Ditemukan 84697 dokumen yang sesuai dengan query
Aripin Ariyanto
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1997
S26986
UI - Skripsi Membership Universitas Indonesia Library
Lubis, Chairisni
"Salah satu jenis penyakit kanker yang dapat menyebabkan kematian adalah kanker kulit (melanoma malignum). Tetapi jika penyakit ini dapat terdeteksi lebih awal maka kemungkinan besar dapat disembuhkan secara total. Cara yang sudah banyak digunakan paramedis untuk mendiagnosis tumor kulit adalah dengan melakukan biopsi yang membutuhkan biaya yang cukup besar. Karena itu banyak penelitian-penelitian yang dilakukan untuk memperkecil biaya ini tetapi dengan ketelitian yang cukup tinggi, salah satunya adalah dengan sistem komputerisasi yang menggunakan jaringan saraf tiruan propagasi balik. Input dari jaringan ini berupa hasil ekstraksi ciri dari citra tumor kulit. Ekstraksi ciri tekstur dari citra tumor payudara basil mammography dengan menggunakan Fuzzy Cooccurrence Matrix (FCM) sudah berhasil dilakukan oleh H.D Cheng, C.H. Chen dan R.I Freimanis. Pada penelitian ini FCM digunakan untuk mengekstraksi citra tumor kulit dan jaringan saraf tiruan propagasi balik digunakan untuk mengenalinya. Hasil penelitian yang terbaik didapat jika input jaringan berupa ciri tekstur, bentuk dan warna. Dengan menggunakan perbandingan jumlah data pelatihan dengan data pengenalan 1 : 1 jaringan berhasil mengenali tumor jinak (benign) seluruhnya, tetapi untuk tumor ganas (melanoma malignum) ada 1 tumor ganas yang dikenali sebagai tumor jinak."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2000
T40377
UI - Tesis Membership Universitas Indonesia Library
Yeni Herdiyeni
"Metode pengenalan wajah 3D pada penelitian ini merupakan metode baru menggunakan model geometri wajah dengan membangkitkan jarak garus wajah pada kondisi normal dengan berbagai pose horisontal dalam ruang eigen. Garis wajah dibangkitkan dengan menghubungkan titik-titik pada wajah. Titik-titik pada wajah diperoleh dengan membuat garis yang memiliki kemiringan 0, 45, 90 dan 125 dan melalui titik koordinat tertentu pada wajah serta memotong batas lingkar wajah. Reduksi dimensi matriks citra menggunakan Probability Principal Component Analysis (PPCA) dengan memaksimumkan fungsi likelihood. Algoritma untuk memaksimumkan fungsi likelihood adalah algoritma EM (Expectation Maximization Algorithm). Pembelajaran citra menggunakan jaringan syaraf tiruan Backpropagation. Hasil percobaan menunjukkan bahwa secara umum metode jarak garis wajah memiliki akkurasi tingkat pengenalan wajah lebih baik dan memiliki nilai Meas Square Error (MSE) yang lebih kecil dibandingkan dengan metode tingkat keabuan wajah."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
JIKT-4-1-Mei2004-40
Artikel Jurnal Universitas Indonesia Library
Artikel Jurnal Universitas Indonesia Library
"Telah dilakukan penelitian berupa pengenalan kualitas fisika air mineral dengan tnenggunakan jaringan saraf tiruan. Ktralitas fisika air yang dikenalkan adalah intensitas cahaya dan deviasi temperatur air terhadap lingkungan. Tujuan penelitian ini adalah membangun sistem pengukur intensitas cahaya dan deviasi temperatur air terkomputerisasi yang diolah dengan algoritma jaringan saraf tiruan. Sensor suhti yang digunakan LM335 dengan kepekaan 10 inVC. Sedangkan detekior cahaya yang digunakan adalah LDR. Keluaran LM335 dan LDR dikuatkan oleh serangkaian OpAmp dengan masukan membalik. Komunikasi antarmuka dipilih ADC Card 12-bit produksi Decision Computer Int'l. Co. Pin 5 digunakan untuk komunikasi LM335, pin 6 digunakan untuk komunikasi LDR. Hasil bacaan suhu dan caliaya yang telah dikalibrasi ditampilkan ke dalam PC. Perangkat lunak ditulis dengan bahasa Delphi dan penajamon analisis data digunakan algoritma jaringan saraf tiruan. Arsitektur jaringan saraf tiruan yang digunakan mengikuti aturan n-2m-2n-m. Metode pernbelajaran yang dipakai perambatan batik (Back Propagation). Penelitian ini memberikan hasil yang cukup balk. Regresi linier terhadap data kalibrasi suhu menghasilkan persamaan digital = 0.0094 x suhu + 2,7328. Statistik regresinya, R2 = 0,9815. Sedangkan basil kalibrasi cahaya memberikan persamaan digital = 0.0109 x cahaya + 1.015. Statistik regresinya, R2 = 0.9684. Secara MUM, hasil pengujian jaringan saraf tiruan menyatakan bahwa target keluaran dapat tercapai dengan baik."
JURFIN 8:25 (2005)
Artikel Jurnal Universitas Indonesia Library
"Metode pengenalan wajah 3D pada penelitian ini merupakan metode baru menggunakan model geometri wajah dengan membangkitkan jarak garis wajah pada kondisi normal dnegan berbagai pose horisontal dalam ruang eigen. Garis eajah dibangkitkan dengan menghubungkan titik-titik pada wajak. Titik-titik pada wajah diperoleh dengan membuat garis yang memiliki kemiringan 0, 45, 90 dan 135 dan melalui titik koordinat tertentu pada wajah serta memotong batas lingkar wajah. Rduksi dimensi matriks citra menggunakan Probability Principal Component Analysis (PPCA) dengan mamaksimumkan fungsi likelihood. Algoritma untuk memaksimumkan fungsi likelihood adalam algoritma EM (Expectation Maximization Algorithm). Pembelajaran citra menggunakan jaringan syarat tiruan Backpropagation. hasil percobaan menunjukkan bahwa secara umum metode wajah lebih baik dan memiliki nilai Mean Square Error (MSE) yang lebih kecil dibandingkan dengan metode tingkat keabuan wajah."
Jurnal Ilmu Komputer dan Teknologi Informasi, 4 (1) Mei 2004: 40-46, 2004
JIKT-4-1-Mei2004-40
Artikel Jurnal Universitas Indonesia Library
"Dalam skripsi ini digunakan algoritma genetik untuk memilih vektor-vektor eigen pada metode Principal Component Analysis (PCA) dalam pengenalan citra wajah manusia. Data citra wajah yang digunakan adalah citra wajah dengan tingkat keabuan (gray level image), frontal, dan berukuran sama. Vektor-vektor eigen yang dipilih berdasarkan algoritma genetik, walaupun tidak semuanya berpadanan dengan nilai eigen terbesar, ternyata tetap dapat mengenali citra wajah dengan nilai error yang hampir sama dengan hasil yang dipilih berdasarkan nilai eigen terbesar. Hasil implementasi menunjukkan bahwa vektor eigen yang berpadanan dengan nilai eigen yang kecil apabila dikombinasikan hingga mencapai level persentase variansi tertentu ternyata dapat digunakan untuk pengenalan citra wajah manusia. Kata kunci: algoritma genetik, Principal Component Analysis, vektor eigen. xi + 86 hlm.; gbr.; tab.; lamp. Bibliografi: 15 (1989 ? 2007)"
Universitas Indonesia, 2007
S27730
UI - Skripsi Membership Universitas Indonesia Library
Gemilang Madyakusuma
"Sejak awal ditemukannya komputer hingga kini, manusia berinteraksi dengan komputer melalui papan ketik (keyboard). Upaya untuk memberikan kemampuan guna mengenali ucapan oleh komputer akan memperluas lingkup penggunaanya. Meciptakan komputer yang dapat mengenali ucapan manusia merupakan hal yang kompleks dan melibatkan berbagai disiplin ilmu. Dalam skripsi ini akan digrnikan perancangan sistem pengenalan ucapan untuk mengenali ke-6 vokal dalam Bahasa Indonesia dan kata dalam bahasa Indonesia dengan metoda-metoda yang sebagian besar merupakan peniruan dari fungsi (kemampuan) manusia. Metoda-metoda yang digunakan meliputi pemisahan sinyal ucapan dengan bukan ucapan (kesenyapan atau derau latar belakang). Ekstraksi ciri dengan pengkodean prediksi linear (Linear Predictive Code, LPQ yang dapat dengan baik merepresentasikan produksi suara manusia. Jaringan Saraf Tiruan ART 2 yang bersifat adaptif digunakan untuk pengenalan vokal, serta Hidden Markov Model digunakan untuk pengenalan kata karena dapat mendeteksi informasi dari masukan yang temporal."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S39007
UI - Skripsi Membership Universitas Indonesia Library
"The capabilities of artificial neural network (ANN) : generalization, adaptive, and tolerant became a basis in choosing the pattern recognition methods of Javanese charahters...."
Artikel Jurnal Universitas Indonesia Library
Sava Danugraha Budi
"Deteksi dan resolusi dari lapisan tipis merupakan masalah penting dalam analisis reservoir. Semakin tipis lapisan menyebabkan semakan tingginya puncak frekuensi pada spektrum wavelet yang direfleksikan dari lapisan tipis relatif terhadap domain frekuensi dari wavelet seismik datang. Untuk itu, energi dari gelombang digunakan untuk mendapatkan integrated energy spectra (INTENS) sebagai fungsi dari frekuensi. INTENS merupakan hasil plot antara integrated partial energy dengan frekuensi yang dapat digunakan untuk mendeteksi perubahan ketebalan dari lapisan tipis yang tidak dapat langsung dikenali pada domain waktu.
Metode integrated energy spectra diterapkan pada model baji dan data seismik real 3 dimensi untuk mendapatkan penggambaran lapisan tipis yang lebih baik. Kemudian, untuk mempermudah analisis lapisan tipis, digunakan metode principal component spectral analysis (PCA) untuk mencari trend dari dari data yang dihasilkan. Metode ini mengkompaksi 86 komponen spectral yang harus dianalisa menjadi kurang dari 6 komponen utama.
Hasil yang didapat menunjukkan PC band pertama dapat menggambarkan dengan baik distribusi channel. Jumlah dari 6 PC band pertama menunjukkan variansi sebesar 78% dan dapat menggambarkan distribusi channel yang lengkap. PCA dapat memproyeksikan fitur utama dengan baik pada beberapa PC band pertama dan menghilangkan sinyal yang tak berarti seperti noise.
Detection and resolution of thin layers is an important issue in the analysis of the reservoir. A progressively thinner bed corresponds to a progressively higher peak frequency in the spectrum of the wavelet reflected from the thin bed relative to the dominant frequency of the incident seismic wavelet. the energy of the waveform is used to obtain integrated energy spectra as a function of frequency. INTegrated ENergy Spectra (INTENS) is a plot of integrated partial energy against frequency that can be used to detect changes in thickness of thin that are not immediately recognizable in the time domain. Integrated energy spectra method applied to the wedge model and 3-dimensional real seismic data to obtain a better image of thin bed. Then, to analyze thin layers, principal component analysis (PCA) is used to find the trend of the data produced. This method decrease 86 spectral components that must be analyzed to less than 6 main components. The results show the first PC band can delineate channel distribution with good image. The sum of first 6 PC bands show variance by 78% and can delineate the complete distribution channel. PCA could project the main features on some first PC band and could eliminate bad signal such noise."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S698
UI - Skripsi Open Universitas Indonesia Library