Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 138680 dokumen yang sesuai dengan query
cover
Muhammad Kozin
"In order to reduce the dependency on imported products of railway wheels, efforts have been made to produce it in the country. The manufacture of railway wheels is done through a casting process of raw materials originated from used railway wheels. The results of the casting process requires heat treatment processes to improve the mechanical properties in accordance with the standards. This study has begun with the manufacture of test specimens for chemical composition, tensile strength, hardness and microstructure. It is followed by heat treatment processes namely normalizing, flame hardening and tempering. The normalizing process, at a temperature of 850°C with a holding time of 2 hours followed by cooling in the air, has resulted in tensile strength of 906.1 MPa and hardness of 24 HRC. The flame hardening process at a temperature of 800°C with a holding time of 60 seconds followed by water quenching has resulted in hardness of 57.33 HRC. The tempering process at a temperature of 500°C with a holding time of one hour followed by cooling in the air, has resulted in a final surface hardness of 34 to 37 HRC that complies with the railway standard with effective depth of hardening of 10 mm.

Dalam rangka untuk mengurangi ketergantungan terhadap produk impor roda kereta api, maka telah dilakukan usaha untuk membuatnya di dalam negeri. Usaha pembuatan roda kereta api dilakukan melalui proses pengecoran dengan bahan baku dari roda kereta api bekas. Hasil dari proses pengecoran tersebut memerlukan proses perlakuan panas untuk mendapatkan sifat mekanik yang sesuai dengan standar. Penelitian ini diawali dengan pembuatan spesimen untuk pengujian komposisi kimia, kekuatan tarik, kekerasan dan struktur mikro. Selanjutnya dilakukan proses perlakuan panas berupa normalizing, flame hardening dan tempering. Proses normalizing dilakukan pada temperatur 850°C, waktu penahanan selama 2 (dua) jam dan didinginkan di udara menghasilkan kekuatan tarik sebesar 906.1 MPa dan kekerasan 24 HRC. Proses flame hardening pada temperatur 800°C, waktu penahanan 60 detik dengan media pendingin air menghasilkan kekerasan permukaan sebesar 58.35 HRC. Proses tempering pada temperatur 500°C, waktu penahanan selama 1 (satu) jam menghasilkan kekerasan antara 34-37 HRC dengan kedalaman pengerasan efektif sebesar 10 mm."
Depok: Universitas Indonesia, 2012
T31280
UI - Tesis Open  Universitas Indonesia Library
cover
Budi Wahyu Utomo
"Piston pada motor adalah komponen dari mesin pembakaran dalam yang berfungsi sebagai penekan udara masuk dan penerima hentakan pembakaran pada ruang bakar cylinder liner. Material penyusun piston tersebut adalah aluminium AC8H yang sifatnya ringan, kuat, dan tahan aus. Dalam proses pengecoran paduan aluminium, penambahan modifier dan perlakuan panas merupakan proses yang dapat mempengaruhi sifat mekanis coran paduan. Sifat mekanis yang dimaksud adalah kekerasan, kekuatan tarik, keuletan serta keausan.
Penelitian ini bertujuan untuk mengetahui kemungkinan penggantian proses perlakuan panas T6 (artificial ageing) yang merupakan standar dari proses pembuatan piston dengan proses penambahan modifier dan kemungkinan mempersingkat proses perlakuan T6 (artificial ageing) dengan proses T4 (natural ageing). Penelitian dilakukan dengan melebur ingot AC8H yang kemudian ditambahkan modifier stronsium dalam ladle. Jumlah kandungan stronsium yang dihasilkan setelah proses penambahan modifier adalah sebesar 0,00072% Sr, 0,0068% Sr, 0,0133% Sr dan 0,031% Sr. Hal yang sama dilakukan dengan menambahkan modifier phospor, dimana kandungan phospor yang dihasilkan menjadi 0,0036% P,0,0038% P, 0,0041% P dan 0,0046% P. Pada perlakuan panas setelah proses pengecoran, hasil ascast dilakukan proses T6 (artificial ageing) dan T4 (natural ageing) dengan pengamatan 0 jam, 24 jam, 48 jam , 72 jam, 96 jam dan 120 jam. Masing masing sampel hasil percobaan diatas dilakukan pengujian karakterisasi struktur mikro dan sifat mekanis.
Hasil pengujian menunjukkan bahwa penambahan 0,031 % Sr dan Proses perlakuan panas T4 (natural ageing) 96 jam dan 120 jam setelah quenching memiliki sifat mekanis yang telah masuk range standar kualifikasi komponen piston. Dalam implementasi hasil ini masih harus dilanjutkan dengan uji coba melalui proses engine dyno test.

Piston is motor components of the engine which works as a press incoming air and recipient burning fuel in the cylinder liner space. Material of aluminum piston is AC8H that are lightweight, strong, and wear resist. In the process of casting aluminum alloy, adding modifiers and heat treatment is a process that can affect the mechanical properties as cast alloy. Mechanical properties of the object is referred to hardness, tensile strength, elongation and wear resistance.
This research aims to find out the possibility of replacing the T6 heat treatment process (artificial ageing), as standard process of making a piston with the addition of modifiers and possibility to shorten the treatment T6 (artificial ageing) with the T4 (natural ageing). Research conducted by melt ingot AC8H then added Strontium in ladle. Strontium added that the amount until contain 0.00072% Sr, 0.0068% Sr, 0.0133% Sr, and 0.031% Sr. The same is done by adding Phospor until contain 0,0036% P, 0.0038% P, 0.0041% P and 0.0046% P. In the heat treatment process sample after casting will be process with T6 and T4 observation 0 hour, 24 hours, 48 hours, 72 hours, 96 hours and 120 hours. Each sample of an experiment conducted over the microstructure characterization and mechanical properties test.
The test results indicate that the addition of 0.031% Sr. and heat treatment process T4 (natural ageing) 96 hours and 120 hours after quench as mechanical properties have already entered the qualifying standard range of part-piston. Implementation of the experiment must be continued to engine dyno test process before mass production."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T25267
UI - Tesis Open  Universitas Indonesia Library
cover
Alif Fadhilah Dinandaka
"Program Tol Laut membuat produksi kapal di Indonesia semakin meningkat. Galangan yang memproduksi kapal di Indonesia seringkali menggunakan metode flame straightening untuk meluruskan kembali plat yang bengkok akibat sebaran panas yang tidak merata, maupun karena kurangnya perhatian dalam penaganan plat ataupun blok. Galangan di Indonesia secara umum menggunakan plat baja karbon rendah untuk membangun kapal. Perlakuan flame straightening yang dilakukan di galangan seringkali tidak memiliki standar yang jelas. Karenanya harus diketahui pengaruh yang terjadi pada bagian yang diberikan flame straightening dari perspektif struktur mikro dan sifat mekanik. Mereplikasi kegiatan flame straightening yang terjadi di galangan dengan variabel waktu pemanasan dan temperatur maksimum, penelitian ini memberikan hasil berupa gambaran pengaruh flame straightening tersebut.
Pengujian hasil pemanasan dilakukan dengan observasi visual, uji tarik, uji kekerasan, dan observasi struktur mikro dengan SEM-EDX. Terbukti bahwa perlakuan panas flame straightening memberikan dampak pada plat spesimen. Observasi visual memberi keluaran bahwa terdapat corak warna yang terjadi setelah dilakukan perlakuan panas, corak tersebut terjadi secara acak. Begitu pula dengan uji kekerasan yang memberikan hasil acak namun terbukti terdapat penambahan nilai kekerasan dibanding material yang belum diberi perlakuan panas. Uji tarik memberi hasil bahwa semakin lama pemanasan, maka kekuatan tarik akan semakin baik, sampai dengan variabel waktu yang ditentukan. Pengujian SEM-EDX memberikan hasil yang sesuai dengan teori struktur mikro dan diagram fasa, yang mengatakan dengan variabel yang telah ditentukan seharusnya tidak ada perubahan struktur mikro yang terjadi.

Tol Laut Program is increasing the shipbuilding activities in Indonesia. Shipbuilding shipyards in Indonesia oftenly use flame straightening in order to realign deformed plates due to uneven heat spreading, as well as the lack of concern when handling plates or ship blocks. Indonesian shipyards commonly use low carbon steel for shipbuilding. Flame straightening that is done in shipyards, oftenly have no clear standards. That is why it is important to know the influence happened in the flame straightened part of the plates form the microstructural and mechanical properties perspectives. Replicating the flame straightening done in shipyards with heating time and maximum temperature as variables, this research gives an output of  the depiction of the influence of flame straightening.
The examination of the heating results is done by visual observation, tensile test, hardness tes, and microstructural observation using SEM-EDX. It is proved that flame straightening affects the specimens. Visual observation shows a colored pattern that occurs after the heat treatment, and the pattern occurs randomly. Hardness test also gives a random output but proved the addition of hardness number compared to untreated materials. Tensile test gives the output of the increase of tensile strength correspondently with the length of heating time, with the specified time variable. SEM-EDX gives the corresponding output with the microstructure and phase diagram theory, that with the specified variables, there should not be any change."
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Umar Al Faruq
"Teknologi material yang semakin maju membuat banyak terobosan baru, salah satunya adalah penggunaan magnesium paduan. Magnesium paduan banyak diaplikasikan untuk penggunaan sebagai biomaterial ataupun sebagai EV (Electronic Vehicle). Magnesium memiliki banyak keunggulan dan sifat mekanik yang menguntungkan, magnesium bersifat ringan sehingga bisa meningkatkan efisiensi dalam penggunaan bahan bakar pada EV, magnesium juga bersifat biodegradable dan bersifat non toxic bagi tubuh manusia, memiliki nilai densitas dan juga modulus elastisitas yang paling mirip dengan tulang manusia, bahkan hadir dalam jumlah banyak dalam tubuh manusia sehingga tak heran jika banyak diaplikasikan dalam biomaterial baik sebagai implant ataupun pengganti tulang. Namun sayangnya perubahan sifat mekanik dan struktur mikro akibat perlakuan panas belum dilakukan penelitian secara sistematis.
Penelitian ini dilakukan pada lembaran paduan magnesium AZ31B yang diberi perlakuan panas dengan waktu tahan selama 10, 30, 60, dan 120 menit. Didapatkan bahwa struktur mikro paduan magnesium AZ31B yang tidak diberi perlakuan panas memiliki butir yang cukup besar dan tidak homogen, hal ini membuat sifat mekaniknya kurang baik. Perlakuan panas membuat struktur mikronya menjadi lebih homogen dan besar butirnya mengecil, butir yang semakin kecil ini membuat sifat mekaniknya semakin baik, namun semakin lama waktu tahan yang diberikan membuat butir semakin besar dan menurunkan sifat mekanik yang dimiliki, dibuktikan dengan persamaan Hall-petch yang mendukung hasil ini.

Advancements in material technology have led to numerous breakthroughs, one of which is the use of magnesium alloys. Magnesium alloys are widely applied in biomaterials and electric vehicles (EV). Magnesium possesses many advantageous mechanical properties, being lightweight which enhances fuel efficiency in EVs. Additionally, magnesium is biodegradable and non-toxic to the human body, with a density and elastic modulus closely matching that of human bone. It is also abundant in the human body, making it ideal for applications in biomaterials, such as implants or bone substitutes. However, systematic research on the changes in mechanical properties and microstructure due to heat treatment has not been thoroughly conducted.
This study investigates magnesium AZ31B alloy sheets subjected to heat treatment with holding times of 10, 30, 60, and 120 minutes. It was found that the microstructure of the untreated magnesium AZ31B alloy exhibited relatively large and inhomogeneous grains, resulting in suboptimal mechanical properties. Heat treatment homogenized the microstructure and reduced grain size, leading to improved mechanical properties. However, prolonged holding times caused grain growth, reducing mechanical properties, which is supported by the Hall-Petch relationship.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachmadiosi Muhammad
"Terjadi fenomena retak tertunda (delayed crack) pada produk bucket tooth PT. X yang merupakan salah satu komponen pada excavator. Proses pembuatan produk bucket tooth melalui beberapa tahapan proses perlakuan panas mulai dari tahap pengecoran, normalisasi, lalu dilanjutkan dengan tempering. Kemudian austenisasi dan quenching dengan medium polialkilen glikol (PAG) dan terakhir adalah proses double tempering. Hasil pengamatan mikrostruktur menunjukkan terjadinya fenomena dekarburisasi pada bagian permukaan material baja HSLA yang terlihat dari semua sampel produk mulai dari hasil pengecoran hingga double tempering. Kemudian terlihat pula adanya struktur dendritik dan/atau zona transformasi yang tidak hilang dari tahap awal perlakuan panas hingga sampel produk hasil double tempering walaupun telah melalui poses perlakuan panas normalisasi. Ini mengindikasikan proses normalisasi yang dilakukan belum optimal untuk menyeragamkan mikrostruktur produk bucket tooth. Selain itu juga teridentifikasi adanya austenit sisa sebesar 2,8% pada mikrostruktur sampel produk hasil double tempering yang merupakan tahap akhir proses perlakuan panas pada pembuatan produk bucket tooth. Hal ini berisiko untuk memicu terjadinya delayed crack pada produk bucket tooth. Temuan tersebut juga didukung oleh hasil pengujian kekerasan microvickers yang menunjukkan nilai kekerasan sebesar 296 VHN pada area terang pengamatan mikrostruktur produk hasil double tempering yang berada dalam rentang nilai kekerasan austenit.

Delayed cracking phenomenon occurs in the bucket tooth products of PT. X, which are one component of excavators. The bucket tooth productss making process goes through several stages of the heat treatment process starting from the casting, normalization, then proceed with tempering process. Then austenisation and quenching with polyalkylene glycol (PAG) medium and finally the double tempering process. Microstructure observation results show the phenomenon of decarburization on the surface of HSLA steel material which is seen from all product samples ranging from casting to double tempering. Then it also shows the dendritic structure and/or transformation zone that does not disappear from the initial stage of heat treatment to the sample of the double tempering product even though it has been through the normalized heat treatment process. This indicates that the normalization process is not optimal to uniform the bucket tooth product microstructure. In addition, 2,8% of the retained austenite was identified in the microstructure of the double tempering product sample which is the final stage of the heat treatment process in the production of bucket tooth products. This is a risk to trigger delayed cracks in bucket tooth products. This finding was also supported by the results of microvickers hardness testing which showed a hardness value of 296 VHN in the bright area of ​​of microstructure observation on double tempering product where in the range of the austenite hardness value."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Edward HI
"Piston merupakan salah satu sistem penggerak kendaraan bermotor yang terbuat dari paduan aluminium hipereutektik. Dibutuhkan material yang memiliki ekspansi termal yang rendah, karena tempratur dalam ruang pembakaran kendaraan bermotor berada sekitar 310_C bisa membuat aluminium mengalami perubahan dimensi. Hal itu sangat tidak diinginkan, maka itu diperlukan penambahan unsur silikon berlebih sehingga paduan aluminium menurun ekspansi termalnya. Tetapi jika komposisi silikon terlalu tinggi material tersebut menjadi rapuh. Maka dari itu diperlukan penambahan unsur lain, sehingga didapatkan material yang tidak hanya keras dan memiliki ekspansi termal yang rendah tetapi juga tangguh. Penambahan unsur fosfor bisa merubah morfologi silikon primer yang tadinya berbentuk poligonal menjadi lebih halus, dampaknya sifat mekanisnya akan meningkat.
Pada penelitian ini, material paduan aluminium didesain pada kondisi hipereutektik (16%). Kemudian ditambahkan fosfor sebesar 0,0032wt%, 0,00373wt%, dan 0,0057wt%. Setelah itu sampel uji dilakukan proses perlakuan panas T4 & T6. Untuk mengetahui sifat mekanis material, dilakukan pengujian kekuatan tarik, kekerasan serta keausan. Pengujian struktur mikro dilakukan untuk mengetahui perubahan struktur mikro serta fasa - fasa yang terbentuk dalam paduan.
Hasil penelitian menunjukkan bahwa penambahan fosfor pada material paduan aluminium hipereutektik akan mengubah morfologi dan ukuran silikon primer dari yang berbentuk poligonal dan kasar menjadi berbentuk blocky dan halus. Hasil karakterisasi material menunjukkan, dengan bertambahnya kadar fosfor (0,0032wt%, 0,00373wt%, dan 0,0057wt%), maka sifat mekanik paduan aluminium hipereutektik akan mengalami peningkatan. Dengan komposisi fosfor terbesar 0,0057wt% memiliki Ultimate Tensile Stress yaitu 188,6MPa untuk sampel T4 dan 208,7 MPa untuk sampel T6. Sedangkan kekerasan dengan komposisi fosfor terbesar memiliki 63,23 HRB untuk sampel T4 dan 71 HRB untuk sampel T6. Laju aus yang menggambarkan nilai ketahanan aus juga memperlihatkan kecenderungan yang sama. Pada komposisi fosfor terbesar, memiliki laju aus terendah. Kecuali pada sampel fosfor tertinggi setelah perlakuan panas T4. Hal tersebut dikarenakan adanya porositas yang berukuran besar dipermukaan sampel uji.

Piston part in motorcycle is a component from burner machine which has made from aluminium hypereutectic alloy. So there is a lot of need material that has low in expansion thermal properties, because the temprature inside the machine is about 310_C, it is possible that aluminium will change in its dimension. Of course it must be avoided, so the aluminium needs to be alloying, using silicon (Si) in high concentrate to reduce thermal expansion. But when the amount of silicon that dissolved is much, the properties of aluminium alloy will be brittle and easily get fracture. Because of that the aluminium alloy need to be add by another element, to make a material that not only has low expansion thermal and good hardness, but also has good thoughness so the piston can not easily fracture. To improve the mechanical properties is by adding modifier, phosphorus is one of example.
In this research, aluminium alloy was designed in hypereutectic condition (16wt% Silicon). Phosphorus modifier was added to the melt with composition 0,0032wt%, 0,00373wt%, 0,0057wt%. After that, the experiment sample will go through heat treatment (T4 & T6) process. To know the mechanical properties, experiment sample were tested with tensile strength, hardness and wear machine. Microstructure testing were conducted to observe microstructure changing and phases formed in alloy.
Result of this research shows that in increasing phosphorus (0,0032wt%, 0,00373wt%, dan 0,0057wt%) in hipereutectic aluminium alloys changes the morphology and size of primary silicon from coarse polygonal to fine blocky structure. The result of characterization material shows that increasing phospor increase the mechanical properties of hypereutectic aluminium alloys. With the biggest composition phosphorus (0,0057wt%) have Ultimate Tensile Stress 188,6 MPa for T4 sample and 208,7 MPa for T6 sample. Hardness of the biggest composition phosphorus (0,0057wt%) have 63,23 HRB for T4 sample and 71 HRB for T6 sample. The Wear Rate that tells wear resistance of aluminium alloys hypereutectic also shows the same trend. With the biggest composition phosphorus (0,0057wt%) for T6 process, have the smallest Wear Rate. Except with the biggest composition phosphorus (0,0057wt%) for T4 process. It is because there is a lot of big porous in the surface of experiment sample.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51486
UI - Skripsi Open  Universitas Indonesia Library
cover
Danang Septianto Nugroho
"Pemakaian material high tensile pada komponen otomotif semakin marak seiring dengan tuntutan cost reduction dalam dunia industri. Permasalahan mengenai besarnya tonnase proses dan sifat mampu bentuk material menjadi dasar dikembangkanya proses warm forming. Penelitian ini bertujuan untuk mendapatkan parameter optimal untuk proses warm forming sehingga bisa dihasilkan produk sesuai dengan standard komponen tanpa terjadinya kerusakan. Proses warm forming material SAPH 400 dengan variasi temperatur pre-heat menunjukkan bahwa besarnya pengurangan tonnase terbesar dihasilkan pada saat material dipanaskan pada temperatur pre-heat sebesar 600?C, dimana pengurangan tonnase proses mencapai 27% (4 Ton) dari tonnase cold forming (5,5 Ton). Semakin tinggi temperatur pre-heat, maka semakin mudah butiran dalam material terdeformasi, sehingga bentukan butir dari sample setelah dikenai proses warm forming menjadi pipih. Besarnya deformasi yang diterima oleh material membuat kerapatan antar butir meningkat serta menyebabkan pergerakan dislokasi akan terhambat, hal ini akan menyebabkan sample dengan variasi pre-heat sebesar 600?C mengalami kenaikan tensile strength sebesar 13% (menjadi 408 MPa dari 361 MPa), akan tetapi mengalami penurunan elongation sebesar 25% (menjadi 39,1% dari 52,4%). Penambahan air di cooling channel dalam dies menyebabkan kenaikan cooling rate menjadi 2 kali lipat menjadi 30?C/s, sehingga sample dengan media cooling menggunakan air yang mengalami kenaikan tensile strength sebesar 13% (menjadi 408 MPa dari 361 MPa). Sample yang dilakukan proses warm forming tanpa proses anil hanya mengalami kenaikan tensile strength sebesar 5%, karena material hanya mengalami proses tempering saja tanpa mengalami perubahan fasa, sehingga hal ini menyebabkan sample tanpa proses anil tetap susah ditingkatkan tensile strength-nya walaupun sudah dilakukan deformasi plastik dan proses cooling saat proses warm forming

In the industral, high tensile materials used for automotive components generaly increase due to of the cost reduction requirement. Issues concerning the amount of tonnage process and formability of material becomes warm forming process of developing basic. This study aimed to obtain the optimal parameters for warm forming process so that products can be produced in accordance with standard components without damage. The warm forming process of SAPH 400 steel with a pre-heat temperature variation indicates that the magnitude of the largest tonnage reductions generated when the material is heated at 600?C of a pre-heat temperature, where the tonnage reduction reached 27% (4 Ton) from cold forming tonnage (5.5 Ton). The higher the preheat temperature, the more easily deformed grains in the material, so that the formation of grain samples after subjected to warm forming process becomes flat. The amount received by the material deformation made ??between grain density increases and causes the movement of dislocations is inhibited, this will cause the sample to the variation of preheat of 600?C tensile strength increased by 13% (from 361 MPa to 408 MPa), but the elongation decreased by 25% (to 39.1% from 52.4%). The addition of water in the cooling channels in the dies causes an increase in cooling rate become twice to 30 ?C/s, so the sample by using water cooling media that tensile strength increased by 13% (from 361 MPa to 408 MPa). Samples were subjected to warm forming process without annealing process is only increased tensile strength by 5%, because the material only experienced tempering process without phase transformation, so this causes the sample without annealing process remains difficult improved its tensile strength despite tight plastic deformation and cooling process when the warm forming process"
Jakarta: Fakultas Teknik Universitas Indonesia, 2014
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Taufan Krisdana Budi
"ABSTRAK
Selama lebih dari 100 tahun, steel core digunakan sebagai konduktor pada
kabel untuk memberikan ketahanan terhadap kekuatan tarik, mengurangi defleksi
ke ground (sag) serta mampu mengakomodir rentang antar tiang yang cukup
panjang. Dalam perkembangannya, seiring dengan permintaan akan kebutuhan
peningkatan effisiensi dan kapasitas, telah ditemukan beberapa type dari
konduktor dalam beberapa dekade terakhir. Type dari konduktor yang telah
dikembangkan tersebut diklaim mampu, meningkatkan electrical capacity pada
temperatur operasi yang tinggi dengan tingkat losses yang rendah. Konduktor ini
diistilahkan dengan ACCC (Aluminum Conductor Composite Core) yang memiliki
ketahanan terhadap temperatur tinggi. Pada penelitian ini sifat mekanik dari
composite core ini diukur pada range temperatur 100 - 300°C selama 120 menit
untuk tiap sampel dengan kenaikan temperatur tiap 50°C. Di atas temperatur
150°C, terjadi penurunan sifat mekanik dari composite core akibat perubahan
struktur mikro dan berkurangnya sifat adhesive pada bagian interface. Sifat
mekanik dari composite core ini menjadi bagian yang menentukan dalam
aplikasinya untuk mendapatkan konduktor yang tahan terhadap temperatur tinggi
dengan defleksi yang cukup kecil.

ABSTRACT
For over one hundred years steel core strands have been used to increase the
tensile strength and reduce thermal sag of bare overhead conductors to
accommodate longer spans between fewer or shorter structures. As demand for
electricity continues to grow, increasing the capacity and efficiency of existing or
proposed transmission lines is becoming increasingly important. A new type of
conductor that have been developed are claimed to be capable, increasing the
electrical capacity at a high operating temperature with the loss rate is low. The
conductor is designated ACCC (Aluminum Conductor Composite Core) which is
resistant to high temperature. In this research, the high temperature strength of the
conductor is assessed. The strength of the composite core measured at 100°C to
300°C within 120 minutes by 50°C increment. Above 150°C, the strength dropped
due to the phase change in the matrix which degraded the elastic properties and
decrease interface adhesion. The mechanical properties of the composite core
highlight the potential for the use of composite materials to produce overhead
conductors with low sag at high temperatures"
2016
T46513
UI - Tesis Membership  Universitas Indonesia Library
cover
Aisyah Nur Aliyah
"ABSTRAK
Berbagai macam perlakuan panas pada paduan AA7075-T651 telah diteliti mampu memberikan hasil yang bervariasi baik menguntungkan maupun merugikan. Adapun pengaruh perlakuan panas tempo singkat terhadap AA7075-T651 dalam penggunaan di lapangan masih belum banyak diteliti. Skripsi ini membahas pengaruh perlakuan panas terhadap paduan AA7075-T651 pada suhu 300 derajat C, 400 derajat C, 500 derajat C, dan 600 deraqjat C dengan durasi pemanasan tiap suhu 1 jam. Perubahan struktur mikro diamati menggunakan scanning electron microscope dan energy dispersive X-ray spectroscopy (SEM-EDS). Perubahan kekerasan diamati melalui uji kekerasan Vickers. Perubahan sifat korosi diteliti dengan metode polarisasi diantaranya open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS), dan potentiodynamic polarization; serta metode hilang berat. Perubahan struktur mikro paduan AA7075-T651 sebagai hasil perlakuan panas mengubah kekerasan dan sifat korosi paduan. Fasa Mg-rich stabil setelah dipanaskan pada suhu 300 derajat C dan 400 derajat C lalu sebagian larut dan hilang pada suhu 500 derajat C dan 600 derajat C. Fasa Fe-rich tetap stabil setelah perlakuan panas. Kekerasan paduan setelah dipanaskan menurun dari 136 HV menjadi hingga 78,5 HV dipengaruhi oleh perubahan distribusi presipitat dan kerapatan partikel dari 18,0 x 104 partikel/mm2 menjadi hingga 5,8 x 104 partikel/mm2. Meningkatnya kerapatan partikel menyebabkan peningkatan kekerasan dan konduktivitas listrik tetapi kekerasan setelah perlakuan panas menurun karena disolusi presipitat metastabil. Penurunan kerapatan partikel memicu penurunan kekerasan dan konduktivitas listrik. Konduktivitas listrik tertinggi bernilai 418 x 106 (Ω.m) -1 didapat setelah pemanasan pada suhu 500 derajat C sedangkan nilai terendah didapat setelah pemanasan suhu 600 derajat C yaitu 4,22 x 106 (Ω.m) -1. Laju korosi tertinggi diperoleh setelah paduan dipanaskan pada suhu 300 derajat C yaitu 45,12 mmpy diikuti morfologi korosi berupa korosi eksfoliasi. Laju korosi terendah diperoleh setelah pemanasan suhu 600 derajat C diikuti morfologi korosi mikrogalvanik yang menyerang matriks di sekitar batas butir.

ABSTRACT
Various types of heat treatment on AA7075-T651 alloys have been investigated capable of providing varied results both beneficial and detrimental. However, the effect of short-term heat treatment on AA7075-T651 in the field application has not been widely studied. This research discusses the effect of heat treatment in a short time on AA7075-T651 alloy at temperatures of 300 derajat C, 400 derajat C, 500 derajat C, and 600 derajat C with the duration of each 1 hour. Alteration of microstructure were observed using scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS). Changes in hardness were observed through Vickers hardness test. Corrosion properties were examined by polarization methods including open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization; and the weight loss method. The microstructure alteration as a result of heat treatment influenced the hardness and corrosion behaviour. The Mg-rich phase is stable after being heated at 300 derajat C and 400 derajat C then partially dissolved and lost at 500 derajat C and 600 derajat C. The Fe-rich phase remained stable after heat treatment. The hardness of the alloy after being heated decreased from 136 HV to 78.5 HV which was influenced by changes in the distribution of precipitate and particle density from 18.0 x 104 particles/mm2 to down to 5.8 x 104 particles/mm2. Increasing particle density causes an increase in hardness and electrical conductivity but the hardness decreased after heat treatment due to the dissolution of metastable precipitates. Decreasing particle density triggers a decrease in hardness and electrical conductivity. The highest electrical conductivity of 418 x 106 (Ω.m) -1 was obtained after heating at 500 derajat C while the lowest value was obtained after heating at a temperature of 600 derajat C which was 4.22 x 106 (Ω.m) -1. The highest corrosion rate obtained after heat treatment at 300 derajat C is 45.12 mmpy followed by the morphology of corrosion in the form of exfoliation corrosion. The lowest corrosion rate obtained after heating at 600 derajatC was followed by the morphology of microgalvanic corrosion which attacked the matrix around the grain boundaries."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Dwi Haryono
"Penelitian ini dilakukan untuk mengetahui pengaruh perlakuan austemper pada temperatur 350°C dan austenisasi yang diberikan pada temperatur 960°C terhadap struktur mikro dan sifat mekanis dari thin wall ductile iron (TWDI). TWDI yang digunakan adalah besi tuang nodular jenis FCD 450 dengan ketebalan 1 mm sebanyak 5 pelat. Proses austemper dilakukan dalam dapur fluidized bed. Hasil penelitian ini menunjukkan bahwa seluruh pelat TWDI berubah menjadi thin wall austemper ductile iron (TWADI), hal ini ditandai dengan adanya perubahan matriks dari ferrite menjadi ausferrite. Sifat kekuatan tarik dan kekerasan mengalami peningkatan yang signifikan dibandingkan dengan TWDI sebelum dilakukan proses austemper. Pelat TWADI yang diperoleh mempunyai kekuatan tarik antara 441-765 N/mm2, terjadi peningkatan sebesar 121% dari pelat TWDI yang mempunyai kekuatan antara 108-412 N/mm2. Pelat TWADI mempunyai kekerasan dengan rentang antara 364-379 HB, terjadi peningkatan sampai 103% dari pelat TWDI yang mana kekerasannya berkisar antara 171-207 HB.

This research was held to identify the effect of austempering process at 360°C and austenization given at 690°C to microstructure and mechanical properties on thin wall ductile iron (TWDI). The specimens used were 5 plates of FCD 450 with 1 mm thickness. Austempering process were held in fluidized bed. The result that all TWDI transformed to thin wall austempered ductile iron (TWADI), it shown by matrix transformation from ferrite to ausferrite. The tensile strength and hardness were increase significantly than TWDI before austempered. The UTS of TWADI were 441-765 N/mm2, increased untill 121% than TWDI which the UTS obtained were between 108-412 N/mm2. The hardness of TWADI obtained were 364-379 BHN, increasing 103% from the TWDI which were 171-207 BHN."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51641
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>