Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 91565 dokumen yang sesuai dengan query
cover
Rinawati
"Pesatnya perkembangan jumlah halaman web memotivasi banyak pihak untuk membangun suatu search engine dengan kinerja yang optimal. Proses ranking merupakan bagian penting dalam alur kerja suatu search engine. Salah satu metode alternatif machines learning yang cukup mendapatkan perhatian para peneliti adalah metode ranking SVM. Metode pembelajaran pada ranking SVM berupa model linear yang bertujuan mendapatkan fungsi ranking berdasarkan ide dasar SVM (Support Vector Machines). Studi eksperimental ini bertujuan mengukur kinerja metode ranking SVM pada data LETOR. Data LETOR merupakan data yang diorganisir oleh Microsoft yang ditujukan untuk pembelajaran ranking (leraning to rank). Hasil eksperimen menunjukkan bahwa akurasi MAP (Mean Average Precision) metode ranking SVM pada data LETOR adalah sebesar 47.38%. Hal ini menunjukkan bahwa persoalan ranking merupakan persoalan yang masih bersifat tantangan sehingga diperlukan penelitian lanjutan yang akan memberikan akurasi yang lebih tinggi.

Fast growth of web pages motivates many people to build an optimal search engine. Ranking process is an important part in the workflow of a search engine. One alternative method of machines learning which attracting more researchers? attention is a ranking SVM method. Ranking SVM has a learning system in a linear model form. Its aims to get a ranking function based on the basic idea of SVM (Support Vector Machines). This experimental study aims to measure the performance of SVM ranking methods in LETOR. LETOR benchmark dataset is organized by Microsoft. It have been released to facilitate the research on learning to rank.. The experimental results show that MAP (Mean Average Precision) accuracy of ranking SVM method on LETOR is 47.38%. This shows that the ranking is a challenging issue and required further research to provide higher accuracy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T31855
UI - Tesis Open  Universitas Indonesia Library
cover
Kesia Gabriele
"Support Vector Machine (SVM) merupakan model klasifikasi yang dikenal dengan keakuratan klasifikasi yang tinggi. Namun, Support Vector Machine (SVM) menghasilkan hasil klasifikasi yang kurang optimal jika data yang digunakan tidak seimbang (imbalanced data). Terdapat beberapa cara dalam menangani data yang tidak seimbang, salah satunya dengan metode resampling. Metode resampling sendiri terbagi dalam dua pendekatan yaitu over-sampling dan under-sampling. Salah satu pendekatan over-sampling yang popular adalah Synthetic Minority Over-sampling Technique (SMOTE). SMOTE bekerja dengan membangkitkan sampel sintetis pada kelas minoritas. Untuk meningkatkan kinerja model, SMOTE dapat digabungkan dengan pendekatan under-sampling seperti Edited Nearest Neighbors (ENN) dan Cluster-based Undersampling Technique (CUT). Dalam kombinasinya dengan SMOTE, ENN berperan sebagai cleaning untuk menghapus data sintetis dari penerapan SMOTE yang tidak relevan dan dianggap sebagai noise. Sementara, CUT beperan dalam mengidentifikasi sub-kelas dari kelas mayoritas untuk menekan angka over-sampling sekaligus meminimalisir hilangnya informasi penting pada kelas mayoritas selama proses undersampling. Kombinasi over-sampling dan under-sampling ini saling melengkapi dan mengatasi kekurangan dari masing-masing metode. Penelitian ini memfokuskan perbandingan performa metode resampling SMOTE beserta variasinya, yaitu SMOTEENN dan SMOTE-CUT dalam mengklasifikasikan data multi-kelas yang tidak seimbang menggunakan Support Vector Machine. Dari analisis yang dilakukan, diperoleh kesimpulan bahwa SMOTE-CUT cenderung menghasilkan performa klasifikasi yang lebih baik dibandingkan dengan SMOTE ataupun SMOTE-ENN. Walaupun demikian, keseluruhan metode resampling (SMOTE, SMOTE-ENN, dan SMOTE-CUT) mampu meningkatkan kinerja dari model klasifikasi Support Vector Machine (SVM).

Support Vector Machine (SVM) is popular classfier that is known for its high accuracy value. However, Support Vector Machine (SVM) may not perform well on imbalanced datasets. There are several ways to handle imbalanced data, one of them is through resampling methods. Resampling methods itself divided into two approaches, oversampling and under-sampling. One of the popular over-sampling methods is Synthetic Minority Over-sampling Technique (SMOTE). SMOTE works by generating synthetic samples for the minority class. SMOTE can be combined with under-sampling methods such as Edited Nearest Neighbors (ENN) or Cluster-based Under-sampling Technique (CUT). In combination with SMOTE, ENN acts as a cleaning role to remove synthetic data generated from SMOTE application that is not relevant and considered as noise. Meanwhile, CUT plays a role in identifying sub-class form the majority class to reduce over-sampling while minimizing the loss of important information in the majority class during the under-sampling process. The combination of over-sampling and undersampling is needed to complement and overcome the weakness of each method. This research mainly focuses on comparing the performance of the resampling method SMOTE and its variations, SMOTE-ENN and SMOTE-CUT, in classifying multi-class imbalanced data using Support Vector Machine. From the analysis conducted, it was concluded that data with resampling SMOTE-CUT shows better classification performance compare to data with resampling SMOTE or SMOTE-ENN. However, any resampling method (SMOTE, SMOTE-ENN, and SMOTE-CUT) can handle imbalanced data and improve Support Vector Machine performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara).
Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds.
The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Chastine Fatichah
"Deteksi obyek manusia umumnya digunakan pada aplikasi sistem pengawasan untuk keamanan tempat-tempat vital misalnya bandara, bursa efek, bank, dan tempat lainnya. Oleh karena itu, diperlukan suatu metode deteksi obyek manusia yang mempunyai keakuratan tinggi dan waktu deteksi yang cepat. Metode deteksi obyek yang dikenal mempunyai keakuratan tinggi adalah Support Vector Machine (SVM), tetapi metode ini memerlukan waktu lama pada proses deteksi. Metode deteksi obyek yang dikenal mempunyai waktu deteksi yang cepat adalah Boosting namun tingkat akurasi pada metode ini lebih rendah dibandingkan dengan metode SVM. Penelitian ini mengusulkan metode Boosting dengan fungsi pengklasifikasi dasar kernel untuk deteksi obyek manusia atau disebut dengan metode K Boosting. Metode Boosting merupakan suatu metode yang handal dalam mengkombinasikan beberapa pengklasifikasi dasar untuk menciptakan pengklasifikasi kuat yang mempunyai tingkat akurasi lebih tinggi. Metode ini memberikan hasil yang lebih akurat, jika fungsi yang digunakan pada pengklasifikasi dasar mempunyai tingkat akurasi tinggi. Oleh karena itu, penelitian ini mengusulkan kernel sebagai fungsi pengklasifikasi dasarnya. Fungsi kernel digunakan pada metode SVM yang telah terbukti mempunyai keakuratan tinggi. Pada proses deteksi, metode K Boosting menggunakan konsep seperti pada metode Boosting yaitu mengkombinasikan hasil beberapa pengklasifikasi dasar sehingga metode ini mempunyai waktu deteksti yang cepat. Penelitian ini juga mengusulkan enam skenario ujicoba untuk mengukur kinerja metode K Boosting dan dibandingkan dengan metode SVM dan Boosting. Data pelatihan yang digunakan terdiri dari citra yang mempunyai obyek manusia dengan variasi tipe pakaian yang dikenakan dan citra dengan latar belakang natural, gedung, jalan raya, atau taman yang tidak mempunyai obyek manusia. Hasil ujicoba menunjukkan tingkat akurasi deteksi metode K Boosting dan SVM rata-rata lebih dari 80%, sedangkan metode Boosting rata-rata lebih dari 45%. Hasil ujicoba juga menunjukkan waktu deteksi metode K Boosting dan metode Boosting pada variasi data pengujian sekitar 0,015 detik. Sedangkan waktu deteksi metode SVM pada data pengujian sekitar 7 detik. Penelitian ini dapat digunakan sebagai dasar untuk dikembangkan menjadi suatu aplikasi nyata seperti aplikasi sistem pengawasan."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dilla Fadlillah Salma
"Kepemilikan dan penggunaan kendaraan mobil memiliki berbagai risiko negatif, seperti terjadinya kecelakaan. Untuk mengurangi beban risiko tersebut, perusahaan menjual produk asuransi mobil. Asuransi mobil merupakan salah satu produk perusahaan asuransi kendaraan yang bertujuan sebagai upaya perlindungan pemilik kendaraan mobil dari kerugian finansial yang terjadi pada kendaraan yang diasuransikannya. Untuk menawarkan produk asuransi, beberapa perusahaan menggunakan teknik penjualan dengan cara cold calling. Teknik penjualan tersebut akan lebih efektif menjual produk asuransi jika terlebih dahulu data nasabah calon pembeli asuransi diprediksi atau diklasifikasi ke dalam kelas membeli atau tidak membeli.
Pada skripsi ini, dilakukan klasfikasi dengan metode Support Vector Machine (SVM), Random Forest (RF),dan Logistic Regression (LR) dengan implementasi metode seleksi fitur One Dimensional Naïve Bayes Classifier (1-DBC). Data yang diperoleh berjumlah 4000 data dengan total 18 fitur. Diperoleh hasil bahwa akurasi SVM lebih tinggi dibandingkan dengan kedua metode lainnya. Selain itu, mplementasi metode seleksi fitur telah berhasil meningkatkan akurasi dari metode Random Forest, dan Logistic Regression. Dengan implementasi 1-DBC, ketiga metode klasifikasi memperoleh hasil akurasi tertinggi pada penggunaan 15 fitur.

Ownership and use of car vehicles have a variety of negative risks, such as accidents. To reduce the risk burden, the company sells car insurance products. Car insurance is one of the products of a vehicle insurance company that aims to protect vehicle owners from financial losses that occur on their insured vehicles. To offer insurance products, some companies use sales techniques using cold calling. The sales technique will be more effective in selling insurance products if first the prospective customer buyer data is predicted or classified into the class of buying or not buying.
In this paper, classification is done using the method of Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR) by implementing the One Dimensional NaA-ve Bayes Classifier (1-DBC) feature selection method. The data obtained amounted to 4000 data with a total of 18 features. The results were obtained that the accuracy of SVM was higher compared to the other two methods. In addition, the implementation of the feature selection method has succeeded in increasing the accuracy of the Random Forest, and Logistic Regression. With the implementation of 1-DBC, the three classification methods obtained the highest accuracy results with the use of 15 features.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosyda Hanavania
"Curse of dimensionality atau kutukan dimensi merupakan permasalahan nyata terkait dengan dimensi tinggi pada data. Fenomena ini menyebabkan model bekerja secara tidak optimal, terjadinya overfitting, dan sulitnya proses komputasi data. Kasus data dengan dimensi tinggi ini banyak ditemukan pada data IoT (Internet of Things). Kompleksitas pada ekosistem IoT tersebut membuat sistem mengalami kesulitan dalam penangkapan properti serangan dan memaksa sistem untuk memperkuat keamanannya. Salah satu upaya yang paling banyak digunakan untuk pertahanan sistem IoT adalah dengan Intrusion Detection System (IDS). Penelitian ini menggunakan dataset Aegean WIFI Intrusion Dataset (AWID2) yang berisikan lalu lintas trafik internet pada jaringan WIFI. Data AWID2 berisi 2 juta records dan dikelompokkan ke dalam empat kelas yaitu normal, impersonation, injection, dan flooding. Untuk menyelesaikan permasalahan dimensi tinggi pada data ini, dilakukan teknik reduksi dimensi yaitu seleksi fitur jenis filter. Metode filter yang digunakan yaitu, Correlation based Feature Selection (CFS), Information Gain (IG), dan ANOVA F-test. Setiap metode seleksi fitur tersebut dilanjutkan dengan metode multiclass Support Vector Machines (SVM) one vs rest dan one vs one. Hasil dari penelitian ini menunjukkan bahwa metode fitur seleksi ANOVA F-test dengan metode klasifikasi SVM kernel polynomial dengan menggunakan 7 fitur terbaik merupakan metode paling baik untuk digunakan pada klasifikasi WIFI attacks data AWID2. Hal tersebut ditunjukkan melalui nilai accuracy=0,9766, F1score=0,8385, precision=0,9854, dan recall=0,7708.

Curse of dimensionality is a problem related to high dimensions of data. This phenomenon can cause the non-optimal performance model, overfitting, and the data will be computationally expensive. This high dimensional data is mostly found in IoT (Internet of Things) data. The complexity of the IoT ecosystem makes it difficult for the system to capture potential attacks and forces the system to strengthen its security. One of the most widely used efforts to defend IoT systems is the Intrusion Detection System (IDS). This research will use the Aegean WIFI Intrusion Dataset (AWID2) which contains internet traffic on WIFI networks. AWID2 dataset contains of 2 million records and are grouped into four classes, namely normal, impersonation, injection, and flooding. To overcome the problem of high dimensions, this study used dimensional reduction techniques, namely feature selection filter method. The filter methods used are Correlation based Feature Selection (CFS) Information Gain (IG), and ANOVA F-test. Each of these feature selection methods is then followed by building a classification model using multiclass Support Vector Machines (SVM) one vs one and one vs rest method. This study tells that combination of feature selection ANOVA F-test method and SVM with polynomial kernel is the best method to use on WIFI attacks classification. It is indicated by the score of performance metrics namely, accuracy=0,9766, F1score=0,8385, precision=0,9854, and recall=0,7708. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rafiqatul Khairi
"Kanker pankreas adalah penyakit di mana sel-sel tumor ganas (kanker) berkembang di jaringan pankreas, yaitu organ di belakang perut bagian bawah dan di depan tulang belakang, yang membantu tubuh menggunakan dan menyimpan energi dari makanan dengan memproduksi hormon untuk mengontrol kadar gula darah dan enzim pencernaan untuk memecah makanan. Biasanya, kanker pankreas jarang terdeteksi pada tahap awal. Salah satu tanda seseorang mengalami kanker pankreas adalah diabetes, terutama jika itu bertepatan dengan penurunan berat badan yang cepat, penyakit kuning, atau rasa sakit di perut bagian atas yang menyebar ke punggung. Di antara berbagai jenis kanker, kanker pankreas memiliki tingkat kelangsungan hidup terendah, yaitu hanya sekitar 3-6% dari mereka yang didiagnosis yang dapat bertahan hidup selama lima tahun. Jika pasien didiagnosis tepat waktu untuk perawatan, peluang mereka untuk bertahan hidup akan meningkat. Terdapat penanda tumor yang biasa digunakan untuk mengikuti perkembangan kanker pankreas, yaitu CA 19-9 yang dapat diukur dalam darah. Orang sehat dapat memiliki sejumlah kecil CA 19-9 dalam darah mereka. Kadar CA 19-9 yang tinggi seringkali merupakan tanda kanker pankreas. Tetapi kadang-kadang, kadar tinggi dapat menunjukkan jenis kanker lain atau gangguan non-kanker tertentu, seperti sirosis dan batu empedu. Karena kadar CA 19-9 yang tinggi tidak spesifik untuk kanker pankreas, CA 19-9 tidak dapat digunakan dengan sendirinya untuk skrining atau diagnosis. Ini dapat membantu memantau perkembangan kanker dan efektivitas pengobatan kanker. Dalam studi ini, metode Kernel-based Support Vector Machine digunakan untuk mengklasifikasikan hasil tes darah CA19-9 menjadi dua bagian; data pasien yang didiagnosis dengan kanker pankreas atau pasien normal (tidak terdiagnosis kanker pankreas). Metode ini memperoleh akurasi sekitar 95%.

Pancreatic cancer is a disease in which malignant (cancerous) tumor cells develop in pancreatic tissue; organ behind the lower abdomen and in front of the spine, which helps the body use and store energy from food by producing hormones to control blood sugar levels and digestive enzymes to break down food. Usually, pancreatic cancer is rarely detected at an early stage. One sign of a person with pancreatic cancer is diabetes, especially if it coincides with rapid weight loss, jaundice, or pain in the upper abdomen that spreads to the back. Among various types of cancer, pancreatic cancer has the lowest survival rate of only about 3-6% of those diagnosed who can survive for five years. If patients are diagnosed on time for treatment, their chances of survival will increase. There is a tumor marker commonly used to follow the course of pancreatic cancer, namely CA 19-9 which can be measured in the blood. Healthy people can have small amounts of CA 19-9 in their blood. High levels of CA 19-9 are often a sign of pancreatic cancer. But sometimes, high levels can indicate other types of cancer or certain noncancerous disorders, including cirrhosis and gallstones. Because a high level of CA 19-9 is not specific for pancreatic cancer, CA 19-9 cannot be used by itself for screening or diagnosis. It can help monitor the progress of your cancer and the effectiveness of cancer treatment. In this study, the Kernel-based Support Vector Machine method is used to classify CA19-9 blood test results into two sections including data on patients diagnosed with pancreatic cancer or normal patients. This method will get an accuracy of around 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Soya Febeauty Yama Otantia Pradini
"Metode klasifikasi telah banyak digunakan dalam berbagai aspek, termasuk dalam bidang bioinformatika. Salah satu penggunaan metode klasifikasi ini adalah untuk menentukan tingkatan fase dari sebuah penyakit. Dalam penelitian ini akan dilakukan pengklasifikasian parasit plasmodium falciparum. Parasit tersebut merupakan parasit penyebab penyakit malaria. Penyakit ini dapat ditularkan oleh gigitan nyamuk Anopheles betina yang mengandung plasmodium di dalamnya. Hasil penelitian ini dapat digunakan untuk menentukan fase parasit plasmodium yang berada di sel darah orang yang terjangkit malaria. Tujuan penelitian ini adalah untuk mengetahui persentase keberhasilan dan menganalisis metode Multiclass Support Vector Machines untuk memprediksi tingkatan parasit tersebut. Data yang digunakan adalah data citra sel darah merah yang telah terjangkit tiga jenis tingkatan parasit plasmodium falciparum. Dalam prosesnya, penelitian ini akan menggunakan Canopy sebagai IDE bahasa pemrograman python. Dari 112 percobaan, didapatkan tingkat akurasi tertinggi sebesar 87,5% untuk metode Multclass SVM one vs rest dan one vs one menggunakan 4-fold cross validation dengan parameter linear kernel dan C=1.

Classification methods has been frequently used in various aspects, including bioinformatics. One of its purpose of this classification is to  determine phase level of a disease. This research will classify the phase of plasmodium falciparum parasite which causes malaria.The disease is spread by an infected female Anopheles mosquito which contains Plasmodium. The result of this research could be use to determine Plasmodium parasite phase in infected peoples red blood cells. The purpose of this research is to discover the success rate of Multiclass Support Vector Machines method and analyze it in order to predict the parasite phase levels. The data of this study is image data of red blood cells which was infected by three kinds of Plasmodium falciparum parasite levels. In the process, this study will be using Canopy as Integration Development Environtments of phyton programming language.  From 112 trials, the highest number of accuracy is 87.5% for Multiclass Support Vector Machines one vs rest and one vs all methods which used the 4-fold cross validation with C=1 as parameter for linear kernel."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T52713
UI - Tesis Membership  Universitas Indonesia Library
cover
Alya Nadifa Putri
"Exchange Traded Funds (ETF) adalah salah satu produk investasi pasar modal yang berupa reksa dana dan diperjualbelikan secara real time layaknya saham. ETF dapat menjadi pilihan investasi yang cocok untuk investor pemula karena lebih terdiversifikasi daripada saham. Meskipun demikian, investor tetap harus menyesuaikan profil risiko masing-masing karena semua produk investasi pasti memiliki risiko yang harus dihadapi. Oleh karena itu, sebelum membeli produk investasi perlu dilakukan analisis terlebih dahulu. Dalam penelitian ini dilakukan analisis menggunakan indikator teknikal untuk mengklasifikasi ETF menggunakan metode Support Vector Machines (SVM). Data ETF yang digunakan adalah data historis mingguan 25 ETF yang terdaftar di Bursa Efek Indonesia sejak 9 Maret 2020 hingga 6 Maret 2022. Indikator teknikal yang digunakan adalah moving average, support and resistance, Bollinger bands, dan directional indicator. Hasil dari perhitungan analisis indikator teknikal tersebut selanjutnya digunakan sebagai data input atau fitur dalam proses klasifikasi SVM. Proses klasifikasi bertujuan untuk mengklasifikasikan ETF yang berpotensi menghasilkan return ≥ 1 (return positif) atau < 1 (return negatif) di minggu selanjutnya dengan model SVM terbaik. Model SVM terbaik ditentukan berdasarkan nilai akurasi tertinggi. Pada penelitian ini, model SVM terbaik menghasilkan akurasi sebesar 77% dengan kernel polinomial dan proporsi data training sebanyak 80%. Terdapat 14 ETF yang diprediksi menghasilkan kelas positif oleh model SVM terbaik dan selanjutnya dilakukan pembentukan portofolio menggunakan metode Risk Parity (RP), Minimum Variance (MinV), dan Equal-Weight (EW). Ketiga metode pembentukan portofolio tersebut dibandingkan performanya untuk memilih portofolio terbaik berdasarkan nilai rasio Sharpe tertinggi. Hasil dari penelitian ini, metode MinV menghasilkan rasio Sharpe tertinggi dibandingkan dua metode lainnya.

Exchange-Traded Funds (ETF) is one of the Capital Market investment products in the form of mutual funds and being traded real-time like stocks. ETFs can be suitable for new investors because they are more diversified than stocks. Nonetheless, the risk profile of each investor must be suited since all investment products have risks that must be faced. Therefore, an analysis must be done before buying the investment products. In this study, an analysis was conducted using 4 technical indicators, such as, moving averages, support and resistance, Bollinger bands, and directional indicators. They were used to classify ETFs using the Support Vector Machines (SVM) method. The data used in this study consisted of weekly historical data of 25 ETFs listed on Indonesia Stock Exchange from March 9, 2020, to March 6, 2022. The result of the technical analysis calculation then be used as features in the SVM classification process. The classification process aims to classify ETFs that have the potential to generate returns of ≥ 1 (positive return) or < 1 (negative return) in the following week using the best SVM model. The best SVM model was determined based on the highest accuracy value. An accuracy of 77% with a polynomial kernel was achieved from a 80% proportion of training data. The 14 ETFs were predicted to gain a positive return using SVM for then a portfolio formed using the Risk Parity (RP), Minimum Variance (MinV) and Equal-Weight (EW) methods. The performances of those portfolio were being compared to choose the best portfolio based on the highest Sharpe Ratio value. The highest Sharpe Ratio portfolio were obtained by SVM-MinV method in this study."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Ichsan
"Saat ini, Indonesia menempati peringkat kedua sebagai produsen karet terbesar di dunia, menyumbang sekitar 29,8% dari kebutuhan global. Namun, produksi karet di Indonesia mengalami penurunan dari tahun ke tahun, salah satu faktornya adalah serangan penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. Pada tahun 2021, luas perkebunan karet yang terkena penyakit mencapai 30.328,84 hektar dan tanaman yang terinfeksi oleh penyakit tersebut mengalami penurunan produksi lateks hingga 30%. Penyakit ini menyerang daun dengan gejala pembentukan bercak berukuran 0,5-2 cm yang menyebabkan nekrosis dan gugur. Penklasifikasian tingkat keparahan penyakit Pestalotiopsis sp. secara morfologi melalui pengamatan jumlah bintik dan warna pada daun karet membutuhkan waktu dan tenaga besar, terutama karena luasnya perkebunan yang terinfeksi. Oleh karena itu, penggunaan metode machine learning diusulkan untuk mengurangi waktu dan usaha yang dibutuhkan dalam menklasifikasi penyakit gugur daun akibat jamur Pestalotiopsis sp. Pada penelitian ini, model machine learning digunakan untuk mengklasifikasi 5 kelas tingkat keparahan penyakit Pestalotiopsis sp. yaitu tingkat 0 (sehat), tingkat 1 (terinfeksi ringan), tingkat 2 (terinfeksi sedang), tingkat 3 (terinfeksi parah), dan tingkat 4 (terinfeksi sangat parah). Dataset yang digunakan adalah citra daun tanaman karet yang diperoleh dari Pusat Penelitian Karet Sembawa. Model machine learning menerima input data citra daun tanaman karet, lalu citra disegmentasi menggunakan k-mean clustering. Data yang telah tersegmentasi kemudian diekstraksi dengan fitur warna hue, saturation, dan value (HSV) dan fitur jumlah bintik dengan metode contour detection menggunakan Suzuki’s contour algorithm. Selanjutnya, fitur-fitur ini diklasifikasikan menggunakan Support Vector Machine (SVM) tipe one vs rest multiclass classification dan Grid Search Cross Validation dengan 5 fold untuk menemukan hyperparameter terbaik untuk SVM. Hyperparameter terbaik adalah kernel radial basis function dengan C=100. Berdasarkan hasil percobaan sebanyak 5 kali, diperoleh kesimpulan bahwa model dengan akurasi tertinggi adalah model yang menggunakan fitur warna dan jumlah bintik dengan nilai rata-rata akurasi sebesar 81,86% dan nilai rata-rata Cohen’s kappa statistic sebesar 0,77 yang artinya model mampu mengklasifikasi data citra daun tanaman karet dengan cukup baik.

Currently, Indonesia ranks as the second largest rubber producer in the world, contributing about 29.8% of global demand. However, rubber production in Indonesia has decreased from year to year, one of the factors is the attack of leaf fall disease caused by the fungus Pestalotiopsi sp. In 2021, the area of rubber plantations affected by the disease reached 30,328.84 hectares with infected plants have a 30% decrease in latex production. The disease attacks the leaves with symptoms of spot formation measuring 0.5-2 cm which causes necrosis and fall. Detecting the severity of Pestalotiopsis sp. morphologically through the observation of the number of spots and colors on rubber leaves requires a lot of time and energy, especially due to the large area of infected plantations. Therefore, the use of machine learning methods is proposed to reduce the time and effort required in classifying leaf fall disease caused by the fungus Pestalotiopsis sp. In this study, a machine learning model is used to classify 5 classes of Pestalotiopsis sp. disease severity, namely level 0 (healthy), level 1 (mild infected), level 2 (moderate infected), level 3 (severe infected), and level 4 (very severe infected).  The dataset used is an image of rubber plant leaves obtained from the Sembawa Rubber Research Center. The machine learning model received input data of rubber plant leaf images, then the image is segmented using k-mean clustering. The segmented data will then be extracted with hue, saturation, and value (HSV) color features and the number of spots feature with the contour detection method using Suzuki’s contour algorithm.  In this study, the performance evaluation used is accuracy and Cohen's kappa statistic. Furthermore, these features are classified using Support Vector Machine (SVM) type one vs rest multiclass classification and Grid Search Cross Validation with 5 folds to find the best hyperparameter for SVM. The best hyperparameter is the radial basis function kernel with C=100. Based on the results of 5 experiments, it is concluded that the model with the highest accuracy is a model that uses color and the number of spots features with an average accuracy value of 81.86% and an average Cohen's kappa statistic value of 0.77, which means that the model is able to classify rubber plant leaf image data quite well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>