintesis dari metanol dalam satu reaktor dan dimurnikan dalam dua kolom distilasi sehingga biaya produksinya tinggi karena reaktor dan kolom ini menyumbang 50-70% dari total biaya produksi. Dengan proses distilasi reaktif, konversi metanol dapat ditingkatkan dengan signifikan sekaligus memurnikan produk DME pada waktu yang sama, sehingga memangkas biaya produksi DME dengan signifikan pula. Akan tetapi, dua proses (reaksi dan separasi) yang terjadi dalam satu kolom menyebabkan berkurangnya katup pengendalian yang berfungsi sebagai aktuator pada sistem pengendalian. Akibatnya, unit ini bersifat sangat non-linear, dan perancangan sistem pengendalian unit distilasi reaktif menjadi tantangan tersendiri. Penelitian ini ingin menemukan konfigurasi pengendalian PI yang optimum untuk mengatasi gangguan. Parameter konfigurasinya meliputi pemilihan manipulated variable (MV) yang dapat berupa laju alir umpan atau laju alir pemanas pada reboiler, dan controlled variable (CV) yang dapat berupa suhu talam yang paling sensitif atau laju produksi DME. Konfigurasi tersebut juga disertai penyetelan (tuning) pada pengendali PI dengan metode penyetelan Auto Tuning Variation. Pemilihan CV dan MV menghasilkan dua kemungkinan struktur pengendalian (control structure, CS), yakni CS 1 dan CS 2. Hasil simulasi menunjukkan talam 5 memiliki suhu yang paling sensitif sehingga suhu talam ini dipilih sebagai CV. Simulasi dinamiknya menunjukkan bahwa CS 2 lebih baik dari pada CS 1, karena CS 1 gagal menangani gangguan sebesar -5%, sedangkan CS 2 mampu menangani gangguan hingga ±25%.

ABSTRACT
Conventionally, DME was synthesized from methanol and purified using two distillation columns, which contributes about 50-70% to the cost of production. Using reactive distillation process, the conversion of methanol can be enhanced greatly and purifying the DME at the same time, thus reducing the cost of production, significantly. The two processes (reaction and separation) occurred in the same column reduce the number of control valves as the actuator for control system. This makes reactive distillation column is very non-linear in terms of controllability, and therefore the design of control system of such column can be quite a challenge. In this research, the optimum PI controller configuration will be obtained. The parameters for this configuration are the choice of manipulated variable (MV) that can be the feed flow rate or steam flow rate in reboiler and the controlled variable (CV) that can be the most sensitive tray temperature or the production rate. The configuration also including the PI controller tuning by using Auto Tuning Variation (ATV) method. The CV-MV pairing choice results two possible control structures, namely CS 1 and CS 2. The result showed that the tray #5 was the most sensitive tray temperature and selected as CV. The dynamic simulation showed that CS 1 failed to handle -5% disturbance change, while CS 2 succesfully handle up to ±25% disturbance change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63408
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fikri Ramadhan
"Dimetil eter (DME) adalah salah satu energi alternatif yang paling menjanjikan terutama sebagai pengganti LPG dan bahan bakar diesel. Akan tetapi, skema produksi DME dari metanol secara konvensional masih memiliki banyak kekurangan, yaitu tingginya konsumsi energi, emisi CO2, dan kebutuhan biaya. Teknologi distilasi terintensifikasi seperti reactive distillation (RD) dan dividing wall column (DWC) memiliki potensi untuk dapat mengatasi hal tersebut. Maka, penelitian ini bertujuan untuk melakukan komparasi antara skema konvensional (reaktor dan dua distilasi konvensional) dan skema distilasi terintensifikasi, yaitu: (i) skema RD (satu kolom distilasi reaktif dan satu distilasi konvensional) serta (ii) skema DWC (reaktor dan satu kolom dividing wall). Komparasi dilakukan dari sisi teknis (konsumsi energi spesifik), lingkungan (emisi CO2 spesifik), dan keekonomian (biaya total tahunan). Dalam hal konsumsi energi spesifik, skema konvensional menghasilkan nilai sebesar 1,74 GJ/ton DME, skema RD sebesar 4,1 GJ/ton DME, dan skema DWC sebesar 1,41 GJ/ton DME. Dalam hal emisi CO2 spesifik, skema konvensional menghasilkan nilai sebesar 0,09 ton CO2/ton DME, skema RD sebesar 0,22 ton CO2/ton DME, dan skema DWC sebesar 0,08 ton CO2/ton DME. Dalam hal biaya total tahunan, skema konvensional menghasilkan nilai sebesar $1,233,653/tahun, skema RD sebesar $2,164,291/tahun, dan skema DWC sebesar $1,055,865/tahun. Maka, skema DWC adalah skema paling optimal dalam sintesis DME dari metanol karena memiliki konsumsi energi spesifik, emisi CO2 spesifik, dan biaya total tahunan yang paling rendah.

Dimethyl ether (DME) is one of the most promising alternative energy sources, particularly as a substitute for LPG and diesel fuel. However, conventional production schemes for DME from methanol still suffer from several drawbacks, such as high energy consumption, CO2 emissions, and costs. Intensified distillation technologies, such as reactive distillation (RD) and dividing wall column (DWC), have the potential to address these issues. Thus, this study aims to compare the conventional scheme (reactor and two conventional distillations) with intensified distillation schemes: (i) RD scheme (one reactive distillation and one conventional distillation) and (ii) DWC scheme (reactor and one dividing wall column). The comparison is carried out in terms of technical aspects (specific energy consumption), environmental impact (specific CO2 emissions), and economics (total annual cost). Specific energy consumption shows values of 1.74 GJ/ton DME for conventional scheme, 4.1 GJ/ton DME for RD scheme, and 1.41 GJ/ton DME for DWC scheme. Regarding specific CO2 emissions, the conventional scheme yields 0.09 tons CO2/ton DME, the RD scheme yields 0.22 tons CO2/ton DME, and the DWC scheme yields 0.08 tons CO2/ton DME. In terms of total annual cost (TAC), the conventional scheme results in a value of $1,233,653/year, the RD scheme results in $2,164,291/year, and the DWC scheme results in $1,055,865/year. Therefore, the DWC scheme is the most optimal scheme for the synthesis of DME from methanol since it offers lowest specific energy consumption, specific CO2 emissions, and total annual cost."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lisa Marie Zulkarnain
"Di tengah fenomena pemanasan global, simulasi proses sintesis dimetil eter dapat dikembangkan sebagai acuan dalam aplikasi kehidupan nyata. Parameter operasi yang menghasilkan paling DME yang meliputi tekanan inlet reaktor dari 18 atm, reaktor suhu inlet 533 K, tekanan distilasi 8 atm, kecepatan arus masuk 0,408 m / s, dan panjang reaktor 4 meter. Di bawah parameter tersebut, 10,7 mol / s dari dimetil eter diproduksi, dengan hasil total 47% dan konversi metanol 90%. Penambahan aliran recycle meningkatkan hasil sebesar 2%. simulasi ini kemudian bervariasi berdasarkan tekanan, suhu, kecepatan arus masuk, dan panjang reaktor, dimana suhu mempengaruhi konversi sebesar 76% maksimal.

In the midst of the global warming phenomenon, a simulation of dimethyl ether synthesis process can be developed as a reference in real-life application. The operating parameters that produces the most DME include the reactor inlet pressure of 18 atm, reactor inlet temperature of 533 K, distillation pressure of 8 atm, inflow velocity of 0.408 m/s, and reactor length of 4 meters. Under these parameters, 10.7 mol/s of dimethyl ether is produced, with total yield of 47% and methanol conversion of 90%. The addition of recycle stream increases the yield by 2%. The simulation is then varied based on pressure, temperature, inflow velocity, and reactor length, wherein temperature affect the conversion by 76% at maximum."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64808
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nicholas William
"Penggunaan energi yang berlebihan selama beberapa dekade terakhir telah menimbulkan kekhawatiran atas kerusakan lingkungan yang disebabkan oleh emisi gas rumah kaca dan keberlanjutan bahan bakar konvensional. Oleh karena itu, makalah ini bertujuan untuk mengurangi CO2 yang dikeluarkan oleh proses industri sambil memanfaatkannya sebagai bahan baku untuk bahan bakar alternatif yang layak secara komersial. Pemanfaatan Carbon Capture adalah upaya yang menjanjikan untuk mengurangi penipisan bahan bakar fosil dan perubahan iklim dengan mengumpulkan CO2 dari atmosfer dan berbagai proses industri dan mengubahnya menjadi produk komersial, termasuk metanol dan dimetil eter yang dapat berfungsi sebagai sumber bahan bakar alternatif. Makalah ini mengembangkan pendekatan suprastruktur dalam desain proses konversi CO2 dengan menciptakan alternatif proses yang berbeda untuk membawa solusi perubahan iklim serta energi terbarukan. Alternatif keputusan ini pertama kali dirumuskan dalam bentuk suprastruktur. Optimalisasi multi-tujuan diselesaikan melalui program integer linier (ILP) menggunakan Microsoft Excel dengan pemecah LP Simplex untuk menentukan trade-off antara dampak lingkungan dan potensi ekonomi. Pertukaran untuk optimasi biaya menghasilkan MeOH dengan biaya $601,63/ton dengan emisi CO2e sebesar -273,086 tCO2e/tahun dibandingkan dengan kasus dasar dengan biaya saat ini sebesar $873,97/ton dan emisi -211,976 tCO2e/tahun.

The excessive usage of energy during the past few decades has raised concerns over environmental damage caused by greenhouse gas emissions and the sustainability of conventional fuels. For that reason, this paper aims to reduce the CO2 emitted by industrial processes while utilizing it as a feedstock for commercially viable alternative fuels. Carbon Capture Utilization is a promising effort to mitigate fossil fuel depletion and climate change by collecting CO2 from the atmosphere and different industrial processes and converting it into commercial products, including methanol and dimethyl ether that can serve as alternative sources of fuel. This paper develops a superstructure approach in CO2 conversion process design by creating different process alternatives in order to bring a solution to climate change as well as renewable energy. These decision alternatives are first formulated in the form of a superstructure. The multi-objective optimization is solved through integer linear programming (ILP) using Microsoft Excel with Simplex LP solver in order to determine the trade-off between environmental impact and economic potential. The trade-off for cost optimization produced MeOH at the cost of $601.63/ton with a CO2e emission of -273,086 tCO2e/yr compared to the base case with the current cost of $873.97/ton and -211,976 tCO2e/yr emission."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puan Chairunnisa Suriperdana
"Adanya regulasi carbon footprint trade serta kemajuan teknologi carbon capture, utilization, and storage (CCUS) menimbulkan urgensi instalasi CCUS pada seluruh kilang secara global. CO2 yang tertangkap dapat dijadikan peluang ekonomi baru dengan diolah kembali sebagai bahan baku proses produksi. CO2dapat diolah menjadi DME lewat proses dry methane reforming, methanol synthesis, dan methanol dehydration. Pemerintah Indonesia berencana untuk mengganti LPG dengan DME. Dengan demikian, dilakukan simulasi proses menggunakan Aspen Plus untuk melihat efektivitas produksi beserta analisis kelayakan investasi ditinjau dari nilai NPV, IRR, PBP, dan PI serta peninjauan probabilitas menggunakan simulasi Monte Carlo. Dari simulasi pada aspen plus, DME terproduksi sebanyak 868,04 ton / hari. Selanjutnya parameter keekonomian dihitung dengan harga jual DME $1.300/ton dan didapatkan nilai didapatkan NPV sebesar $1.783.715.566,19, IRR 58,44%, PBP 2,041 Tahun, dan PI 3,675 sehingga pabrik dapat dikatakan layak. Dari 1000 iterasi yang dilakukan pada simulasi, keempat parameter keekonomian menunjukkan nilai positif sehingga risiko finansial pabrik relatif aman.

The existence of carbon footprint trade regulations and advances in carbon capture, utilization, and storage (CCUS) technology have led to the urgency of CCUS installations at all refineries globally. Captured CO2 can be used as a new economic opportunity by being reprocessed as a raw material for the production process. CO2 can be processed into DME through dry methane reforming, methanol synthesis, and methanol dehydration processes. The Indonesian government plans to replace LPG with DME. Thus, a process simulation using Aspen Plus was carried out to see the effectiveness of production along with an investment feasibility analysis in terms of NPV, IRR, PBP, and PI values and a probability review using Monte Carlo simulation. From the simulation on Aspen Plus, DME was produced as much as 868.04 tons/day. Furthermore, the economic parameters were calculated with a DME selling price of $1,300/ton and obtained an NPV value of $1,783,715,566.19, IRR 58.44%, PBP 2.041 years, and PI 3.675 so that the plant can be said to be feasible. From 1000 iterations carried out in the simulation, the four economic parameters show positive values so that the financial risk of the plant is relatively safe."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasbi Priadi
"Bahan LPG berbasis gas alam masih dominan seagai bahan bakar yang digunakan masyarakat, dimana pada masa yang akan datang kebutuhan masyarakat akan mengalami peningkatan dengan kemajuan industri. Pada penelitian ini telah dimbuat suatu bakar alternatif sebagai substitusi LPG dengan menggunakan dimetil eter (DME). Produksi DME melalui proses langsung dari gasifikasi batubara dan biomassa. Reaksi dilakukan di dalam reaktor unggun diam dengan katalis Cu-ZnO-Al2O3/ZSM-5. Tekanan yang digunakan adalah 20 bar. Variabel bebas yang digunakan yaitu variasi temperatur pada 250˚C, 270˚C, 280˚C dan rasio gas sintesis (H2/CO) untuk biomassa (H2/CO)=0,5 dan batubara (H2/CO)=2. Hasil produk terbesar yang didapatkan pada kondisi temperatur 270˚C dan rasio H2/CO=2 didapatkan yield sebesar 83%, analisa DME yang telah dihasilkan menggunakan gas kromatografi dengan jenis TCD dan FID untuk mengetahui hasil reaksi dari sintesis DME langsung.

Materials of natural gas-based LPG is still the dominant fuel used seagai society, where the future needs of the community will increase with the progress of industry. This research will make an alternative fuel as a substitute for LPG by using dimethyl ether (DME). DME production through the direct process of gasification of coal and biomass. The reaction carried out in the fixed bed reactor with catalyst Cu-ZnO-Al2O3/ZSM-5. The pressure used was 20 bar. The independent variables used were variations of temperature at 250 ˚ C, 270˚C, 280˚C and the ratio of synthesis gas (H2/CO) for biomass (H2/CO) = 0.5 and coal (H2/CO) = 2. The results of the largest product obtained under conditions of temperature 270 ˚ C and the ratio H2/CO = 2 obtained a yield of 83%, which has resulted DME analysis using gas chromatography with TCD and FID types to determine the reaction of the direct synthesis of DME.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55185
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moch. Rizal Aulia
"ABSTRAK
Kebijakan pemanfaatan Dimetil Eter (DME) untuk substitusi LPG sangat diperlukan untuk mengurangi ketergantungan impor LPG dan beban subsidi yang terus meningkat. Diproyeksikan Kebutuhan LPG pada sektor rumah tangga mencapai 14 juta TOE pada tahun 2035 dengan pangsa impor sebesar 71%. Ide utama pada penelitian ini adalah menghitung keekonomian DME dengan melakukan perbandingan harga produksi DME dari bahan baku gas alam, batubara, biomassa dengan harga impor LPG sehingga didapatkan dua skenario penghematan terhadap harga LPG non subsidi dan LPG subsidi. Keekonomian DME dievaluasi melalui basis perhitungan kapasitas produksi 15000 ton/hari dengan metode Discounted Cash Flow untuk memperoleh harga FOB DME dengan IRR 10%. Selanjutnya dilakukan analisis sensitivitas parameter yang mempengaruhi harga DME. Dari hasil perhitungan didapatkan harga FOB DME dari gas alam, batubara dan biomassa berturut-turut adalah Rp.5,4 Juta/ton, Rp.2,5 Juta/ton, Rp.5,5 Juta/ton. Sedangkan dari dua skenario perhitungan penghematan, didapatkan penghematan hanya dari produksi DME dari batubara dengan nilai penghematan terhadap LPG non subsidi sebesar Rp7,28 triliun/tahun, dan penghematan subsidi sebesar Rp.8,9 triliun/tahun. Hasil analisis sensitivitas menunjukan harga bahan baku dan penjualan listrik merupakan parameter yang sensitif terhadap harga DME. Sehingga direkomendasikan kepada Pemerintah untuk mensubstitusi LPG dari DME berbahan baku batubara dengan tetap mengatur harga batubara agar bahan bakar DME dapat bersaing/kompetitif terhadap harga LPG.

ABSTRACT
Policy of Dimethyl Ether (DME) utilization for LPG substitution is required to reduce dependence on imported LPG and subsidy which increase continuously. The projected need for LPG in the household sector reached 14 million TOE in 2035 with the share of imports by 71%. The idea of this research is to calculate the economics of DME by comparing DME production cost from raw material of natural gas, coal, biomass to LPG import prices thus obtained two scenarios savings on the price of non-subsidized LPG and subsidized LPG. DME economics are evaluated on the basis of the production capacity of 15000 tons / day with the Discounted Cash Flow method to obtain FOB price of DME with an IRR of 10%. The next step is to calculate the sensitivity analysis of parameters that influence the price of DME. From the calculation results obtained FOB DME price of natural gas, coal and biomass are respectively Rp.5,4 million / ton, Rp.2,5 million / ton, Rp.5,5 million / ton. Based on two scenarios for the calculation of savings, the savings obtained only from the production of DME from coal with a value of savings to non-subsidized LPG Rp. 7.28 trillion / year, and Rp.8,9 trillion / year for subsidized LPG. The results of the sensitivity analysis shows the price of raw materials and sale of electricity is a sensitive parameter to the price of DME. It is recommended to the Government to substitute LPG from DME made from raw coal by observing scenarios coal price regulation to ensure that the price of DME can compete with the price of LPG.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44679
UI - Tesis Membership  Universitas Indonesia Library
cover
Teddy Prastanta
"Methyl orange (MO) adalah salah satu bahan pewarna yang banyak digunakan di industri tekstil. MO memiliki sifat karsinogen dan berbahaya yang dapat mencemari air dan sangat beracun jika dikonsumsi oleh manusia, sehingga perlu dilakukan fotodegradasi yang efektif. Pada penelitian ini dilakukan sintesis Ag-ZnO/GO untuk fotodegradasi methyl orange. Ag-ZnO/GO memiliki aktivitas fotodegradasi yang baik terhadap methyl orange yang dibuktikan dengan menggunakan UV–Vis diffuse reflectance spectroscopy (UV-DRS) dengan perbandingan nilai band gap yang menurun dari 3,40 eV untuk ZnO menjadi 2,43 eV untuk Ag-ZnO/GO, lalu terdapat peningkatan persentase degradasi sebesar 92 % pada ZnO menjadi 99,6% pada Ag-ZnO/GO dan nilai Kt pada ZnO sebesar 2,21 x 10-2 menit-1 menjadi 2,47 x 10-2 menit-1 pada Ag- ZnO/GO. Katalis juga dikarakterisasi menggunakan Fourier Transform Infra Red (FTIR), Raman Spectrophotometer, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) Surface Area Analyzer (SAA-BET), dan persentase degradasi methyl orange diukur dengan UV-VIS Spectrophotometry.

Methyl orange (MO) is a dye that is widely used in the textile industry. MO has carcinogenic and dangerous properties that can pollute water and is very toxic if consumed by humans, so it is necessary to carry out effective photodegradation. In this research, Ag-ZnO/GO was synthesized for photodegradation of methyl orange. Ag- ZnO/GO has good photodegradation activity against methyl orange as proved by using UV-Vis diffuse reflectance spectroscopy (UV-DRS) with a ratio of band gap values that decreased from 3.40 eV for ZnO to 2.43 eV for Ag- ZnO/GO, then there is an increase in the percentage of degradation by 92% in ZnO to 99.6% in Ag-ZnO/GO and the Kt value in ZnO by 2.21 x 10-2 minutes-1 to 2.47 x 10-2 minutes-1 in Ag-ZnO/GO. The catalyst was also characterized using Fourier Transform Infra Red (FTIR), Raman Spectrophotometer, X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Surface Area Analyzer (SAA-BET), and the percentage of methyl orange degradation was measured by UV-VIS Spectrophotometry."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>