Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 35839 dokumen yang sesuai dengan query
cover
Fazza Imanuddin Harsya Ramadhani
"Permasalahan terbesar dalam pengendalian reaktor alir tangki berpengaduk adalah sistem yang sangat tidak linear dan multivariabel.Sistem pengendalian konvensional tidak dapat mengontrol sistem semacam ini dengan optimal, sehingga kemurnian produk yang dihasilkan rendah.Multiple Model Predictive Control (MMPC)digunakan untuk mengatasi masalah pengendalian proses yang nonlinear dan melibatkan banyak variabel. Beberapa MPC lokal digunakan pada MMPC diperoleh dengan metode yang baru dikembangkan, Representative Model Predictive Control (RMPC).
Penelitian ini menggunakan model reaktor alir tangki berpengaduk yang disimulasikan dengan perangkat lunak MATLAB. Variabel yang dimanipulasi adalah suhu inlet pendingin dan konsentrasi umpan sedangkan variabel yang dikontrol adalah komposisi produk. Untuk perubahan set point konsentrasi produk dari 8,5 sampai 8,6; disarankan menggunakan MMPC 4,1,2.

The biggest problem in controlling Continuous Stirred Tank Reactor (CSTR) is nonlinearity in the system. Conventional control system can not optimally control this system, therefore decrease the purity of product. Multiple Model Predictive Control (MMPC), that can be used to control nonlinear and multivariable system, tried to be used on this system. Some local MPC used for MMPC based on new developed method, Representative Model Predictive Control (RMPC).
This thesis using CSTR model which is simulated by MATLAB software. The manipulated variable are cooler inlet temperature and feed concentration, and controlled variable is residual concentration. For the change of residual concentration set point from 8.5 to 8.6 change, the MMPC 4,1,2. is recommended.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44566
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moch. Afreza Shidiq
"ABSTRAK
Adanya ketidaklinearan pada reaktor alir tangki berpengaduk mampu menyebabkan gangguan ketika proses sedang berjalan. Gangguan tersebut menyebabkan turunnya kualitas produk, sehingga diperlukan penanganan terhadap gangguan. Skripsi ini membahas penggunaan Representative Model Predictive Control (RMPC) dalam memilih beberapa model predictive control (MPC) lokal yang kemudian dikombinasikan untuk membuat Multi Model Predictive Control (MMPC), dan digunakan untuk menangani gangguan pada proses. Penelitian ini menggunakan model reaktor Bequette dan disimulasikan menggunakan perangkat lunak MATLAB. Variabel bebasnya adalah konsentrasi feed sedangkan variabel kontrolnya adalah konsentrasi produk dan suhu reaktor. Hasil dari penelitian menunjukkan IAE MMPC lebih kecil dari IAE PI.

ABSTRACT
Existing nonlinearity in continuous stirred tank reactor can cause disturbances when the process is running. Those disturbances cause a decline in product quality, so that disturbances rejection control is needed. The use of Representative Model Predictive Control (RMPC) in selecting some of the local Model Predictive Control (MPC) and then combined to make Multi Model Predictive Control (MMPC) are discussed and explained. MMPC, a Bequette reactor model, and MATLAB software were used and applied to handle disturbances and simulate. Manipulated variable is feed concentration while the controlled variables are product concentration and reactor temperature. The results of this study show that IAE value of MMPC is smaller than IAE value of PI."
Fakultas Teknik Universitas Indonesia, 2012
S42686
UI - Skripsi Open  Universitas Indonesia Library
cover
Bramantyo
"Untuk menangani gangguan pada proses operasi nonlinear diperlukan suatu bentuk pengendalian. Representative Model Predictive Control (RMPC) adalah salah satu cara untuk memperoleh sekumpulan MPC lokal yang dapat merepresentasikan keseluruhan rentang operasi. MPC lokal ini nantinya digunakanpada Multiple Model Predictive Control (MMPC) untuk mensimulasikanproses operasi nonlinear multi variabel.Skripsi ini membahas penggunaan RMPC untuk memilih beberapa MPC lokal yang kemudian digunakan sebagai model pada MMPC untuk menangani gangguan. Penelitian ini menggunakan model kolom distilasi biner ?Kolom A? yang disimulasikan dengan perangkat lunak MATLAB. Variabel yang dimanipulasi adalah laju refluks dan laju boil up sedangkan variabel yang dikontrol adalah komposisi produk distilat dan komposisi produk bawah. Hasil IAE MMPC dibandingkan dengan IAE kontroler PI konvensional. Untuk gangguan single step; MPC terbaik dengan IAE 0,2564, lebih baik dari IAE kontroler PI 0,7494.Sedangkan untuk gangguan multi step; MMPC terbaik dengan IAE 0,7730, lebih baik dari IAE kontroler PI 0,9808.

In order to handle disturbances in the nonlinear operation some form of control is required. Representative Model Predictive Control (RMPC) is one way to obtain a set of local MPC which able to represent the entire operating range. The local MPC is later used in the Multiple Model Predictive Control (MMPC) to simulate the operation of nonlinear multi-variable process. This thesis discusses the use of RMPC to select some local MPC which is then used as a model for dealing with disturbances in the MMPC. This study uses a model of a binary distillation column "Column A" which is simulated with MATLAB software. The manipulated variable is the rate of reflux and boil-up rate, while the controlled variable is the product composition of the distillate and bottom product composition. MMPC IAE results compared with conventional PI controller IAE. For single step disturbance; the best MPC with IAE 0.2564, is better than PI controller IAE 0.7494. As for the multi-step disturbance; the best MMPC with IAE 0.7730, is better than PI controller IAE 0.9808."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42595
UI - Skripsi Open  Universitas Indonesia Library
cover
Ferdi Fajrian Adicandra
"Optimalisasi pabrik regasifikasi liqufied natural gas LNG penting dilakukan untuk meminimilasi biaya, khususnya biaya operasional. Oleh karena itu penting untuk memilih desain pabrik regasifikasi LNG dan mendapatkan kondisi operasi yang optimum serta mempertahankan kondisi operasi yang optimum tersebut melalui implementasi model predictive control MPC. Kriteria optimalnya adalah minimumnya jumlah energi yang digunakan dan atau integral of square error ISE.
Hasilnya, disain yang optimum adalah menggunakan skema 2 dengan penghematan energi sebesar 40. Sedangkan kondisi operasi yang optimum terjadi jika suhu keluaran vaporizer sebesar 6oC. Untuk mempertahankan kondisi optimum tersebut diperlukan MPC dengan setelan parameter P prediction horizon , M control horizon dan T sampling time sebagai berikut: pengendali tekanan tangki penyimpanan: 90, 2, 1; tekanan produk: 95, 2, 1; suhu vaporizer: 65, 2, 2; dan suhu heater: 35, 6, 5, dengan nilai ISE pada set point tracking masing-masing 0,99, 1792,78, 34,89 dan 7,54, atau peningkatan kinerja pengendalian masing-masing sebesar 4,6 , 63,5 , 3,1 dan 58,2 dibandingkan kinerja pengendali PI.
Penghematan energi yang dapat dilakukan pengendali MPC saat terjadi gangguan pada kenaikan suhu air laut 1oC adalah 0,02 MW dan pengendali MPC juga mengurangi error terhadap kualitas produk sebesar 34,25 dibandingkan dengan menggunakan pengendali PI.

Optimization of liquified natural gas LNG regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to select the LNG regasification plant design and obtain optimum operating conditions while maintaining the optimum operating conditions through the implementation of model predictive control MPC. The optimal criterion is the minimum amount of energy used and or the integral of square error ISE.
As a result, the optimum design is to use scheme 2 with an energy savings of 40 . While the optimum operating conditions occur if the vaporizer output temperature is 6oC. In order to maintain the optimum conditions, MPC is required with parameter setting P prediction horizon, M control horizon and T sampling time as follows tank storage pressure controller 90, 2, 1 product pressure 95, 2, 1 temperature vaporizer 65, 2, 2 and temperature heater 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6, 63.5 , 3.1 and 58.2 compared to PI controller performance.
The energy savings that MPC controllers can make when there is a disturbance in sea temperature rise of 1oC is 0.02 MW and MPC controller also reduces error to product quality by 34.25 compared to the PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68639
UI - Skripsi Membership  Universitas Indonesia Library
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks  Universitas Indonesia Library
cover
"Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today.
The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance.
The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading."
Switzerland: Birkhäuser Cham, 2019
e20502512
eBooks  Universitas Indonesia Library
cover
Ira Mutiara Dewi
"Model Predictive Control (MPC) merupakan sistem pengendalian yang menggunakan model berdasarkan data hasil pengukuran keluaran (output) saat ini atau masa sebelumnya untuk memprediksi nilai dari variabel proses (input) pada masa yang akan datang. Pada penelitian ini, sistem pengendalian MPC digunakan untuk menangani pengendalian proses variabel jamak dalam unit operasi Continous Stirred Tank Reactor (CSTR) dengan reaksi pembuatan propylene glycol. Model dinamik sesuai dengan kondisi operasi yang dapat mewakili interaksi antara variabel jamak dibuat untuk diterapkan pada sistem pengendali. Sistem pengendalian proses disimulasikan dengan menggunakan perangkat lunak Unisim R390.1. Simulasi pengendalian proses dilakukan untuk menghasilkan performa pengendalian yang optimum dan untuk mengendalikan variable jamak yang saling berinteraksi dalam sistem pada CSTR. Optimasi pada sistem pengendalian dilakukan dengan cara tuning terhadap parameter-parameter MPC seperti model horizon (N), waktu sampel (T), prediction horizon (P), dan control horizon (M).
Hasil dari simulasi menunjukkan Model F sebagai model dinamik terbaik pada pengendali MPC multivariable mampu menangani jangkauan perubahan setpoint dalam rentang perubahan yang kecil dari 0,33 ke 0,331 dengan IAE sebesar 0,10602. Secara keseluruhan, pengendali MPC belum dapat mengendalikan sistem CSTR secara optimum berdasarkan nilai IAE, namun pengendali MPC lebih mampu menjaga kestabilan sistem dibandingkan dengan pengendali PI.
Model Predictive Control (MPC) are control system which use model based on value output variable at present or past to predict value of future process variable. In this research, MPC control system use to handle multivariable process control in unit operation Continous Stirred Tank Reactor (CSTR) with propylene glycol reaction system. Dynamics model based on operating condition which representative interaction between multivariable are made to implement in control system. Process control system simulating in Unisim R390.1 software. The simulation of process control aims to achieve optimum performance of controller and to control interaction between multivariable in CSTR system. Optimasion will be doing in system control with MPC parameters tuning such as model horizon (N), time sampling (T), prediction horizon (P), and control horizon (M).
The Results show that Model F as the best model in MPC multivariable can control the change of setpoint in short length from 0,33 to 0,331 with 0,10602 IAE. Overall, MPC controller can?t controlled CSTR system with optimum result based on IEA value, but MPC can make system more stabile than PI controller.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43763
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
Zakaria Hafiz
"Budidaya mikroalga menggunakan PBR mampu memberikan hasil yang maksimal dikarenakan PBR mampu dikontrol secara maksimal. Meskipun begitu sistem ini sulit untuk dikembangkan untuk skala besar dikarena volume dan biaya yang dibutuhkan sangat besar. Pada penelitian ini dikembangkan sistem sepuluh photobioreactor (PBR) volume kecil dengan sistem kontinu yang disusun secara seri dengan sistem sirkulasi. Hal ini terbukti mempu meningkatkan produktivitas produksi biomassa mikroalga. Model yang dikembangkan mendapatkan hasil yang baik yaitu 162,2 g/m3 ­dan 192,2 g/m3 konsentrasi biomassa pada dua kondisi tekanan parsial karbon dioksida yang berbeda. Menggunakan metode regresi linear didapatkan bahwa model ini merupakan sistem yang tidak linear terhadap perubahan lajur alir masuk PBR dengan nilai regresi sebesar 0,69. Dikarenakan tingkat ke non-linearannya yang tinggi maka digunakan neural network model predictive control (NNMPC) pada sistem PBR ini sebagai pengendali. NNMPC digunakan dikarenakan kelebihannya dalam identifikasi sistem dibandingkan model MPC konvensional serta memiliki kinerja yang lebih baik dibandingkan pengendali MPC dan PID. NNMPC menggunakan neural network untuk mengidentifikasi hubungan nonlinear pada sistem dan mampu mengidentifikasi dengan akurat. Pada sistem ini konsentrasi biomassa dikontrol dengan cara memanipulasi laju alir masuk PBR. NNMPC terbukti mampu mengendalikan sistem PBR dengan baik dengan model neural network dan desain NNMPC yang tepat. Parameter optimum NNMPC yang berupa sampling time (T), prediction horzion (P), dan control horizon (M) yang digunakan pada sistem PBR ini berturut-turut adalah 0,2, 10, dan 3. NNMPC mampu mengatasi perubahan set point dan gangguan meskipun terdapat overshoot dan offset yang relatif kecil yaitu di bawah 1%. Selain itu settling time ketika menggunakan NNMPC berkisar 110 hingga 269 jam.

Microalgae cultivation using PBR is able to provide maximum results because PBR can be controlled optimally. This system is difficult to develop for a large scale because the volume and cost required are substantial. In this study, a ten-volume photobioreactor (PBR) system with a continuous system was developed in series with the circulation system. This has proven to be able to increase the productivity of microalgae biomass production. The developed model has good results, namely 162.2 g / m3 ¬ and 192.2 g / m3 biomass concentration under two different carbon dioxide partial pressure conditions. Using the linear regression method, it was found that this model is a non-linear system for changes in the PBR inlet flow with a regression value of 0.69. Due to the high level of non-linearity, the neural network predictive control (NNMPC) model is used as a controller in this PBR system . NNMPC is used because of its advantages in system identification compared to conventional MPC models and has better performance than MPC and PID controllers. NNMPC uses neural networks to identify non-linear relationships in the system and able to identify accurately. In this system, the biomass concentration was controlled by manipulating the PBR inflow rate. NNMPC is proven able to control PBR systems well with neural network models and the right NNMPC designs. The optimum parameters of NNMPC in the form of sampling time (T), prediction horizon (P), and control horizon (M) used in this PBR system are 0.2, 10, and 3. NNMPC is able to overcome changes in setpoints and interference, although there is a relatively small overshoot and offset, which is below 1%. Besides settling time when using NNMPC ranges from 110 to 269 hours."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yoga Wiranoto
"ABSTRACT
Model Predictive Control MPC digunakan untuk mengoptimalisasi parameter pengendalian pada penghilangan CO2 di lapangan Subang. MPC digunakan untuk mengendalikan laju aliran amina, laju aliran makeup water, dan tekanan gas umpan untuk mempertahankan konsentrasi CO2 pada keluaran sweet gas. Model empiris dibuat untuk diterapkan di MPC controller berdasarkan kurva reaksi proses PRC dengan menggunakan pendekatan fisrt order plus dead time FOPDT . Parameter pengendalian Prediction Horizon P , Control Horizon M dan Sampling Time T yang optimal dihasilkan secara berurutan: 91, 32 dan 1 pada PIC-1101, 34, 10 dan 5 pada FIC-1102 dan 40, 10 dan 5 pada FIC-1103. Hasil penyetelan pengendali dengan metode MPC yang optimal kemudian dibandingkan dengan pengendali yang ada dilapangan yang menggunakan pengendali Proportional ndash; Integral PI . Pengkuran kinerja pengendalian secara keseluruhan diwakilkan oleh nilai Integral Square Error ISE . Berdasarkan nilai ISE, penggunaan MPC dapat memperbaiki kinerja pengendalian sebesar 14,02 pada PIC-1101, 76,74 pada FIC-1102, dan 16,31 pada FIC-1103.

ABSTRACT
A model predictive control MPC is used for optimazing the control parameters on CO2 Removal in Subang Field. The MPC is used for controlling the amine flow rate, makeup water flowrate, and feed gas pressure to maintain CO2 concentration in sweet gas. Empirical models are made to appllied in MPC controller based on process reaction curve PRC from fisrt order plus dead time FOPDT approach. The Prediction Horizon P , Control Horizon M and Sampling Time T of control parameters are produced sequentially 91, 32 and 1 on PIC 1101, 34, 10 and 5 on FIC 1102 and 40, 10 and 5 on FIC 1103. The result of control setting by MPC method is then compared with current controller that is Proportional Integral PI to get optimal tuning result. The overall performance control performance is represented by the Integral Square Error ISE value. Based on ISE values, the use of MPC can improve performance by 14.02 in PIC 1101, 76.74 in FIC 1102, and 16.31 in FIC 1103."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>