Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10725 dokumen yang sesuai dengan query
cover
Robby Debriand
"Air yang dalam bahasa kimianya adalah H2O disusun oleh 1 molekul Oksigen dan 2 molekul Hidrogen yang jika dipisahkan menjadi gas hidrogen dan oksigen merupakan unsur yang ideal dalam pembakaran. Elektrolisa air adalah teknik pemisahan air menjadi gas oksigen dan hidrogen. Dalam skripsi ini akan dijelaskan mengenai perancangan dan pembuatan HHO Generator dengan prinsip elektrolisa air. Setelah itu alat tersebut diukur untuk dicari performanya. Pengukuran dilakukan di 2 (dua) sumber yaitu dari jala-jala dan solar cell untuk membandingkan kemampuan alat tersebut dalam sumber listrik yang berbeda. Akuisisi data dilakukan secara bertahap. Pertama sistem diidentifikasi terlebih dahulu, seperti dipelajari prinsip kerjanya. Kedua, menentukan parameter pengukurannya, yang berupa tegangan, arus dan flowrate. Ketiga, mempersiapkan alat akuisisi data. Keempat, alat tersebut dikalibrasi agar besaran ukur pembacaan sesuai dengan besaran ukur real. Kelima, melakukan proses akuisisi data dan hasilnya dianalisa serta dibuat kesimpulannya. Berdasarkan hasil penelitian dengan sumber jala-jala, HHO Generator ini otimal jika dikonfigurasikan pada molaritas elektrolit 0,59M dan tegangan 12,94V. Flowrate yang dihasilkan sebesar 3786,08 mL/s atau Flow per Daya-nya 7,89 mL/W.s. Sedangkan pada sumber solar cell, HHO Generator ini otimal jika dikonfigurasikan pada molaritas elektrolit 0,59M dan tegangan 13,23 V. Flowrate yang dihasilkan sebesar 3443,72 mL/s atau Flow per Daya-nya 8,24 mL/W.s.

Water in chemical is H2O, arranged by 1 molecule of Oxygen and 2 molecules of Hydrogen, both of them if separated each other will become hydrogen and oxygen gas which is an ideal in combustion. Water Electrolysis is a technique for separating water become oxygen gas and hydrogen gas. This thesis will explain about designing and making HHO Generator which use water electrolysis principle. After that, that tool will be measured to look for their performance. Measurements were taken in 2 (two) sources, from the grid and solar cell to compare the ability of the tool in a different power source. Data acquisition is executed step by step. First, system must be identified, such as learned the principle works. Second, determine the parameters of measurement, i.e. measuring voltage, current and flowrate. Third, prepare the data acquisition tools. Forth, the data acquisition device is calibrated so that the measurand readings match with real measurand. Five, start the acquisition process and the results are analyzed then make the conclusion from that. As per research result with source from electric grid, this HHO generator optimal if configurated at electrolyte molarity 0,59 M and voltage 12,94V. Flowrate result is 3786 mL/s or Flow per power is 7,89 mL/W.s. While at research with source from solar cell, this HHO Generator optimal if configurated at electrolit molarity 0,59M and voltage 13,23 V. Flowrate result is 3443,72 mL/s or Flow per power is 8,24 mL/W.s."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45029
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pourbaix, Marcel
New York: Plenum Press, 1973
620.112 POU l
Buku Teks  Universitas Indonesia Library
cover
Riskin, Joseph
"Systematized data on electrocorrosion and protection of metals, especially in electrochemical plants allow using the book as a guide for corrosion engineers end researchers and for the personnel maintaining the equipment of all kinds of electrochemical plants to analyze the corrosion state of the metallic equipment and to prevent its electrocorrosion."
Amsterdam: Elsevier, 2008
620.16 RIS e
Buku Teks  Universitas Indonesia Library
cover
Deva Rifa Nurgantini
"Aluminium (Al) adalah logam ringan dengan massa jenis 2,7 g/cm3. Untuk melindungi permukaan paduan Al dari lingkungan korosif dan abrasif, dibutuhkan rekayasa permukaan seperti PEO. Karakteristik lapisan oksida hasil PEO dipengaruhi oleh arus dan durasi proses. Penelitian ini bertujuan untuk menganalisis evolusi morfologi dan pengaruhnya terhadap karakteristik mekanik dan ketahanan korosi lapisan PEO. PEO diaplikasikan pada paduan Al 7075-T651 menggunakan elektrolit 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 dengan rapat arus konstan 200 A/m2. Waktu proses PEO divariasikan 10, 15, dan 20 menit. Lapisan PEO dikarakterisasi menggunakan X-Ray Diffractometer (XRD) untuk menganalisis komposisi fasa kristal, Scanning Electron Microscopy-Energy Dispersive x-ray Spectroscopy (SEM-EDS) untuk menganalisis morfologi permukaan dan komposisi unsur. Perilaku korosi pada sampel dievaluasi melalui uji elektrokimia, yaitu Potentiodynamic Polarization (PDP) dan Electrochemical Impedence Spectroscopy (EIS). Hasil analisis XRD mengindikasikan bahwa lapisan PEO bersifat amorf. Konsentrasi oksigen dalam lapisan yang dideteksi dengan EDS meningkat seiring bertambahnya durasi proses PEO sesuai dengan peningkatan ketebalan lapisan. Hasil uji elektrokimia PDP dan EIS menunjukkan sampel PEO 15 menit memiliki ketahanan korosi terbaik dengan nilai rapat arus korosi terendah sebesar 2,28 dan nilai hambatan tertinggi sebesar 1,038 dan 1,123. Hasil uji mekanik menunjukkan PEO 10 menit memiliki nilai keausan tertinggi sebesar dan nilai kekerasan sebesar 129,8 HV; PEO 15 menit memiliki nilai keausan sebesar dan nilai kekerasan sebesar 131,8 HV; dan PEO 20 menit memiliki nilai keausan terendah yaitu dan nilai kekerasan tertinggi yaitu 142 HV yang menunjukkan bahwa sampel dengan durasi lebih lama dapat menghasilkan sifat mekanik yang lebih unggul

Aluminium (Al) is a lightweight metal with a density of 2,7 g/cm3. To protect the surface of Al alloys from corrosive and abrasive environments, surface engineering techniques such as Plasma Electrolytic Oxidation (PEO) are required. The characteristics of the PEO-derived oxide layers are influenced by the current and process duration. This study aims to analyze the morphological evolution and its impact on the mechanical properties and corrosion resistance of PEO layers. PEO was applied to Al 7075-T651 alloy using an electrolyte of 30 g/l Na2SiO3-30 g/l KOH-30 g/l Na3PO4 with a constant current density of 200 A/m2. The PEO process duration was varied at 10, 15, and 20 minutes. The PEO layers were characterized using X-Ray Diffractometer (XRD) to analyze the composition of crystalline phases, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) to analyze surface morphology and elemental composition. Corrosion behavior was evaluated through electrochemical tests, namely Potentiodynamic Polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS). XRD analysis indicated that the PEO layers were amorphous. The oxygen concentration in the detected layers using EDS increases with the duration of the PEO process, in line with the increase in layer thickness. Electrochemical tests PDP and EIS showed that the PEO 15 minute sample exhibited the best corrosion resistance with the lowest corrosion current density of 2,28 and the highest resistance values of 1,038 and 1,123. Mechanical test results indicated that the PEO 10 minute sample had the highest wear resistance of and a hardness value of 129,8 HV; PEO 15 minute sample had a wear resistance of and a hardness value of 131,8 HV; and PEO 20 minute sample had the lowest wear resistance of and the highest hardness value of 142 HV, suggesting that longer process durations produce superior mechanical properties."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stansbury, E.E.
"Self-contained textbook covering the essential aspects of the corrosion behavior of metals in aqueous environments. Provides an overview of aqueous corrosion, electrode reactions, and electrode kinetics. DLC: Electrolytic corrosion."
Materials Park, OH: ASM International, 2000
e20442181
eBooks  Universitas Indonesia Library
cover
Annisa Titi Cahyani
"Peningkatan kadar CO2 dapat menimbulkan berbagai masalah seperti pemanasan global dan masalah ekologi yang memberikan dampak negatif bagi kesehatan manusia. Hal tersebut menarik perhatian para ilmuwan untuk berpartisipasi dalam mengurangi konsentrasi CO2 dengan mengubah CO2 menjadi bahan bakar atau bahan kimia lain yang lebih bermanfaat. Konversi CO2 dengan teknik elektrokimia cukup menjanjikan karena proses elektroreduksi dapat terjadi pada tekanan dan temperatur atmosfer, sehingga ideal untuk implementasi dan integrasi skala besar. Pada penelitian ini dilakukan modifikasi elektroda busa Cu menggunakan timah (Sn) dengan metode elektrodeposisi untuk aplikasi dalam elektroreduksi CO2. Struktur morfologi busa Cu yang ditutupi oleh lapisan tipis Sn homogen dikonfirmasi menggunakan karakterisasi SEM EDX, FTIR, dan XRD. Karakteristik elektrokimia elektroda dipelajari dengan menggunakan teknik cyclic voltametry (CV) dan linear sweep voltametry (LSV). Selanjutnya dilakukan reduksi elektrokimia CO2 menggunakan sistem flow cell pada kondisi optimum dengan laju alir elektrolit 75 mL/menit dan potensial sebear -0,50 V (vs Ag/AgCl), diperoleh nilai efisiensi Faraday dalam produksi asam format menggunakan elektroda busa Cu sebesar 12,12%, yang meningkat menjadi 65,72% setelah modifikasi busa Cu dengan timah. Elektroda Cu termodifikasi Sn pada sistem flow cell menghasilkan efisiensi Faraday asam format sekitar 2 kali lebih tinggi dari sistem batch yang menghasilkan nilai efisiensi Faraday sebesar 49,86%. Uji keberulangan proses elektroreduksi CO2 pada elektroda Cuf/Sn pada kondisi optimum menghasilkan nilai %RSD sebesar 33,70%.

Increasing levels of CO2 can cause various problems such as global warming and ecological problems that give a negative impact on human health. This issue has attracted the attention of scientists to try to reduce the concentration of CO2 by converting CO2 to fuels or other more useful chemicals. The conversion of CO2 by electrochemical technique is promising because electroreduction process can occur at atmospheric pressure and temperature, making it ideal for large-scale implementation and integration. In this study, modification of the copper foam electrode with tin (Sn) was carried out with electrodeposition method for an application in CO2 electroreduction.  The morphological structure of Cu foam was covered by a homogeneous thin layer of Sn  confirmed using SEM EDX, FTIR, and XRD characterization. The electrochemical characteristics of the electrodes was examined by using cyclic voltammetry (CV) and linear sweep voltammetry (LSV) technique. Furthermore, electrochemical reduction of CO2 was carried out using a flow cell system. At the optimum condition of CO2 flow rate of 75 mL/min and an applied potential of -0.50 V (vs. Ag/AgCl), the Faradaic efficiency in formic acid production using Cu foam electrode was 12.12%, which  increased to 65.72%  after the modification of Cu foam with tin. The Sn-modified Cu electrode in the flow cell system produced faradaic efficiency of formic acid which was around 2 times higher than the batch system which produced a faradaic efficiency value of 49.86%. The repeatability test of the CO2 electroreduction process at the Cuf/Sn electrode at optimum conditions resulted in the %RSD value of 33.70%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Medio Feby Fitriana
"Magnesium (Mg) merupakan logam ringan dan dapat diserap tubuh melalui proses degradasi atau bersifat biodegradable. Namun Magnesium dan paduannya mengalami degradasi yang sangat cepat di dalam lingkungan fisiologis akibatnya kekuatan mekanik dari implan akan menurun. Untuk meningkatkan ketahanan korosi dari paduan magnesium dapat dilakukan dengan metode anodizing. Lapisan oksida yang dihasilkan dari proses anodizing memiliki banyak retakan dan pori pada permukaannya. Retakan dan pori ini dapat ditutup melalui metode sealing beeswax-colophony. Proses anodizing dilakukan pada tegangan konstan 5 volt dalam elektrolit 0.5 M Na3PO4 pada suhu 30°C ± 1°C dengan variasi waktu 10, 20, dan 30 menit. Pada waktu 10, 20, dan 30 menit terukur tebal lapisan 6, 14, dan 16 μm. Optimasi waktu anodizing dihasilkan pada anodizing 20 menit. Untuk mengetahui laju korosi paduan magnesium yang telah di anodizing dan sealing dilakukan dengan uji hilang berat (invitro) selama 14 hari dalam larutan 0,9% NaCl pada suhu 37°C. Hasil uji hilang berat divalidasi dengan uji potentiodynamic polarization. Hasil uji hilang berat yang menunjukkan laju korosi dari substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut yaitu 7,91; 6,26; 5,0; 6,06; dan 3,30 mmpy. Hasil uji polarisasi menunjukkan peningkatan ketahanan korosi yang diperlihatkan oleh kenaikan potensial korosi untuk substrat; anodizing; substrat + beeswax-colophony sealing; anodizing + hidrotermal sealing; anodizing + beeswax-colophony sealing berturut-turut adalah -1.49, -1.57, -1.54, -1.43, dan -1,17 VAg/AgCl dan penurunan arus korosi berturut-turut 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5 , dan 3.19x10-8 A/cm2. Hasil tersebut menunjukkan bahwa perlakuan anodizing dan sealing dengan beeswax-colophony terbukti dapat meningkatkan ketahanan korosi paduan AZ31 2 kali lipat.

Magnesium (Mg) is the light metals and absobable materials by the human body through a process of degragradation known as biodegradable. However, Mg and its alloys has a rapid corrosion rate in physiological environtment causes reduction of mechanical properties of implants. Anodizing is widely used to increase corrosion resistance of magnesium alloys. The oxide layer produced while anodizing process has many cracks and porous on its surface. Cracks and porous could covered by beeswax-colophony sealing method. The anodization process was carried out at constant voltage 5 volt in electrolyte of 0.5 M Na3PO4 at 30 ° C ± 1 ° C with variations of time 10, 20, and 30 minutes. The thickness of layer was measured at 10, 20, and 30 minutes are 6, 14, 16 μm respectively. Anodizing time optimization was obtained at 20 minutes. to determine the corrosion rate of anodized and sealed magnesium alloy was carried out by in-vitro test for 14 days on 0.9% NaCl solution at 37 ° C. The results of the weight loss test were validated by potentiodynamic polarization test. The weight loss test results exhibits the rate of corrosion of the substrate, anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing are 7.91, 6.26, 5.0, 6.06, and 3.30 mmpy respectively. The results of corrosion on AZ31 show by increased corrosion potential, -1.49, -1.57, -1.54, -1.43, and -1.17 VAg/AgCl and decreased corrosion currents, 5.72x10-4, 3.40x10-5, 2.54x10-8, 2.19x10-5, and 3.19x10-8 A/cm2 on the substrate; anodizing; substrate + beeswax-colophony sealing; anodizing + hydrothermal sealing; anodizing + beeswax-colophony sealing. These results prove anodizing and coatings increase corrosion resistance of AZ31 twice.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asweda Luluk Saptaningrum
"Magnesium dan paduannya telah digunakan di berbagai industri karena memiliki rasio kekuatan terhadap berat yang tinggi, modulus elastisitas dan densitas yang rendah, serta sifat mampu bentuk dan manufaktur yang baik. Namun, magnesium memiliki ketahanan korosi dan aus yang rendah. Untuk mengatasi hal tersebut, diperlukan rekayasa permukaan pada paduan magnesium. Plasma Electrolytic Oxidation (PEO) menghasilkan lapisan keramik oksida yang dapat meningkatkan ketahanan korosi dan aus paduan magnesium. Jenis elektrolit yang digunakan karakteristik dan waktu hidup plasma. Dalam penelitian ini, proses PEO dilakukan pada paduan AZ91 dalam elektrolit berbasis campuran silikat, fosfat, dan hidroksida yaitu Na3PO4, Na2SiO3, dan KOH. Proses PEO dilakukan dengan menggunakan rapat arus konstan sebesar 533 A/m2 selama 10 menit. Parameter proses tersebut dipilih untuk memperlama waktu hidup plasma. Pada penelitian sebelumnya, plasma hanya dapat hidup selama 2 menit. Hasil analisis SEM-EDS menunjukkan bahwa lapisan PEO yang dihasilkan memiliki dua tipe warna, yaitu abu-abu dan putih dengan morfologi dan komposisi berbeda. Bagian putih memiliki morfologi yang tidak seragam dan banyak retakan, dibandingkan dengan bagian abu-abu yang memiliki sedikit pori dan retakan. Ketebalan lapisan yang terbentuk sebesar 53 ± 3 μm. Berdasarkan hasil analisis fasa XRD, terdapat fasa kristal dan amorf Mg2SiO4, Mg3(PO4)2, dan MgO pada lapisan PEO. Hasil tersebut dikonfirmasi oleh hasil analisis EDS dengan terdeteksinya unsur-unsur terkait. Bagian putih memiliki konsentrasi Si yang lebih tinggi dibandingkan bagian abu-abu. Bagian abu-abu memiliki daya tahan abrasi yang lebih tinggi dibandingkan lapisan putih yang ditunjukkan dari nilai spesifikasi abrasinya, yaitu 0,684 × 10-5 mm3/mm dibanding 1,48 × 10-5 mm3/mm. Hasil karakterisasi dan uji mekanik menunjukkan lapisan PEO yang terbentuk tebal dan memiliki ketahanan aus yang baik karena plasma dapat hidup sampai 10 menit.

Magnesium and its alloys have been used in various industries due to their high strength-to-weight ratio, low modulus of elasticity and density, as well as good formability and manufacturability. However, magnesium has low corrosion resistance and wear resistance. To overcome these challenges, surface engineering is required for magnesium alloys. Plasma Electrolytic Oxidation (PEO) produces a ceramic oxide layer that can enhance the corrosion resistance and wear resistance of magnesium alloys. The type of electrolyte used determines the characteristics and lifetime of the plasma. In this study, the PEO process was performed on the AZ91 alloy using an electrolyte based on a mixture of silicate, phosphate, and hydroxide, namely Na3PO4, Na2SiO3, and KOH. The PEO process was carried out using a constant current density of 533 A/m2 for 10 minutes. These process parameters were chosen to prolong the plasma lifetime. In previous studies, the plasma could only last for 2 minutes. The results of SEM-EDS analysis showed that the produced PEO layer had two different colors, namely gray and white, with different morphologies and compositions. The white part exhibited non-uniform morphology and numerous cracks compared to the gray part, which had fewer pores and cracks. The thickness of the formed layer was measured to be 53 ± 3 μm. Based on XRD phase analysis, crystal and amorphous phases of amorf Mg2SiO4, Mg3(PO4)2, and MgO were detected in the PEO layer. These findings were confirmed by EDS analysis, which detected related elements. The white part had a higher concentration of Si compared to the gray part. The gray part exhibited higher abrasion resistance compared to the white layer, as indicated by the abrasion specification values, which were 0,684 × 10-5 mm3/mm and 1,48 × 10-5 mm3/mm, respectively. The characterization and mechanical testing results indicated that the formed PEO layer was thick and had good wear resistance due to the plasma lifetime reaching 10 minutes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alif Syafiq Zaahir Zaidan Hartono
"Penelitian ini mengkaji beberapa jalur sintesis metanol yang menggunakan syngas hasil co-elektrolisis oksida padat suhu tinggi. Hasil simulasi menunjukkan kebutuhan spesifik untuk tiap jalur sintesis, meliputi arus, jumlah sel, luas area sel, dan total daya. Pada Jalur Sintesis 1, yang melibatkan proses sintesis metanol melalui co-elektrolisis dan elektrolisis CO2, modul SOEC co-elektrolisis memiliki arus 10,822 MA dengan total daya 16,04 MW dan Modul elektrolisis dengan arus dan 0,784 MA daya total 1,14 MW. Jalur Sintesis 2, yang melibatkan proses sintesis melalui co-elektrolisis, membutuhkan arus 10,078 MA dengan total daya 14,94 MW. Jalur Sintesis 3, yang melibatkan proses sintesis metanol melalui elektrolisis CO2 dan Reaktor WGS, menunjukkan kebutuhan arus 25,155 MA dengan total daya 36,48 MW. Kebutuhan bahan baku juga dianalisis dengan hasil sebagai berikut: Jalur Sintesis 1 membutuhkan 4024,26 kg/jam H2O dan 3548,47 kg/jam CO2, Jalur Sintesis 2 membutuhkan 3291,39 kg/jam H2O dan 3780,44 kg/jam CO2, dan Jalur Sintesis 3 membutuhkan 8159,12 kg/jam H2O dan 8008,46 kg/jam CO2. Analisis kelayakan ekonomi dilakukan menggunakan empat skenario dengan parameter pengurangan biaya investasi stack SOEC dan peningkatan insentif pajak karbon. Analisis ekonomi dari keempat skenario menunjukkan variasi harga jual metanol yang signifikan. Pada skenario 1, harga metanol untuk Jalur Sintesis 1 adalah $3,399.48, Jalur Sintesis 2 sebesar $3,928.64, dan Jalur Sintesis 3 sebesar $4,838.67. Pada skenario 2, harga meningkat menjadi $3,928.64, $4,029.30, dan $5,540.74 untuk masing-masing jalur. Skenario 3 dan 4 menunjukkan harga yang lebih rendah dengan harga metanol pada Jalur Sintesis 1 sebesar $3,277.08 dan $3,188.49, Jalur Sintesis 2 sebesar $3,602.53 dan $3,504.78, serta Jalur Sintesis 3 sebesar $4,609.59 dan $4,433.86.

This study examines several methanol synthesis pathways using syngas from high-temperature solid oxide co-electrolysis. The simulation results show the specific requirements for each synthesis pathway, including current, number of cells, cell area, and total power. In Synthesis Path 1, which involves the methanol synthesis process through co-electrolysis and CO2 electrolysis, the co-electrolysis SOEC module has a current of 10.822 MA with a total power of 16.04 MW and the electrolysis module with a current and 0.784 MA total power of 1.14 MW. Synthesis Pathway 2, which involves the synthesis process through co-electrolysis, requires a current of 10.078 MA with a total power of 14.94 MW. Synthesis Path 3, which involves the methanol synthesis process via CO2 electrolysis and the WGS Reactor, shows a current requirement of 25.155 MA with a total power of 36.48 MW. Feedstock requirements were also analyzed with the following results: Synthesis Line 1 requires 4024.26 kg/h H2O and 3548.47 kg/h CO2, Synthesis Line 2 requires 3291.39 kg/h H2O and 3780.44 kg/h CO2 and Synthesis Line 3 requires 8159.12 kg/h H2O and 8008.46 kg/h CO2. An economic feasibility analysis was conducted using four scenarios with parameters of reduced SOEC stack investment costs and increased carbon tax incentives. The economic analysis of the four scenarios shows significant variations in the selling price of methanol. In scenario 1, the methanol price for Synthesis Path 1 is $3,399.48, Synthesis Path 2 is $3,928.64, and Synthesis Path 3 is $4,838.67. In scenario 2, the price increases to $3,928.64, $4,029.30, and $5,540.74 for each pathway. Scenarios 3 and 4 show lower prices with methanol prices in Synthesis Path 1 at $3,277.08 and $3,188.49, Synthesis Path 2 at $3,602.53 and $3,504.78, and Synthesis Path 3 at $4,609.59 and $4,433.86."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Heat traetment fluence to intergrannular corroson succeptibility of stainless stell type 316. Stainless steel was used in nuclear industry as cladding of Liquid Metal Fast Breeder Reactor (LMFBR), which operation temperature above 500oC. According to the theory, resistence of stainless steel type 316 is good enough, but in the high temperature tend to influence by intergranular corrosion.. The sensitization degree of stainless steel type 316 (SS 316) was calculated by potentiostat using potentiodynamic method, and was to observed by scanning electron microscope (SEM)...."
[s.l]: [s.n], 2008
AJ-pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>