Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17389 dokumen yang sesuai dengan query
cover
Djamhari Sirat
"The Hidden Markov Model (HMM) is a frequently used tool in scientific research for recognizing pattern. This study discusses sign ature recognition using HMM where the signature image is transmitted from the remote station to the headquarter office by wireless because the remote station was not provided by the original signature as a reference. Generally, the transmission of radio communication has been corrupted with Additive White Gaussian Noise (AWGN) over the Rayleigh fading channel. To reduce the number of bits in the bitstream, the signal prior to transmission was compressed by means of run-length encoding (RLE), also known as source coding. The signature image detected from the receiver was processed in the computer using the HMM. The successful rate of recognition was 0-36% without compression and 60-76%with compression."
Depok: Fakultas Teknik Universitas Indonesia, 2011
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Djamhari Sirat
"The Hidden Markov Model (HMM) is a frequently used tool in scientific research for recognizing pattern. This study discusses signature recognition using HMM where the signature image is transmitted from the remote station to the headquarter office by wireless because the remote station was not provided by the original signature as a reference. Generally, the transmission of radio communication has been corrupted with Additive White Gaussian Noise (AWGN) over the Rayleigh fading channel. To reduce the number of bits in the bitstream, the signal prior to transmission was compressed by means of run-length encoding (RLE), also known as source coding. The signature image detected from the receiver was processed in the computer using the HMM. The successful rate of recognition was 0-36% without compression and 60-76%with compression."
Depok: Faculty of Engineering, Universitas Indonesia, 2011
UI-IJTECH 2:1 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Universitas Indonesia, 2006
TA637
UI - Tugas Akhir  Universitas Indonesia Library
cover
Raizha Rayhananta Prayoga
"Sinyal dalam konteks telekomunikasi membawa informasi dengan variasi terhadap waktu, termasuk sinyal suara yang bersifat non-stasioner. Kehadiran noise dalam sinyal suara dapat mengurangi kualitas informasi yang ditransmisikan. Penggunaan transformasi wavelet telah menjadi pendekatan yang efektif dalam denoising sinyal suara, namun untuk hasil optimal, diperlukan pemilihan model threshold dan wavelet families yang tepat. Penelitian ini mengeksplorasi kinerja berbagai model threshold dalam denoising sinyal suara. Hasil penelitian menunjukkan bahwa waktu komputasi untuk denoising meningkat seiring dengan peningkatan level dekomposisi, dengan threshold Donoho memiliki waktu komputasi tercepat, diikuti oleh modifikasi, dan acuan Gang Yang [9] paling lambat. Penggunaan wavelet families juga memengaruhi nilai Mean Squared Error (MSE) dan waktu komputasi. Model threshold acuan Gang Yang [9] memberikan MSE terbaik dengan waktu komputasi 119,252 detik pada level dekomposisi 4, sedangkan threshold modifikasi menawarkan waktu komputasi lebih cepat yaitu 87,965 detik dengan MSE hampir setara pada level dekomposisi 2. Peningkatan panjang filter wavelet meningkatkan kompleksitas program dan waktu komputasi, namun efeknya bervariasi pada tiap model threshold. Selain itu, dilakukan denoising pada noise teras rumah (SPL 83,445 dB) dan noise mesin konstruksi (SPL 87,439 dB). Pada noise teras rumah, level dekomposisi 1 dengan Biorthogonal 3.3 (bior33) paling efektif, mengurangi SPL menjadi 40,216 dB. Pada noise mesin konstruksi, level dekomposisi 1 dengan Reverse Biorthogonal 3.3 (rbio33) paling efektif, menurunkan SPL menjadi 69,569 dB. Berdasarkan hal tersebut, dalam memilih model threshold yang optimal, perlu dipertimbangkan nilai MSE dan efisiensi komputasi. Penelitian ini memberikan wawasan penting dalam memilih metode denoising yang efektif untuk meningkatkan kualitas sinyal suara.

In telecommunications, signals carry information with variations over time, including non-stationary audio signals. Noise in audio signals can degrade the quality of transmitted information. Wavelet transform is an effective approach for denoising audio signals, but optimal results require appropriate threshold models and wavelet families. This study explores the performance of various threshold models in denoising speech signals. Results indicate that computation time for denoising increases with decomposition levels; the Donoho threshold is the fastest, followed by the modified model, with Gang Yang [9]'s reference model being the slowest. Wavelet family choice significantly impacts Mean Squared Error (MSE) and computation time. The Gang Yang [9] reference model offers the best MSE at SNR 20-27 with a slight computation time increase (119.252 seconds at level 4), while the modified model achieves faster computation (87.965 seconds at level 2) with nearly equivalent MSE. Longer wavelet filters increase program complexity and computation time, varying by threshold model. Additionally, denoising was performed on residential porch noise (SPL 83.445 dB) and construction machinery noise (SPL 87.439 dB). For residential porch noise, decomposition level 1 with Biorthogonal 3.3 (bior33) was most effective, reducing the SPL to 40.216 dB. For construction machinery noise, decomposition level 1 with Reverse Biorthogonal 3.3 (rbio33) was most effective, lowering the SPL to 69.569 dB. Thus, selecting an optimal threshold model involves considering both MSE and computational efficiency. This study provides key insights for effective denoising methods to enhance speech signal quality."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. Alifiansyah Ilham K.
"Kebutuhan akan kompresi data memunculkan banyak metode dan konsep untuk mengurangi ukuran sebuah informasi digital. Tujuan dari kompresi data adalah untuk menghemat kapasitas media penyimpanan dan mempermudah pengiriman informasi melalui media transmisi. Metode Huffman Code merupakan salah satu metode kompresi Lossless yang dapat memberikan kompresi bit tanpa mengurangi informasi di dalam data yang asli.
Tugas Akhir ini membahas tentang penggunaan metode Huffman Code dengan jumlah data yang besar, yaitu pada sebuah Frame Video MPEG-4 dengan menggunakan nilai intensitas warna pada setiap pixel sebagai data dan letak pixel sebagai dimensi matriks. Proses yang melibatkan berjuta bit tersebut terlalu rumit untuk diselesaikan secara manual, sehingga membutuhkan bantuan software komputer Matlab. Pemrograman Matlab dilengkapi dengan tools yang memberikan kemudahan dalam penyelesaian komputasi tesebut.
Data yang diamati adalah kecepatan proses kompresi-dekompresi, rasio antara jumlah bit sebelum dan sesudah kompresi, dan ketepatan antara data hasil dekompresi dengan data aslinya. Kecepatan proses kompresi dan dekompresi menunjukkan waktu yang dibutuhkan untuk mengganti setiap simbol dalam data dengan kode Huffman-nya. Kecepatan tersebut berbeda-beda tergantung pada spesifikasi alat yang digunakan. Rasio merupakan perbandingan antara data terkompresi dengan data aslinya. Ketepatan data menunjukkan perbandingan antara nilai-nilai pada data yang dikompresi dengan data aslinya. Pada kompresi Huffman data hasil dekompresi dan data asli harus sama.

The need of data compression makes a lot of methods and concepts made to reduce the size of digital information. The purpose of data compression is to save the capacity of a storage media and to ease information transmission through transmission lines. The Huffman Code Method is one of Lossless compression method which able to give bit compression without reducing the information inside the original data.
This final project examine the utilization of Huffman Code method with huge number of data, and that is an MPEG-4 video frame using the value of color intensity on each pixel as data and pixel’s position as matrix dimension. The Process which involves millions of bits is too complicated to be done manually, so a help from computer software, Matlab is required. Matlab programming is equipped with tools which gives ease on handling the complex computation.
The Data which observed are the compressing-decompressing speeds, ratio between the number of bits before and after the compression, and the accuracy between the decompressed data and the original data. Processing speed in compressing and decompressing shows the time needed to replace each symbol in data with its Huffman code. The speed varies depends on the specification of the device used for the process. Ratio is the comparison between compressed data with its original data. The accuracy of data shows the comparison between values in the decompressed data and the original data. In Huffman Code compression, the decompressed data and the original data must shows exact match.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44055
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zul Andri Muqodam
"Sistem tata udara presisi merupakan sistem yang mempunyai dua masukan, yaitu kecepatan putaran kipas dan kompresor, dan dua keluaran ,yaitu temperature dan kelembaban, umumnya disebut sebagai sistem Multi Input dan Multi Output (MIMO). Sistem MIMO ini menyebabkan pencarian model fisik dari sistem tata udara presisi menjadi relative sangat sulit. Oleh karena itu, diperlukan identifikasi sistem yang bersifat black box. Selain itu, dibutuhkan identifikasi model yang bersifat adaptif dan prediktif, sehingga model yang didapatkan lebih baik dalam merepresentasikan sistem tata udara presisi.
Identifikasi subspace diakui sangat efisien untuk model system yang multivariable, dan estimasi yang dilakukan hanya dari state system yang berasal dari pengaturan data input dan output. Dalam penelitian ini, metode subspace yang akan digunakan untuk memprediksi sistem tata udara presisi adalah PO MOESP. PO MOESP merupakan salah satu metode dari 4SID yang sangat baik digunakan untuk identifikasi multivariable. Dalam penelitian ini, metode tersebut digunakan secara offline dan online. Metode PO-MOESP ini selanjutnya akan diuji berbagai data, antara lain data linear, data nonlinear model PAC, dan data PAC hasil eksperimen, dimana seluruh data tersebut akan diproses secara offline dan Rekursif.
Metode PO-MOESP Rekursif yang akan digunakan dalam penelitian ini akan diujicobakan ke suatu peralatan PAC. Jadi hasil yang diharapkan dari proses identfikasi ini adalahmetode identifikasi yang dapat bekerja dan memberikan identifikasi yang akurat merepresentasikan suatu sistem tata udara presisi, dimana identifikasi ini selanjutnya akan digunakan untuk model predictive control (MPC).

Precision Air Conditioning System has two inputs, namely the rotation speed of the fan and compressor, and two outputs, namely temperature and humidity, commonly referred to as Multi Input and Multi Output(MIMO). MIMO system is causing a physical model of the search system of air relative precision becomes very difficult. Therefore, required identification that are black box systems. In addition, the model identification is required to be adaptive and predictive models obtained thus better represent the system of air in precision.
Subspace identificationis recognized very efficiently for a multivariable system models, and estimation is done only from the state system derived from the data input and output settings. In this study, subspace methods to be used to predict the system of air is PO-MOESP precision. PO-MOESP is one of the methods used 4SID excellent for multivariable identification. In this study, the method used offline and recursive. PO-MOESP this method will be tested a variety of data, including linear data, data nonlinear model of PAC, PAC data and experimental results, where all data will be processed offline and recursive.
PO-MOESP recursive method to be used in this study will be tested to a PAC equipment. So the expected results of this identification process is the identification method that can work and provide an accurate identification represents a system of air-precision, where the identification is then used to model predictive control (MPC)."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44146
UI - Skripsi Membership  Universitas Indonesia Library
cover
Roberts, Michael J.
New York: McGraw-Hill, 2012
621.382 2 ROB s
Buku Teks SO  Universitas Indonesia Library
cover
Roberts, Michael J.
New York: McGraw-Hill, 2012
621.382 2 ROB s
Buku Teks SO  Universitas Indonesia Library
cover
Kandika Bagaskara
"ABSTRAK
Emosi merupakan hasil dari aktivitas sensorik manusia baik sadar maupun tidak sadar yang dipicu oleh suatu objek atau situasi yang dialami manusia. Dalam dunia medis, emosi sangat berperan dalam kesembuhan pasien, tenaga medis sering kali mempertimbangkan emosi pasien untuk pengambilan keputusan langkah medis yang harus ditempuh. Saat ini, sistem pendeteksi emosi yang banyak digunakan adalah menggunakan raut wajah, namun sistem ini masih kurang bisa membantu tenaga medis dikarenakan ada pasien yang tidak mau atau tidak bisa memperlihatkan emosi mereka baik secara verbal maupun non-verbal. Oleh karena itu dibutuhkan sistem pendeteksi emosi yang tidak bergantung pada ekspresi emosi verbal maupun non-verbal. Penelitian ini membahas tentang perancangan sistem pendeteksi emosi menggunakan sinyal elektroensefalografi (EEG) dengan menggunakan metode ekstraksi fitur Bispectrum Wavelet. Kemudian untuk detailed coefficient akan diekstrak fiturnya menggunakan Relative Wavelet Bispectrum (RWB) dan untuk approximate coefficient akan di filter menggunakan Non-Overlap 3-D Pyramid untuk kemudian dicari mean%. Sistem pendeteksi emosi dengan menggunakan sinyal EEG dipilih karena untuk mendapatkan sinyal EEG tidak bergantung pada ekspresi emosi verbal maupun non-verbal. Dataset EEG yang digunakan didapatkan dari Database for Emotion Analysis using Physiological Signals (DEAP). Hasil mean yang didapatkan dari implementasi sistem yang diajukan pada skripsi ini adalah 76.6250% untuk valence dan 75.8594% untuk arousal. Hasil ini lebih tinggi 3.1050% untuk valence dan 2.4794% untuk arousal dibandingkan dengan hasil yang didapatkan pada paper

ABSTRACT
Emotion is a result of humans conscious or unconscious sensorics activities that is triggered by object or situation that the human experienced. In medical world, emotion can be the key for patient healing process, doctor or medical personnel often use patients emotion to make next healing process movement. Nowadays, facial recognition is the most common emotion detection system; however, this emotion detection system is unreliable because it needs patient to show their emotion in verbal or non-verbal ways. Therefore, other emotion detection system that does not depend on humans verbal or non-verbal expression is needed. In this research, emotion detection system using electroencephalography (EEG) signal with Bispectrum Wavelet for its features extraction is discussed. Relative Wavelet Bispectrum will be used to extract features from detailed coefficient, and the approximate coefficient will be filtered and then it mean% will be calculated. EEG signal-based emotion detection system was chosen because EEG signal does not depend on humans verbal or non-verbal expression. Database for Emotion Analysis using Physiological Signals (DEAP) is used in this research. The mean result of the proposed system was 76.6250% for valence and 75.8594% for arousal. This results was higher by 3.1050% for valence and 2.4794% for arousal from the previous system"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robertus Hudi
"Improvement in this experiment are done for 3 following factors: running time, memory efficiency, and speedup. The speedup result achieved is as close as 100× increase. Naïve parallelization is used on mapping each matrices data to CUDA memories, for each major operation is done in parallel behavior via self-made CUDA kernels to suits the data dimensions. This make up the improvement of 2nd factor, which is memory efficiency. Results for kernels are captured with NVIDIA profiling tools for the increasing number of random targets on 4 transmitter-receiver (PV) combinations (without any knowledge about the approximation of targets direction). All results are taken according to the average running time of kernel calls and speed up for each size of the input, compared with serial and CPU parallel version data of the previous work. Among advanced techniques for the passive radar system’s target association, several experiments have been done based on Probability Hypothetic Density (PHD) function. The complex calculation makes the computation processes a very demanding task to be done, thus, this paper is focused on PHD function performance comparison between preceding attempts to the implementation using a pure C programming language with CUDA library. A further improvement is highly possible within algorithm optimization itself or applying more advanced parallelization technique.

Peningkatan yang dilakukan pada eksperimen ini meliputi 3 faktor: running time, memory efficiency, dan speedup. Hasil pengujian speedup yang diperoleh mencapai setidaknya 100x peningkatan daripada algoritma semula. Paralelisasi naif yang digunakan untuk memetakan setiap matriks data ke dalam memori CUDA, untuk setiap operasi major dilakukan secara paralel dengan CUDA kernel yang didesain mandiri sehingga dapat menyesuaikan secara otomatis dengan dimensi data yang digunakan. Hal ini memungkinkan peningkatan pada faktor yang kedua yaitu memory efficiency. Hasil dari masing-masing kernel diukur menggunakan data yang diambil dari NVIDIA profiling tools untuk data acak yang meningkat dari segi ukuran, dan diimplementasikan pada 4 kombinasi transmitter-reveiver (PV) tanpa mengetahui aproksimasi arah target. Seluruh hasil pengujian kernel diambil berdasarkan rata-rata running time dari pemanggilan kernel dan speed up dari setiap ukuran masukan, dibandingkan dengan implementasi asosiasi target secara serial dan versi paralel pada CPU dari penelitian terdahulu. Diantara teknik tingkat lanjut yang digunakan untuk menentukan asosiasi target pada sistem radar pasif, beberapa percobaan telah dilakukan berdasarkan fungsi Probability Hypothetic Density (PHD). Kalkulasi yang kompleks menghasilkan proses komputasi yang terlalu berat untuk dilakukan, maka dari itu, percobaan ini fokus kepada komparasi performa fungsi PHD antara penelitian-penelitian terdahulu dengan impleentasi fungsi tersebut pada pustaka CUDA menggunakan bahasa pemrograman C. Peningkatan lebih lanjut sangat dimungkinkan melalui optimisasi algoritma PHD sendiri atau menggunakan teknik paralelisasi yang lebih baik.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>