Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75263 dokumen yang sesuai dengan query
cover
Ryan Januar Rusli Putra
"Carbon Nanotube (CNT) merupakan sebuah material yang memiliki banyak keunggulan dibandingkan material lainnya. Karena keunggulan yang dimilikinya, CNT menjadi salah satu material yang paling aplikatif untuk berbagai peralatan, fuel cell, komposit, dan sebagainya. Aligned CNT merupakan carbon nanotubes yang terorientasi rapih menuju suatu arah tertentu. Namun, aligned CNT ini masih sangat sulit untuk dibentuk. Hal ini disebabkan terlalu banyaknya parameter yang perlu diperhatikan. Bentuk dan tipe substrat, katalis serta waktu reaksi yang digunakan merupakan beberapa parameter tersebut.
Pada penelitian ini, CNT berhasil ditumbuhkan pada bola alumina dengan menggunakan Fe/Mo/MgO sebagai katalis dan metana sebagai sumber karbon pada reaktor Chemical Vapor Deposition (CVD) dengan variasi waktu reaksi 15 menit, 30 menit, 45 menit dan 60 menit. Katalis Fe/Mo/MgO dibuat menggunakan metode sol-gel dan dilapiskan dengan metode spray pada bola alumina. Metode X-Ray Diffraction (XRD), Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX), serta Field Emission - Scanning Electron Microscopy (FE-SEM) digunakan untuk mengkarakterisasi kandungan katalis dan orientasi CNT yang dihasilkan.
Hasil penelitian menunjukkan variasi waktu yang dilakukan tidak dapat menghasilkan aligned CNT. Namun, terdapat pengaruh variasi waktu pada yield CNT yang dihasilkan, dimana yield CNT pada reaksi 15 menit sebesar 0,41 gCNT/gcat, pada reaksi 30 menit sebesar 0,52 gCNT/gcat, pada reaksi 45 menit sebesar 0,54 gCNT/gcat, dan pada reaksi 60 menit sebesar 0,75 gCNT/gcat.

Carbon Nanotube (CNT) is a material that has a lot of advantage than the other materials. Because of its advantage, CNT becomes one of the most applicative materials for devices, fuel cell, composites etc. Aligned CNT is carbon nanotubes that oriented into certain direction. Unfortunately, aligned CNT is very difficult to be made. There are too many parameters that need to be considered. One of the parameter is the substrate shape and types, catalyst, and also reaction time.
In this research, CNT was successfully growth on alumina balls using Fe/Mo/MgO catalyst and methane as carbon source in a Chemical Vapor Deposition (CVD) reactor with some reaction time variation (15 minutes, 30 minutes, 45 minutes, and 60 minutes). Fe/Mo/MgO catalyst be prepared by sol-gel method and sprayed on alumina balls. X-Ray Diffraction (XRD), Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX), and also Field Emission - Scanning Electron Microscopy (FE-SEM) method were used to characterized catalyst and CNT that has been made.
In this research, the correlation between reaction time and the alignment of CNT can not be proved as there are no aligned CNT. But, we can see that there is a correlation between reaction time and yield of CNT, where the yield for 15 minutes reaction is 0,41 gCNT/gcat, the yield for 30 minutes reaction is 0,52 gCNT/gcat, the yield for 45 minutes reaction is 0,54 gCNT/gcat and the yield for 60 minutes reaction is 0,75 gCNT/gcat.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45437
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silaen, Toni Partogi Johannes
"Kamper merupakan sumber karbon yang dapat diperbaharui untuk digunakan sebagai bahan baku didalam sintesis CNT. Kamper merupakan zat yang dapat ditemukan pada pohon Cinnamomum camphora. Dalam penelitian ini, metode yang digunakan untuk mensintesis ACNT dari kamper adalah Floating Catalyst Chemical Vapor Deposition (FC-CVD) dengan katalis Ferrocene pada suhu 800oC dan gas hidrogen sebagai ko-reaktan serta gas argon sebagai carrier gas. Metode ini merupakan metode paling populer dalam mensintesis ACNT yang terorientasi dan memiliki densitas tinggi. Kamper akan terdekomposisi menjadi senyawa benzena, toluena, dan xylena pada suhu 800oC.
Dengan menggunakan uji karakterisasi GC-FID, hasil penelitian menunjukkan dekomposisi kamper pada suhu 800oC didominasi oleh senyawa benzena dengan konsentrasi sebesar 92,422-97,656%. Penelitian dilakukan, dengan memvariasikan laju alir carrier gas berupa argon sebesar 40, 55, 70, 85 dan 100 mL/ menit pada suhu 800oC selama 60 menit waktu reaksi. Laju alir carrier gas argon sebesar 70 mL/ menit menghasilkan yield yang terbaik, namun hal ini tidak diikuti oleh kualitas CNT yang terbaik. Kualitas CNT yang terbaik diperoleh pada laju alir carrier gas argon sebesar 55 mL/ menit berdasarkan hasil uji karakterisasi SEM, EDX, Mapping, dan Spektroskopi RAMAN. Penelitian ini belum memperoleh CNT dengan bentuk aligned (ACNT).

Camphor is a renewable carbon source that can be used as raw material for synthesizing CNT. Camphor is a substance that can be found on the Cinnamomum camphora tree. In this research, the method used to synthesize ACNT from camphor is Floating Catalyst Chemical Vapor Deposition (FC-CVD) with Ferrocene as catalyst at temperature of 800oC, hydrogen gas as the co-reactant and argon gas as carrier gas. This method is the most popular method of synthesizing ACNT which oriented and have a high density. Camphor decomposes into benzene, toluene, and xylene at a temperature of 800oC.
By using GC-FID for characterization test, the results showed decomposition at a temperature of 800oC camphor dominated by benzene with a concentration of 92.422 to 97.656%. The research was conducted by varying the flow rate of carrier gas such as argon at 40, 55, 70, 85 and 100 mL / min at a temperature of 800oC for 60 minutes of reaction time. Argon carrier gas flow rate of 70 mL / min producing CNT with the highest yield, but this is not followed by best quality of CNT. CNT with best quality is obtained at a flow rate of argon carrier gas at 55 mL / min based on test results characterization by using SEM, EDX, Mapping, and RAMAN Spectroscopy. This research have not obtained CNT with aligned structured.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64291
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ryan Januar Rusli Putra
"Carbon Nanotube (CNT) merupakan sebuah material nano yang banyak digunakan pada berbagai aplikasi karena berbagai keunggulan yang dimilikinya. Aligned CNT (ACNT) bahkan dapat meningkatkan performa dari berbagai aplikasi. Namun, pemanfaatan ACNT mengalami hambatan karena ACNT sulit untuk didapatkan. Hal ini disebabkan banyaknya parameter yang perlu diperhatikan. Untuk mendapatkan ACNT, pada penelitian ini dilakukan variasi terhadap substrat, katalis, waktu reaksi dan sumber karbon. Katalis Fe/Mo/MgO dibuat menggunakan metode impregnasi, sehingga katalis terdeposisi pada substrat kaolinite dan vermiculite. CNT dengan diameter yang kecil (12-25nm) berhasil ditumbuhkan pada semua variasi, dengan sumber karbon metana pada reaktor Chemical Vapor Deposition (CVD). Penggunaan substrat vermiculite menunjukkan pertumbuhan beberapa CNT yang mengarah pada terbentuknya ACNT, dimana pertumbuhan tersebut semakin banyak terjadi ketika dilakukan penambahan MgO pada katalis Fe/Mo. Penambahan MgO juga menunjukkan pengecilan diameter CNT, dimana diameter terkecil yang dihasilkan berkisar 12 nm pada perbandingan mol Fe:Mo:MgO sebesar 1:0,46:13. Peningkatan yield CNT terjadi pada peningkatan waktu reaksi menjadi 90 menit, dimana dihasilkan yield sebesar 0,93 gCNT/gKat. Sementara penggunaan etilen menghasilkan yield CNT yang sangat besar (10,5 gCNT/gKat), serta diameter CNT yang besar (150-200nm).

Carbon Nanotube (CNT) is a nanomaterial that are widely used in various applications due to its advantages. Aligned CNT (ACNT) can even improve the performance of various applications. However, the utilization of ACNT were suspended because ACNT is difficult to be made. There are too many parameters that need to be considered. In order to obtain ACNT, in this research we investigate the effect of substrate, catalyst, reaction time, and carbon source. The Fe/Mo/MgO catalyst be prepared by impregnation, therefore the catalyst was deposited on kaolinite and vermicuite as the substrate. CNT with small diameter (12-25nm) has successfully grown in all variations, with methane as the carbon source in Chemical Vapor Deposition (CVD) reactor. The use of vermiculite substrate showed some CNT growth that leads to the formation of ACNT, where the more growth formation happens after the addition of MgO on Fe/Mo catalyst. The addition of MgO also reduced the diameter of the CNT, which the smallest diameter obtained was around 12 nm with the mol ratio of Fe:Mo:MgO = 1:0.46:13. An increase in CNT’s yield happened on the longer reaction time for 90 minutes, for around 0.93 gCNT/gKat. However, the use of ethylene produced an enormous number of CNT’s yield (10.5 gCNT/gKat), and a large diameter of CNT (150-200nm).
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41674
UI - Tesis Membership  Universitas Indonesia Library
cover
Bernadet Valentine
"ABSTRAK
Produksi nanotube karbon jenis Single Walled Nanotube Carbon (SWNT) dan
Few Walled Nanotube Carbon (FWNT) masih sulit untuk dilakukan. Salah satu
penyebab utama adalah pemilihan katalis yang kurang tepat. Penelitian ini
menggunakan katalis Fe/Mo/MgO untuk menghasilkan SWNT atau FWNT
(diameter luar nanotube karbon kurang dari 10 nm). Katalis Fe/Mo/MgO
dipreparasi dengan metode sol gel/spray coating. Nanokarbon akan dihasilkan
melalui reaksi dekomposisi katalitik metana pada suhu 850oC dengan katalis
Fe/Mo/MgO. Hasil penelitian menunjukkan konversi metana tertinggi mencapai
97,64% dan yield karbon sebesar 1,48 gc/gkat. Nanokarbon kemudian
dikarakterisasi dengan Transmission Electron Microscope (TEM). Nanokarbon
yang dihasilkan pada penelitian ini terdiri atas nanotube karbon jenis FWNT
(range diameter luar 4,5 nm ? 10 nm). Selain itu, MWNT (Multi Walled Nanotube
Carbon, range diameter luar 10 nm ? 89,5 nm), carbon nanofiber, coil nanotube,
dan bamboo-shaped carbon juga telah dihasilkan. Jenis nanokarbon yang
dihasilkan bukan hanya jenis nanotube karbon disebabkan oleh waktu reaksi yang
terlalu panjang serta diameter partikel katalis 20 nm hingga 100 nm yang
terdeteksi dari hasil X-Ray Diffraction (XRD) dan Field Emmision Scanning
Electron Microscope (FE SEM). Untuk memperbaiki hasil ini, running pada
penelitian ini dilakukan sekali lagi dengan waktu reaksi 30 menit dengan waktu
reduksi 30 menit di suhu 850oC dan suhu kalsinasi 550oC di udara. Hasil
nanokarbon yang diperoleh memiliki range diameter luar yang lebih kecil dan
berkisar antara 8,5 nm hingga 66,85 nm yang terukur pada FE SEM. Namun, jenis
nanokarbon belum diketahui berupa FWNT atau MWNT atau nanokarbon
lainnya.

Abstract
Production of Single Walled Nanotubes Carbon (SWNT) dan Few Walled
Nanotubes Carbon (FWNT) is really hard to do recently. It occured due to
inappropriate catalyst selection. Fe/Mo/MgO catalyst, used in literature, was used
to make nanotubes carbon. Fe/Mo/MgO catalyst was prepared by sol gel/spray
coating method and it would be reacted with methane in 850oC (methane
decomposition catalytic reaction). The research result shows that the highest
methane conversion reached 97,64% and carbon yield is 1,48 gc/gkat.
Transmission Electron Microscope (TEM) indicated that the synthesized product
was FWNT (carbon nanotubes with outer diameter between 4,5 nm ? 10 nm),
MWNT (Multi Walled Nanotubes Carbon, outer diameter between 10 nm ? 89,5
nm), coil nanotube, carbon nanofiber, dan bamboo-shaped carbon. It is happened
due to longer time reaction and catalyst diameters have range between 20 nm ?
100 nm which detected by XRD and SEM characterization. Then, methane
decomposition catalytic reaction to get nanotube carbon was done once again in
shorter times (30 minutes), longer time of reduction (40 minutes), and lower
calcination temperature (550oC) in air. FE SEM indicated that range of outer
diameter nanocarbon between 8,5 nm ? 66,85 nm but its types can not be
determined by FE SEM."
Fakultas Teknik Universitas Indonesia, 2012
S43615
UI - Skripsi Open  Universitas Indonesia Library
cover
Wihardi Setyo Wicaksono
"Carbon nanotube (CNT) adalah bentuk baru dari karbon murni yang memiliki banyak kegunaan. Perengkahan metana adalah salah satu proses untuk sintesis hidrogen dan CNT yang memiliki kelebihan tidak menghasilkan karbon monoksida dan karbon dioksida. Sebelum memproduksi CNT dan hidrogen berbasis reaksi dekomposisi katalitik metana dengan skala pabrik, diperlukan simulasi dan pemodelan dari hasil eksperimen reaktor lab.
Tujuan dari penelitian ini adalah untuk mendapatkan model matematika tak berdimensi reaktor unggun tetap yang valid dan menganalisis pengaruh dari variasi kondisi operasi terhadap konversi metana. Metode untuk penelitian adalah mengembangkan model persamaan-persamaan matematika berdasarkan neraca massa, momentum, dan energi. Persamaan-persamaan tersebut kemudian di-running pada perangkat lunak COMSOL Multiphysics® versi 4.4.
Konversi metana pada waktu reaksi 315 menit adalah 97,1% dan yield karbon yang didapatkan setelah 315 menit adalah 1,12 g karbon/g katalis. Kenaikan pada tekanan umpan, laju alir umpan, dan fraksi mol hidrogen akan memperkecil konversi metana. Kenaikan temperatur dinding reaktor dan panjang reaktor akan memperbesar konversi metana.

Carbon Nanotube (CNT) is a new form of pure carbon that have a lot of usefulness. Methane cracking is one of process for the synthesis of hydrogen and CNT which have advantage to not produce carbon monoxide and carbon dioxide. Before producing CNT and hydrogen base on the reaction of methane catalytic decomposition in plant scale, it is needed to done simulation and modelling from result of lab reactor experiment.
Purpose of this research is to get valid dimensionless model of fixed bed reactor and to analyze the variation effect of operation condition to methane conversion. Method for this research is develop model of mathematic equations based on mass, momentum, and energy balance. Software COMSOL Multiphysics® version 4.4 then used to running the equations.
Methane conversion at 315 minutes reaction time is 97.1% and carbon yield obtained after 315 minutes reaction time is 1.12 g carbon/g catalyst. Increasing feed pressure, velocity, and hydrogen mole fraction will decrease methane conversion. Increase of reactor wall temperature and reactor length will increase methane conversion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59617
UI - Skripsi Membership  Universitas Indonesia Library
cover
Praswasti PDK Wulan
"The production of Carbon Nanotubes (CNT) has a problem with the limited results of Aligned CNT (ACNT) products, due the fact that an effective and economical method has not yet been discovered. This research used catalytic decomposition of methane with the Water-Assisted Chemical Vapor Deposition (WA-CVD) method by using a bench-scale plate structured catalyst reactor and a fixed bed reactor. The Fe-Ni/Al2O3 Catalyst prepared by sol-gel/dip-coating and Ni-Cu-Al Catalyst prepared by co-precipitation were used to make the CNT. Transmission Electron Microscope (TEM) results show there are various types of nanocarbons produced, such as CNT, bamboo-shaped CNT and also quasi-spherical carbon onion shapes. Based on comparative results without adding the water vapor method, ACNT, which were obtained with WA-CVD, tend to grow vertically, even though they have not yet formed neat and uniform shapes. In addition, an increased number of CNT have high purity results. It shows that the role of water vapor significantly improves the quality of CNT."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:7 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Febrian Tri Adhi Wibowo
"Komposit CNT-TiO2 untuk dilapiskan pada diaper telah disintesis dan diuji kinerjanya untuk penyisihan ammonia dan jamur Candida albicans sebagai penyebab bau dan kandiasis pada diaper. Komposit dikarakterisasi dengan FTIR, FESEM-EDX, XRD, dan UV-Vis DRS. Hasil Karakterisasi menunjukkan bahwa komposit memiliki kristalinitas tinggi dan band gap rendah.
Hasil uji penyisihan menunjukkan bahwa komposisi komposit optimum adalah 1-3% massa CNT dan 97-99% massa TiO2. Treatment asam CNT dan pembuatan komposit pada pH 1 menggunakan sonikator merupakan teknik pembuatan yang optimum. Penyisihan ammonia selama 2 jam berhasil mendegradasi 91% ammonia. Penyisihan jamur dengan TiO2 P25 berhasil mendisinfeksi 98% jamur selama 2 jam.

CNT-TiO2 composite that is coated on diaper had been synthesized and used for ammonia and Candida albicans removal that cause odor and Candidiasis on diaper. Composite was characterized by FTIR, FESEM-EDX, XRD, and UV-Vis DRS. Result of characterizations show that composite has high crystallinity and low band gap.
Result of removal experiment show that the optimum composition of composite were 1-3% mass of CNT and 97-99% mass of TiO2. Acid treatment CNT and synthesize of composite in pH 1 by using sonicator is an appropriate synthesize. Ammonia removal had been done for two hours and reached 91% degradation of ammonia. Disinfection by TiO2 P25 had reached 98% disinfection of yeast for two hours.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55474
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andien Salsabila Ramdhaniati
"Bahan bakar hidrogen merupakan salah satu sumber energi baru dan terbarukan yang menarik perhatian karena memiliki kepadatan energi yang tinggi. Reaksi evolusi hidrogen merupakan teknik paling sederhana yang dapat digunakan untuk menghasilkan hidrogen sebagai salah satu sumber energi alternatif. Pengembangan material terus dilakukan agar dapat memperoleh kinerja reaksi evolusi hidrogen yang efektif dan efisien. Pada penelitian ini, dilakukan dekorasi multi-walled carbon nanotubes (MWCNT) dengan nanopartikel AuAg menggunakan metode direct borohydride reduction, yang akan digunakan sebagai elektrokatalis pada reaksi evolusi hidrogen, Keberhasilan dan kemurnian dari dekorasi nanopartikel AuAg terhadap MWCNT telah dianalisis melalui karakterisasi XRD, Spektroskopi UV-Vis, dan Spektroskopi Raman. Komposit AuAg/MWCNT, Au/MWCNT, Ag/MWCNT dan f-MWCNT yang telah dipreparasi akan ditambatkan pada elektroda glassy carbon melalui metode drop casting. Nilai overpotensial yang didapatkan dari elektroda GCE/AuAg/MWCNT, GCE/Au/MWCNT, GCE/Ag/MWCNT, GCE/MWCNT, dan bare GCE berturut-turut adalah -0,47 V; -0,63V; -0,50 V; -0,64 V dan -0,96 V yang membuktikan bahwa dekorasi MWCNT dengan nanopartikel AuAg berhasil meningkatkan kinerja sebagai elektrokatalis pada reaksi evolusi hidrogen dengan menurunkan nilai overpotensial. Selain itu, dari pengujian ECSA diketahui bahwa luas permukaan aktif dari elektroda GCE/AuAg/MWCNT adalah 0,1665 cm-2, jauh lebih besar jika dibandingkan dengan GCE/Au/MWCNT (0,0353 cm- 2), GCE/Ag/MWCNT (0,020 cm-2), GCE/MWCNT (0,0067 cm-2) dan bare GCE (0,0033 cm-2). Sifat konduktivitas dan kestabilan elektroda GCE/AuAg/MWCNT juga berhasil dibuktikan dari analisis EIS dan uji stabilitas elektroda melalui metode kronoamperometri. Selain itu, seluruh komposit dilakukan karakterisasi dengan menggunakan Fourier Transform Infra-Red (FTIR), Spektroskopi Raman, X-ray diffraction (XRD), Spektroskopi UV-Vis, dan transmission electron microscopy (TEM).

Hydrogen fuel currently gaining popularity as a renewable source due to its higher energy density. Hydrogen evolution reaction is the simplest and most effective method to produce hydrogen as a source of alternative energy with zero emission of CO2. Material development continues to be carried out to obtain an effective and efficient hydrogen evolution reaction performance. In this research, a direct borohydride reduction process was utilized to decorate multi-walled carbon nanotubes (MWCNT) with AuAg nanoparticles, which would be used as an electrocatalyst in the hydrogen evolution reaction. The prepared AuAg/MWCNT, Au/MWCNT, Ag/MWCNT, and f-MWCNT composites will be anchored to the glassy carbon electrode by a drop-casting method. The overpotential values obtained from the GCE/AuAg/MWCNT, GCE/Au/MWCNT, GCE/Ag/MWCNT, GCE/MWCNT, and bare GCE electrodes were -0.47 V; -0.63V; - 0.50 V; -0.64 V and -0.96 V which proved that the decoration of MWCNT with AuAg nanoparticles succeeded in increasing the performance as an electrocatalyst in the hydrogen evolution reaction by reducing the overpotential value. In addition, from the ECSA test it is known that the active surface area of the GCE/AuAg/MWCNT electrode is 0.1665 cm-2, much larger than that with GCE/Au/MWCNT (0.0353 cm-2), GCE/Ag/MWCNT (0.020 cm-2), GCE/MWCNT (0.0067 cm-2) and bare GCE (0.0033 cm- 2). The conductivity and stability of the GCE/AuAg/MWCNT electrodes were also proven from the EIS analysis and the electrode resistance test using the chronoamperometric method. All the composites were also characterized using Fourier Transform Infra-Red (FTIR), Raman Spectrophotometer, X-Ray Diffraction (XRD), UV-VIS Spectrophotometry, and Transmission Electron Microscopy (TEM)."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizka Yulina
"Produksi karbon nanotube yang memiliki nilai komersil sekaligus hidrogen sebagai bahan bakar ramah lingkungan dapat dilakukan melalui reaksi dekomposisi katalitik metana. Untuk memproduksinya pada skala komersil dibutuhkan studi kinetika untuk memperoleh parameter kinetika reaksi yang berguna untuk keperluan perancangan reaktor. Pada penelitian ini, dilakukan preparasi katalis Ni/Cu/Al yang dilapiskan pada substrat katalis gauze.
Percobaan pendahuluan dilakukan untuk memperoleh daerah kinetika yang tidak dipengaruhi oleh fenomena perpindahan massa dan panas, dengan memvariasikan laju alir pada rentang 15-23 ml/menit pada suhu 650oC. Uji kinetika reaksi pada tekanan 1 atm dan variasi suhu 650-750oC dilakukan untuk memperoleh data kinetika. Data kinetika lalu diuji dengan model kinetika mikro yang diturunkan dari mekanisme reaksi permukaan katalis. Model kinetika yang paling sesuai menunjukkan tahap penentu laju reaksi dekomposisi metana.
Hasil penelitian uji kinetika menunjukkan bahwa tahap penentu laju reaksi dekomposisi metana adalah tahap reaksi permukaan dimana terjadi pelepasan 1 molekul H dari molekul metana yang teradsorpsi pada inti aktif katalis. Energi aktivasi yang diperoleh sebesar 19,3 kJ/mol. Deaktivasi katalis terjadi pada reaksi sehingga diperlukan suatu faktor koreksi terhadap persamaan laju reaksi.

Production of carbon nanotubes which has high commercial values together with hydrogen as green energy can be done by catalytic decomposition of methane. Producing hydrogen and carbon nanotubes into commercial scale needs a kinetic study in order to get the kinetic reaction parameters which is useful for design of reactor. In this research, preparation of gauze wire as substrat of Ni/Cu/Al catalyst was done by coating the Ni/Cu/Al catalysts to the wire.
Initial experiment has been done to obtain the kinetics area which is not controlled by mass and heat transfer, by making variation of the flowrate in the range of 15-23 ml/minutes at the temperatur of 650oC. Kinetics evaluation was done at the pressure of 1 atm and the temperatur range of 650-750oC to obtain kinetics data. This data next will be evaluated by the model of micro kinetics that has been formulated by reaction mechanism of the surface of catalysts. The best kinetic model that fits with the data means that the reaction is the rate limiting step of methane decomposition.
The result of kinetic study shows that the rate limiting step is the surface reaction when a molecule of hydrogen released from the methane which is adsorbed in active site of catalysts. The activation energy obtained is 19,3 kJ/mol. Catalysts deactivation occurs in this reaction, so that it is necessary to make a correction of the rate laws.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52243
UI - Skripsi Open  Universitas Indonesia Library
cover
Wisnu Wardana
"ABSTRAK
Liquefied Petroleum Gas (LPG) dengan kandungan utama propana dan butana berpotensi untuk menjadi sumber karbon dalam sintesis aligned carbon nanotubes (ACNT). Penelitian ini mempelajari pengaruh konsentrasi karbon dari LPG yang merupakan banyaknya jumlah mol karbon dalam volume gas keseluruhan dan waktu reaksi pada yield dan diameter CNT yang dihasilkan. Sintesis CNT menggunakan metode Floating Catalyst-Chemical Vapor Deposition (FC-CVD) dengan katalis ferrocene pada bola silika sebagai substrat. Karbon hasil sintesis tumbuh di substrat dan dinding reaktor kuarsa. Peningkatan konsentrasi karbon dari 0,017 M hingga 0,048 M mampu menghasilkan CNT pada substrat tetapi belum berbentuk ACNT. Yield yang dihasilkan memiliki kecenderungan untuk turun kemudian naik. Peningkatan konsentrasi karbon menurunkan diameter CNT dari 56 nm menjadi 41 nm. Penambahan waktu reaksi dari 40 menit menjadi 120 menit mampu meningkatkan yield dan memperbesar diameter CNT dari 41 nm menjadi 87 nm.

ABSTRACT
Liquefied Petroleum Gas (LPG) with propane and butane as the main components is potential to be carbon source in synthesis of aligned carbon nanotubes (ACNT). This research studies the influence of carbon concentration from LPG which is amount of the carbon moles in total volume of input gases and reaction time in yield and diameter of CNT produced. The synthesis of CNT using Floating Catalyst-Chemical Vapor Deposition (FC-CVD) method with ferrocene as catalysts on silica spheres as substrate. The carbons produced grow in substrate and quartz reactor?s wall. Increases carbon concentration from 0.017 M to 0.048 M is capable producing CNT on substrate but unformed ACNT. Yield produced has a tendency to down and then rise. Increases in carbon concentration reduce the diameter of CNT from 56 nm to 41 nm. Increases reaction time from 40 to 120 minutes is able to improve yield and increase diameter of CNT from 41 nm to 87 nm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41656
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>