Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 180161 dokumen yang sesuai dengan query
cover
Hakim Amarullah
"Proses training model membutuhkan sumber daya komputasi yang akan terus meningkat seiring dengan bertambahnya jumlah data dan jumlah iterasi yang telah dicapai. Hal ini dapat menimbulkan masalah ketika proses training model dilakukan pada lingkungan komputasi yang berbagi sumber daya seperti pada infrastruktur komputasi berbasis klaster. Masalah yang ditimbulkan terutama terkait dengan efisiensi, konkurensi, dan tingkat utilisasi sumber daya komputasi. Persoalan efisiensi muncul ketika sumber daya komputasi telah tersedia, tetapi belum mencukupi untuk kebutuhan job pada antrian ter- atas. Akibatnya sumber daya komputasi tersebut menganggur. Penggunaan sumber daya tersebut menjadi tidak efisien karena terdapat kemungkinan sumber daya tersebut cukup untuk mengeksekusi job lain pada antrian. Selain itu, pada cluster computing juga mem- butuhkan sistem monitoring untuk mengawasi dan menganalisis penggunaan sumber daya pada klaster. Penelitian ini bertujuan untuk menemukan resource manager yang sesuai untuk digunakan pada klaster komputasi yang memiliki GPU agar dapat meningkatkan efisiensi, implementasi sistem monitoring yang dapat membantu analisis penggunaan sumber daya sekaligus monitoring proses komputasi yang sedang dijalankan pada klaster, dan melayani inference untuk model machine learning. Penelitian dilakukan dengan cara menjalankan eksperimen penggunaan Slurm dan Kubernetes. Hasil yang diperoleh adalah Slurm dapat memenuhi kebutuhan untuk job scheduling dan mengatur penggunaan GPU dan resources lainnya pada klaster dapat digunakan oleh banyak pengguna sekaligus. Sedangkan untuk sistem monitoring, sistem yang dipilih adalah Prometheus, Grafana, dan Open OnDemand. Sementara itu, sistem yang digunakan untuk inference model adalah Flask dan Docker.

The amount of computational power needed for the model training process will keep rising along with the volume of data and the number of successful iterations. When the model training process is conducted in computing environments that share resources, such as on cluster-based computing infrastructure, this might lead to issues. Efficiency, competition, and the level of resource use are the three key issues discussed.Efficiency problems occur when there are already computing resources available, yet they are insufficient to meet the demands of high-level workloads. The power of the machine is subsequently wasted. The utilization of such resources becomes inefficient because it’s possible that they would be adequate to complete other tasks on the front lines. A monitoring system is also necessary for cluster computing in order to track and assess how resources are used on clusters. The project seeks to set up a monitoring system that can assist in analyzing the usage of resources while monitoring the com- puting processes running on the cluster and locate a suitable resource manager to be utilized on a computing cluster that has a GPU in order to increase efficiency, also serve inference model in production. Slurm and Kubernetes experiments were used to conduct the investigation. The findings show that Slurm can handle the demands of job scheduling, manage the utilization of GPUs, and allow for concurrent use of other cluster resources. Prometheus, Grafana, and Open OnDemand are the chosen moni- toring systems. Else, inference model is using Flask and Docker as its system constructor.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Anis Abdul Aziz
"Proses training model membutuhkan sumber daya komputasi yang akan terus meningkat seiring dengan bertambahnya jumlah data dan jumlah iterasi yang telah dicapai. Hal ini dapat menimbulkan masalah ketika proses training model dilakukan pada lingkungan komputasi yang berbagi sumber daya seperti pada infrastruktur komputasi berbasis klaster. Masalah yang ditimbulkan terutama terkait dengan efisiensi, konkurensi, dan tingkat utilisasi sumber daya komputasi. Persoalan efisiensi muncul ketika sumber daya komputasi telah tersedia, tetapi belum mencukupi untuk kebutuhan job pada antrian ter- atas. Akibatnya sumber daya komputasi tersebut menganggur. Penggunaan sumber daya tersebut menjadi tidak efisien karena terdapat kemungkinan sumber daya tersebut cukup untuk mengeksekusi job lain pada antrian. Selain itu, pada cluster computing juga mem- butuhkan sistem monitoring untuk mengawasi dan menganalisis penggunaan sumber daya pada klaster. Penelitian ini bertujuan untuk menemukan resource manager yang sesuai untuk digunakan pada klaster komputasi yang memiliki GPU agar dapat meningkatkan efisiensi, implementasi sistem monitoring yang dapat membantu analisis penggunaan sumber daya sekaligus monitoring proses komputasi yang sedang dijalankan pada klaster, dan melayani inference untuk model machine learning. Penelitian dilakukan dengan cara menjalankan eksperimen penggunaan Slurm dan Kubernetes. Hasil yang diperoleh adalah Slurm dapat memenuhi kebutuhan untuk job scheduling dan mengatur penggunaan GPU dan resources lainnya pada klaster dapat digunakan oleh banyak pengguna sekaligus. Sedangkan untuk sistem monitoring, sistem yang dipilih adalah Prometheus, Grafana, dan Open OnDemand. Sementara itu, sistem yang digunakan untuk inference model adalah Flask dan Docker.

The amount of computational power needed for the model training process will keep rising along with the volume of data and the number of successful iterations. When the model training process is conducted in computing environments that share resources, such as on cluster-based computing infrastructure, this might lead to issues. Efficiency, competition, and the level of resource use are the three key issues discussed.Efficiency problems occur when there are already computing resources available, yet they are insufficient to meet the demands of high-level workloads. The power of the machine is subsequently wasted. The utilization of such resources becomes inefficient because it’s possible that they would be adequate to complete other tasks on the front lines. A monitoring system is also necessary for cluster computing in order to track and assess how resources are used on clusters. The project seeks to set up a monitoring system that can assist in analyzing the usage of resources while monitoring the com- puting processes running on the cluster and locate a suitable resource manager to be utilized on a computing cluster that has a GPU in order to increase efficiency, also serve inference model in production. Slurm and Kubernetes experiments were used to conduct the investigation. The findings show that Slurm can handle the demands of job scheduling, manage the utilization of GPUs, and allow for concurrent use of other cluster resources. Prometheus, Grafana, and Open OnDemand are the chosen moni- toring systems. Else, inference model is using Flask and Docker as its system constructor.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Richie Ghifari
"Rancang campur beton merupakan proses bertahap dan kompleks untuk mencoba menemukan komposisi bahan terbaik guna menghasilkan beton dengan performa terbaik. Kuat tekan beton merupakan sifat terpenting dalam kualitas beton dibandingkan sifat-sifat lain. Dalam proses pembuatannya, banyak variabel terutama jumlah komposisi material penyusun yang dapat memengaruhi kuat tekan beton. Terdapat beberapa metode konvensional dalam memprediksi beton yang terkadang memberikan hasil prediksi lebih atau kurang dari kuat tekan yang ditargetkan. Diperlukan metode yang akurat dalam memprediksi kuat tekan beton agar dapat memberikan keuntungan secara signifikan terhadap penggunaan bahan. Oleh karena itu, penelitian ini menggunakan Deep Neural Network (DNN) sebagai subbidang dari Machine Learning (ML) dan Artificial Intelligence (AI), untuk memprediksi kuat tekan beton berdasarkan komposisi campuran dan properti materialnya. Penelitian ini menghasilkan formula matematika berupa persamaan yang dihasilkan dari model DNN terbaik dengan melihat aspek error model dan grafik model loss. Terdapat total 2048 model yang dianalisis dengan variasi jumlah variabel input (feature) yang berbeda-beda. Model 280 pada kasus 1 dan model 23 pada kasus 5 merupakan model terbaik yang dihasilkan penelitian ini, dengan masing-masing nilai error model 43,8028 dan 5778,5850 untuk Mean Squared Error (MSE) serta 5,0073 dan 59,8225 Maen Absolute Error (MAE).

Concrete mix design is a gradual and complex process of trying to find the best ingredient composition to produce the best performing concrete. The compressive strength of concrete is the most important property in concrete quality compared to other properties. In the manufacturing process, many variables, especially the amount of material composition, can affect the compressive strength of concrete. There are several conventional methods of predicting concrete that sometimes give predictive results more or less than the targeted compressive strength. An accurate method of predicting the compressive strength of concrete is needed in order to significantly benefit the use of materials. Therefore, this research utilizes Deep Neural Network (DNN), a subfield of Machine Learning (ML) and Artificial Intelligence (AI), to predict the compressive strength of concrete based on its mix composition and material properties. This research produces mathematical formulas in the form of equations generated from the best DNN model by looking at the aspects of model error and model loss graphs. There are a total of 2048 models analyzed with different variations in the number of input variables (features). Model 280 in case 1 and model 23 in case 5 are the best models produced by this study, with model error values of 43.8028 and 5778.5850 for Mean Squared Error (MSE) and 5.0073 and 59.8225 Maen Absolute Error (MAE), respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yovan Yudhistira Widyananto
"Keamanan privasi data dan informasi dalam internet sering menjadi topik pembahasan dari waktu ke waktu, hal ini dikarenakan metode penyerangan siber selalu berevolusi menyesuaikan dengan struktur keamanan yang ada, menjadikan bidang keamanan siber menjadi bagaikan kompetisi untuk selalu lebih dahulu dari lawannya. Salah satu contoh implementasi keamanan siber merupakan Intrusion Detection System, dikenal juga dengan IDS. IDS dapat membantu menjaga sebuah jaringan dengan mendeteksi jika ada tanda-tanda penyerangan, namun dengan ini saja tidak cukup untuk memaksimalkan keamanan sebuah jaringan. Dari dasar IDS ini, sebuah proyek mencoba mengembangkan konsepnya dan membuat struktur besar, dan berhasil diciptakan proyek Mata Elang. Struktur Mata Elang dapat menjadi perantara antara internet dengan jaringan yang dilindunginya, dan ketika terjadi serangan, aktivitas tersebut akan dideteksi, ditahan, dan diproses oleh Mata Elang. Sistem deteksi Mata Elang bergantung kepada framework Snort. Sayangnya, Snort tidak memiliki kemampuan untuk beradaptasi di luar dari konfigurasi yang telah diberikan kepadanya. Dalam penelitian ini, penulis akan mengimplementasikan Machine Learning untuk meningkatkan keamanan yang diberikan pada proyek Mata Elang, spesifiknya pada sensornya yang menggunakan Snort. Setelah segala proses perancangan, pembuatan, dan pengujian telah dilakukan, hasil akhir yang didapatkan dari sistem Machine Learning merupakan sistem prediksi yang memuaskan untuk memprediksi kategori serangan bahkan dengan dukungan data yang lemah, namun kemampuan dari aturan Snort yang dihasilkan masih belum diuji dengan matang.

The talk about the security of private data and information will continue to be a relevant topic because of the nature of the concept. Cyberattacks have always been adapting according to the technology and structure that exists at the time, and so cybersecurity will continue to be a competition for gaining the advantage against their contrarian. One of the prime examples in cybersecurity implementation is Intrustion Detection Systems, also known as the shortened term, IDS. IDS can help guard a network by detecting different kinds of anomalies or attacks, although this alone wouldn’t be enough to maximize the level of proper security necessary for a whole network. Under the basic concept of IDS, a project attempts to develop an IDS and create a larger structure. The project was successfully implemented and now titled as Mata Elang. Mata Elang’s structure is an intermediary between an internet connection and the network it is connected to, and when an attack happens, those activities will be detected, interrupted, and then processed by Mata Elang. Mata Elang’s detection system completely relies on the framework Snort. Unfortunately, Snort does not have the capabilities to adapt outside the configurations that has been given to it. In this research, the writer will implement Machine Learning to further increase the security provided by Mata Elang, specifically on the sensors that uses Snort. After every step of the planning, making, and testing has been done the final result of the product was a Machine Learning system that has a satisfactory performance in categorizing the attacks, even with a weak supporting data, however the performance of the snort rules generated by it has not been tested thoroughly.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Fauzi
"Adanya peristiwa selama tahapan penyelenggaraan pemilu 2024, menimbulkan berbedaan pandangan diantara para Ahli, akan potensi terciptanya persepsi buruktentang Pemilu 2024. Sehingga dibutuhkan pengukuran perbandingan sentimen untuk menindaklanjuti dan membuktikan pandangan tersebut. Di sisi lain media sosial hadir sebagai tempat yang memungkinkan penggunanya untuk mengeskpresikan opini yang dimiliki, termasuk opini tentang penyelenggaraan Pemilu. Besarnya adopsi media sosial di Indonesia, memungkinkannya digunakan sebagai sumber data dalam pengukuran perbandingan sentimen masyarakat terkait dengan Pemilu 2024. Namun dalam menganalisa data yang berasal dari media sosial membutuhkan sumber daya dan waktu yang tidak sedikit jika dilakukan secara manual, dikarenakan adanya karakterstik high velocity, high volume dan high variety yang dimiliki oleh data yang berasal dari media sosial. Text analytics dengan pendekatan machine learning telah banyak digunakan dan menjadi state-of-the-art cara yang mengatasi permasalahan tersebut. Penelitian ini mengkomparasikan algoritma deep learning dengan algoritma machine learning tradisional seperti SVM, random forest dan logistic regression, dalam upaya membangun model analisis sentimen yang dapat digunakan untuk mengukur perbandingan sentimen masyarakat terhadap Pemilu 2024. Teknik pemodelan topik Latent Dirichlet Allocation juga digunakan untuk mengidentifikasi topik pembicaraan yang tersembunyi di dalamnya. Hasil dari penelitian menunjukkan algoritma SVM dengan teknik vektorisasi TF-IDF unigram muncul sebagai algoritma dengan hasil kinerja prediksi terbaik dengan nilai f1-score 0.7890. Selain itu terdapat dinamika pergeseran dominasi sentimen mulai dari masa kampanye, masa tenang dan masa pemungutan sampai dengan masa rekapitulasi suara. Hasil penelitian ini diharapkan dapat memberikan informasi yang bernilai bagi para pemangku kepentingan seperti: Pengamat politik, Praktisi politik, Pemerintah dan Penyelenggara Pemilu.

The events occurring during the stages of the 2024 General Election have sparked differing opinions among experts regarding the potential for negative perceptions of the election. Consequently, there is a need to measure sentiment patterns to follow up on and substantiate these views. Meanwhile, social media serves as a platform that allows users to express their opinions, including those about the election. The widespread adoption of social media in Indonesia enables it to be used as a data source for measuring public sentiment patterns related to the 2024 General Election. Analyzing data from social media requires significant resources and time if done manually, due to the high velocity, high volume, and high variety characteristics of social media data. Text analytics with a machine learning approach has been extensively used and has become the state-of-the-art method for addressing these challenges. This study compares deep learning algorithms with traditional machine learning algorithms such as Support Vector Machine (SVM), Random Forest, and Logistic Regression in an effort to build a sentiment analysis model that can be used to measure public sentiment patterns toward the 2024 General Election. The Latent Dirichlet Allocation (LDA) topic modeling technique is also used to identify hidden discussion topics within the data. The results of the study indicate that the SVM algorithm with TF-IDF unigram vectorization technique emerged as the algorithm with the best predictive performance, achieving an f1-score of 0.7890. Meanwhile, the measurement of sentiment patterns showed dynamic shifts in sentiment from the campaign period, the quiet period, and the voting period up to the recapitulation period. The findings of this study are expected to provide valuable information for stakeholders such as political observers, political practitioners, the government, and election organizers.
"
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Helmi Qosim
"ABSTRAK
Synthesis loop merupakan salah satu sistem kritis di pabrik amoniak. Oleh karena itu, ada urgensi untuk menjaga reliability dan availability pada sistem ini. Sebagian besar peristiwa shutdown di pabrik amoniak terjadi tiba-tiba setelah alarm tercapai. Jadi, perlu ada sistem deteksi dini untuk memastikan masalah anomali ditangkap oleh operator sebelum menyentuh set point alarm. Implementasi algoritma machine learning dalam membuat model deteksi potensi kegagalan telah digunakan di berbagai industri dan objek sebagai penelitian. Algoritma yang digunakan adalah classifier dasar dan ensemble untuk membandingkan algoritma mana yang menghasilkan hasil klasifikasi terbaik. Penelitian ini dapat memberikan ide dan perspektif baru ke dalam industri pabrik amoniak untuk mencegah terjadinya shutdown yang tidak terjadwal dengan memanfaatkan data menggunakan algoritma machine learning.

ABSTRACT
Synthesis loop is one of the critical systems in ammonia plant. Therefore, there is urgency for maintaining the reliability and availability of this system. Most of the shutdown events occur suddenly after the alarm is reached. So, there needs to be an early detection system to ensure anomaly problem captured by the operator before
touching the alarm settings. The implementation of machine learning algorithms in making fault detection models has been used in various industries and objects. The algorithm used is the basic and ensemble classifier to compare which algorithms generate the best classification results. This research can provide a new idea and perspective into ammonia plant industry to prevent unscheduled shutdown by utilizing
data using machine learning algorithm."
Depok: Fakultas Teknik Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jonathan Aurelius Faren
"Jakarta sebagai kota besar yang memiliki tingkat kepadatan yang tinggi pada saat jam-jam dan hari-hari kerja memiliki peraturan guna mengurangi kemacetan di jalan. Salah satu peraturannya adalah pemberlakukan plat nomor kendaraan ganjil genap sesuai dengan tanggal. Peraturan ini cukup efektif dalam mengurangi tingkat kemacetan di jalan-jalan protokol. Namun masih saja ada oknum-oknum yang melanggar peraturan ini dikarenakan kemampuan manusia yang terbatas sehingga tidak dapat selalu mengawasi plat nomor kendaraan secara maksimal. Dengan berkembangnya teknologi terutama di bidang computer vision masalah ini dapat dikurangi. Dengan menggunakan bantuan machine learning yaitu computer vision menggabungkan alat fisik yaitu kamera dengan komputer sehingga dapat mendeteksi dan membaca plat nomor pada kendaraan. Perkembangan teknologi membuat machine learning semakin berkembang sehingga proses melakukan deteksi dapat dilakukan dengan lebih cepat dan akurat. Untuk melakukan hal ini algoritma YOLOv7 dilatih untuk melakukan deteksi pada plat nomor kendaraan serta membacanya sehingga dapat diklasifikasian termasuk ganjil / genap sesuai dengan tanggal pendeteksian. Pada penelitian ini dilakukan pembangunan prototype sistem pendeteksi dan klasifikasi ini menggunakan machine learning dan computer vision untuk melakukan deteksi plat nomor pada kendaraan yang lewat di jalan-jalan protokol. Hasil dari penelitan ini adalah dengan menggunakan algoritma YOLOv7, model yang dihasilkan memiliki akurasi sebesar 86%, melakukan pembacaan plat nomor hasil deteksi dengan EeasyOCR memiliki tingkat kesalahan pembacaan per karakter 3.81% dan kesalahan pembacaan per kata sebesar 11.90%, sistem dapat melakukan deteksi dan pembacaan plat nomor secara real time dengan baik, melakukan identifikasi pada jenis tanggal (ganjil  genap) dan memberikan alert ketika ada plat nomor yang tidak sesuai ketentuan tanggal.

Jakarta as the big city and the capital of Indonesia that have high density rate in the work hours and days have a special rule to decrease the congestion rate in the road. One of the rules is the enforcement of odd even license plate rules that connect to the real time date. This rule is effective in decreasing the congestion rate in the major arterial roads. but there's still a loophole that makes people violate this rule, the human limited ability makes them can't always observe all the license plate. With the help of technology development in computer vision, can help to reduce the problem. Computer vision combines the video camera and computer to work side by side so it can read and detect the license plate number. Technology development also develops the computer vision ability so detection and recognition can be done with more accuracy and less time. To do this thing YOLOv7 algorithm trains a model to detect the license plate in a car and read the license plate so it can classify the license plate type (odd/even) and compare it with the research date type. This research build the prototype of detection and classifier system with machine learning and computer vision, to do the automatic odd /even license plate detection and recognition at the car in artery road. As the result of the research , the detection model made by YOLOv7 algorithm have a 86 % accuracy, and the character recognition with EasyOCR have a character error rate 3.81 %  and word error rate 11.90 % , the system prototype can run the detection and OCR in real time, the prototype can get the real time date and classified it as odd or even number, and give an alert when the detected license plate number violated the odd even rule.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Tejabaswara
"Pesatnya perkembangan teknologi disertai dengan tingkat penggunaannya membawa dampak positif di berbagai bidang kehidupan manusia, namun juga dapat membawa dampak negatif jika tidak didukung dengan tanggung jawab pengguna teknologi itu sendiri. Bidang telekomunikasi adalah salah satu bidang yang perkembangannya sangat dirasakan oleh manusia. Salah satu dari perkembangan telekomunikasi adalah lahirnya media sosial. Manusia menggunakan media sosial untuk berbagi informasi apapun kepada siapapun. Namun yang menjadi masalah kemudian adalah apakah informasi yang tersebar merupakan informasi yang nilai kebenarannya telah teruji atau hanya sebuah rumor. Rumor dapat saja mengakibatkan tersebarnya informasi yang salah di suatu golongan atau komunitas manusia.
Adapun topik yang terkait pada tugas akhir ini adalah siak-ng yang menjadi trending topic di media sosial twitter. l. Mengidentifikasi rumor pada media sosial online sangat krusial nilainya karena mudahnya informasi yang disebar oleh sumber yang tidak jelas.
Pada tugas akhir ini akan ditunjukkan salah satu cara pengidentifikasian rumor dengan menggunakan kalkulasi graph edit distance. Graph edit distance merupakan salah satu langkah yang paling cocok untuk menentukan persamaan antar grafik dan pengenalan pola jaringan kompleks. Untuk mencapai tujuan akhir, langkahlangkah yang dilakukan adalah pengambilan data, konversi data, pengolahan data, dan visualisasi. Dengan pengolahan data didapat Sembilan padanan kata antara Parent Node dan Child Node serta 3 kategori edge label. Pada akhirnya ditemukan bahwa rumor sistem siak-ng sedang mengalami load tinggi merupakan rumor yang nilai kebenarannya tinggi.

Rapid development of technology coupled with the utilizing bring positive impact in many areas of human life, but also have negative impacts if not supported with the responsibility of the users. Telecommunications is one area in which development is perceived by humans. One of the development of telecommunications is social media established.Humans use social media to share any information with anyone. However, the issue then is whether the spread of information is information whose truth value has been tested or just a rumor. Rumors will lead to the spread of false information in a group or people's community.
The topics related to this thesis is the SIAK-NG become trending topic on social media Twitter. Identifying online rumors on social media is crucial value because of the information ease spread by unverified sources.
At the end of this assignment will be demonstrated one way of identifying the rumor by using graph edit distance calculations. Graph edit distance is one of the most appropriate steps to determine the similarities between graphs and pattern recognition of complex networks. To achieve the ultimate goal, the steps taken are data retrieval, data conversion, data processing, and visualization. By data processing obtain nine words comparison between Parent node and Child Node with three edge label category. Finally, the tweet that said the system has high range of load was the true rumor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42944
UI - Skripsi Open  Universitas Indonesia Library
cover
Teresa Yubilea Koswari
"Asuransi merupakan bentuk pengalihan risiko dengan cara mendistribusikan risiko individu menjadi risiko kolektif. Pemasukan utama perusahaan asuransi adalah dari penjualan polis asuransi. Metode penjualan yang lazim digunakan pada asuransi maupun industri finansial lainnya adalah cross-selling. Cross-selling adalah proses menawarkan produk tambahan kepada orang yang sudah menjadi pelanggan perusahaan yang bersangkutan. Sangat penting bagi perusahaan asuransi untuk memiliki kemampuan memprediksi secara akurat karakteristik calon pelanggan yang sekiranya akan tertarik membeli suatu produk yang sedang ingin dipasarkan. Untuk dapat mengetahui karakteristik pelanggan potensial berdasarkan data perusahaan yang pada umumnya berskala besar, diusulkan untuk menggunakan machine learning. Hingga saat ini, metode machine learning yang  populer digunakan untuk mengolah data tabular adalah XGBoost. Pada penelitian ini, digunakan metode XGBoost untuk memprediksi hasil cross-selling produk asuransi dan kemudian dibandingkan dengan metode berbasis pohon lainnya, yaitu Decision Tree dan Random Forest, dari segi sensitivity, specificity, dan AUC-ROC. Diperoleh bahwa XGBoost unggul pada metrik specificity dan AUC-ROC. Selanjutnya, hasil simulasi terbaik dari setiap model diinterpretasikan menggunakan feature importance berdasarkan gain agar diperoleh fitur yang menjadi faktor penting dalam memprediksi cross-selling asuransi. Dengan adanya tahap interpretasi ini, diharapkan metode yang digunakan pada penelitian ini dapat diterima dan berguna bagi industri asuransi.

Insurance is a form of risk transfer by distributing individual risks into collective risks. The main income of insurance companies is from the sale of insurance policies. The sales method commonly used in the insurance and other financial industries is cross-selling. Cross-selling is the process of offering additional products to existing customers of the company. It is very important for insurance companies to have the ability to accurately predict the characteristics of potential customers who will be interested in buying a product that is being marketed. To find out the characteristics of potential customers based on company’s data, which are generally in large scale, it is proposed to use machine learning method. Until now, the most popular machine learning method used to process tabular data is XGBoost. In this study, the XGBoost method was used to predict cross-selling results of insurance products and then compared with other tree-based models, the Decision Tree and Random Forest, in terms of sensitivity, specificity, and AUC-ROC. It was found that XGBoost excels in specificity and AUC-ROC metrics. Furthermore, the best simulation results from each model are interpreted using feature importance based on gain to obtain features that are important factors in predicting insurance cross-selling. So, with this interpretation step done, it is hoped that the method used in this study can be accepted and useful for the insurance industry.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Nydia Augustizhafira
"Analisis sentimen merupakan bagian dari data mining text mining , yaitu proses memahami, mengekstrak, dan mengolah data tekstual secara otomatis untuk mendapatkan informasi. Pada penelitian ini, analisis sentimen diterapkan pada salah satu media sosial, yaitu Twitter. Analisis sentimen tergolong sebagai masalah klasifikasi yang dapat diselesaikan menggunakan salah satu metode machine learning, yaitu Neural Network. Pada machine learning, data dibagi menjadi data pelatihan dan data pengujian yang berasal dari domain yang sama.
Permasalahan utama pada penelitian ini adalah data pelatihan dan data pengujian berasal dari dua domain yang berbeda, sehingga perlu diterapkan pembelajaran lain selain machine learning. Masalah tersebut dapat diselesaikan dengan menggunakan transfer learning. Transfer learning merupakan suatu pembelajaran model yang dibangun oleh suatu data pelatihan dari suatu domain dan diuji oleh suatu data pengujian dari domain yang berbeda dari domain data pelatihan. Simulasi dalam penelitian ini menghasilkan suatu akurasi transfer learning dengan metode Neural Network yang nantinya akan diuji dengan fitur n-gram bi-gram dan tri-gram serta satu metode seleksi fitur, yaitu Extra-Trees Classifier.
Dalam penelitian ini, nilai akurasi transfer learning tertinggi didapat saat hidden layer berjumlah satu. Sebagian besar nilai akurasi tertinggi didapat saat penggunaan 250 neuron pada hidden layer. Fungsi aktivasi ReLU dan tanh menghasilkan nilai akurasi yang lebih tinggi dibandingkan fungsi aktivasi logistic sigmoid. Penggunakan metode seleksi fitur dapat meningkatkan kinerja transfer learning sehingga nilai akurasinya lebih tinggi dibandingkan simulasi tanpa penggunaan metode seleksi fitur.

Sentiment analysis is a part of data mining text mining , which is the process of understanding, extracting, and processing textual data automatically to obtain information. In this research, sentiment analysis is applied to one social media called Twitter. Sentiment analysis is categorized as a classification problem that can be solved using one of machine learning methods, namely Neural Network. In machine learning, data is divided into training data and test data from the same domain.
The main problem in this research is training data and test data come from two different domains, so it is necessary to apply other learning beside machine learning. The problem can be solved by using transfer learning. Transfer learning is a model learning constructed by a training data from a domain and tested by a test data from a different domain from the training data domain. The simulation in this research resulted in an accuracy of learning transfer with Neural Network method which will be tested using n grams bi grams and tri grams and one feature selection method called Extra Trees Classifier.
In this research, the highest value of transfer learning accuracy is obtained when one hidden layer is used. Most of the highest accuracy values are obtained from the use of 250 neurons on the hidden layer. The activation function of ReLU and tanh yield a higher accuracy value than the logical activation function sigmoid . The use of feature selection method can improve the transfer learning performance so that the accuracy value is higher than simulation without the use of feature selection method.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>