Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 138097 dokumen yang sesuai dengan query
cover
Hadi Septian Gotama
"Zeolit ZSM-5 mesopori disintesis menggunakan double template TPAOH dan polimer kationik PDDA. Katalis Co-ZSM-5 disiapkan dengan cara impregnasi ion cobalt (2.6 wt% zeolit) pada ZSM-5 mesopori, agar memperoleh katalis heterogen untuk oksidasi parsial gas metana menjadi metanol menggunakan oksigen sebagai sumber oksidannya. Analisis XRD zeolit, pencitraan SEM dan BET mengindikasikan bahwa penambahan waktu ageing meningkatkan kristalinitas ZSM-5, tetapi di sisi lain juga menurunkan luas permukaan, mesoporositas, dan ukuran kristal ZSM-5. Perlakuan alkali pada ZSM-5 double template menyebabkan penurunan baik mesoporositas dan kristalinitas ZSM-5. Sebelum digunakan untuk aplikasi, Co-ZSM-5 dikalsinasi pada suhu 550 0C selama 3 jam dalam aliran O2 (200 mL/min). Reaksi katalitik berlangsung pada suhu 150 oC selama 30 menit dalam sistem batch reactor yang terdiri dari metana, N2 (rasio CH4:N2 = 0.5:2) dan katalis Co-ZSM-5 (2.6 wt%). Produk diekstraksi dengan etanol dan dianalisis menggunakan GC-FID. Analisa GC-FID menunjukkan bahwa oksidasi parsial metana pada ZSM-5 dengan mesoporositas tinggi memiliki kecenderungan terhadap pembentukan metanol. Sedangkan, ZSM-5 dengan mesoporositas yang lebih rendah menghasilkan produk lain yang tidak teridentifikasi selain metanol. Hasil ini menunjukkan bahwa selektifitas produk oksidasi parsial metana dapat ditentukan dengan mengatur mesoporositas ZSM-5 sebagai katalis.
Mesoporous ZSM-5 zeolite was synthesized using double template TPAOH and cationic polymer PDDA. Co-ZSM-5 catalyst was then prepared by impregnating cobalt ions (2.6 wt% zeolite) in mesoporous ZSM-5, in order to obtained heterogeneous catalyst for partial oxidation of methane gas to methanol using oxygen as oxidant. XRD pattern of the zeolite, SEM images, and adsorption of BET indicate that the addition of ageing time increase the crystallinity of ZSM- 5, but in the other hand decrease the surface area, mesoporosity, and particle size of ZSM-5. In addition, giving alkaline treatment to ZSM-5 double template decrease both mesoporosity and crystallinity of ZSM-5. Before reaction, Co- ZSM-5 were calcined at 550 0C for 3 hours in flow of O2 (200 mL/min). The catalytic test was performed at 150 oC for 30 minutes in a batch reactor consisting of methane, N2 (CH4:N2 ratio is 0.5:2) and Co-ZSM5 catalyst (2.6 wt%). The reaction products were collected by extraction with ethanol and analyzed using GC-FID. The analysis of GC-FID show that the partial oxidation of methane performed by high mesoporosity of ZSM-5 tends to methanol production. While the reaction performed by lower mesoporosity of ZSM-5 results another unidentified product beside methanol. These result show that the product selectivity of partial oxidation of methane could be determined by tuning the mesoporosity of ZSM-5 as catalyst."
Depok: Universitas Indonesia, 2012
S43395
UI - Skripsi Open  Universitas Indonesia Library
cover
Intan Yulia Sari
"Karya Akhir ini bertujuan untuk menganalisis pemilihan teknologi pengolahan spent caustic. Metode pengolahan yang ditinjau adalah Wet Air Oxidation, netralisasi asam, atau penggunaan Hidrogen peroksida sebagai oksidator, incinerator dan biologis. Parameter yang digunakan dalam pemilihan teknologi adalah aspek kebutuhan utilitas, biaya investasi, biaya operasi dan tingkat kesiapan teknologi di Fasilitas Pengolahan Gas X. Pemanfaatan Hidrogen peroksida sebagai oksidator dalam pengolahan spent caustic merupakan metode yang optimum, efisien dan ramah lingkungan. Hal ini disebabkan daya oksidasi yang tinggi serta kondisi operasi pada suhu dan tekanan, yang rendah.

This Final Project aims to analyze technology selection for spent caustic treatment. Processing methods that will be observed are Wet Air Oxidation, Acid Neutralization, Oxidation using Hydrogen Peroxide, Incinerator and Biological. Parameters will be used for technology selection are utility consumption, capital and operating expenditure also technology readiness level on "X" Gas Processing Fasilities. Oxidizing spent caustic using Hydrogen Peroxide is an optimum, efficient and environmental friendly method, due to its high oxidation strength and operating condition on low temperature and pressure."
Depok: Fakultas Teknik Universitas Indonesia, 2012
T30634
UI - Tesis Open  Universitas Indonesia Library
cover
Diyas Prawara Mahdi
"Mulai munculnya suatu dorongan yang makin meningkat untuk merubah ketergantungan terhadap produk bahan bakar fosil untuk kebutuhan energi dunia. Hal ini diakibatkan oleh mulai habisnya sumber bahan bakar fosil untuk di masa yang akan datang serta dampak negatifnya terhadap lingkungan terkait dengan eksploitasi bahan bakar fosil serta kaitannya dengan emisi gas rumah kaca dan perubahan iklim seperti misalnya pada proses pembakaran bahan bakar fosil untuk pembangkit listrik menyumbangkan lebih dari 29% emisi CO2 dunia pada tahun 2004. Biomassa telah mendapat perhatian lebih sebagai sumber alternatif yang layak dikarenakan tersedia berlimpah di seluruh dunia serta dianggap sebagai sumber nol CO2. Biomassa merupakan suatu sumber daya yang banyak tersedia, bersifat terbarukan, harga yang relatif murah bahkan ada yang gratis, serta dapat digunakan secara luas. Proses pirolisis merupakan tahap awal dari proses pembakaran serta gasifikasi. Proses ini bukan hanya merupakan teknologi transformasi yang bersifat independen, namun juga merupakan bagian dari proses gasifikasi dan pembakaran yang terdiri dari proses penguraian bahan bakar padat menjadi cair dan termal tanpa ada zat pengoksidasi. Keuntungan yang paling penting dari proses pirolisis adalah dapat diatur untuk mendapatkan hasil yang diinginkan. Misalkan dibutuhkan proses pirolisis lambat untuk meningkatkan hasil dari biochar, sedangkan proses pirolisis cepat untuk meningkatkan hasil dari bio-oil. Nilai kohe yang dibutuhkan pada reaktor pirolisis MRPP untuk mendapatkan bio-syngas paling optimal yaitu 886.88 gram untuk dapat menghasilkan persentase produk hasil pirolisis berupa bio-syngas paling banyak sebesar 75.01%. Perbedaan simulasi menggunakan Python terhadap data saat pengambilan data menggunakan reaktor pirolisis MRPP yaitu selisih 33,33 gram dengan rincian hasil dari pengambilan data yaitu sebanyak 750 gram. Efisiensi konsumsi bahan bakar untuk mengoperasikan alat reaktor MRPP yaitu 225g/jam.

There is a growing push to change dependence on fossil fuel products for the world's energy needs. This is caused by the depletion of fossil fuel sources for the future and the negative impact on the environment related to the exploitation of fossil fuels and their relation to greenhouse gas emissions and climate change, such as the process of burning fossil fuels for electricity generation, contributing more of 29% of world CO2 emissions in 2004. Biomass has received more attention as a viable alternative source as it is abundantly available worldwide and is considered a zero CO2 source. Biomass is a resource that is widely available, is renewable, the price is relatively cheap, some are even free, and can be used widely. The pyrolysis process is the initial stage of the combustion and gasification process. This process is not only an independent transformation technology, but also a part of the gasification and combustion processes which consist of the decomposition of solid fuel into liquid and thermal without the presence of oxidizing agents. The most important advantage of the pyrolysis process is that it can be adjusted to obtain the desired result. For example, a slow pyrolysis process is needed to increase the yield of biochar, while a fast pyrolysis process is needed to increase the yield of bio-oil. The cohe value needed in the MRPP pyrolysis reactor to obtain the most optimal bio-syngas is 886.88 grams to be able to produce the highest percentage of pyrolysis products in the form of bio-syngas of 75.01%. The difference in the simulation using Python on the data when collecting data using the MRPP pyrolysis reactor is the difference of 33.33 grams with the details of the results from data collection which is as much as 750 grams. The efficiency of fuel consumption to operate the MRPP reactor is 225g/hour."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Silvya Yusri
"Sintesis zeolit ZSM-5 mesopori dengan secondary template dilakukan dengan menggunakan dua metode, yaitu single template dan double template. Pada metode single template digunakan surfaktan kationik CTMABr, sedangkan pada metode double template digunakan TPAOH dan PDDA. Karakterisasi dengan SEM, XRD dan FTIR menunjukkan bahwa zeolit hasil sintesis dengan kedua metode ini merupakan zeolit ZSM-5. Isoterm adsorpsi dari kedua zeolit ini menunjukkan hysteris loop pada P/Po 0.8-0.9 yang merupakan karakteristik zeolit mesopori.
Analisis dengan menggunakan metode BJH adsorpsi menunjukkan terbentuknya pori berukuran mikro dan meso pada masing-masing zeolit mesopori hasil sintesis, dengan pori meso berukuran 10 dan 12.8 nm pada zeolit ZSM-5 hasil sintesis dengan single template dan 18.18 nm pada zeolit hasil sintesis dengan double template.
Berdasarkan hasil karakterisasi, zeolit ZSM-5 mesopori dengan double template memiliki karakteristik yang lebih baik sebagai katalis daripada zeolit ZSM-5 mesopori dengan single template. Uji katalisis zeolit Co- ZSM-5 komersial pada reaksi oksidasi metana menggunakan atmospheric fixed bed reactor tidak menghasilkan produk metanol ataupun formaldehid.

Synthesis of mesoporous ZSM-5 zeolite with secondary template has been done with using two methods, single and double template . Cationic surfactants CTMABr was used in the single template method, whereas the double templates method was used TPAOH and PDDA. Characterization by SEM, XRD and FTIR showed that the synthesized zeolite with single and double template methods are ZSM-5. Isotherms adsorption both of zeolite shows hysteris loop at P / Po 0.8-0.9 that is characteristic of mesoporous zeolites.
Barrett-Joyner-Halenda analysis showed the formation of micro-and meso-sized pore in each of the mesoporous zeolite. The mesopore size in ZSM-5 with single template are 10 and 12.8 nm and 18,18 nm in the synthesized zeolite with double-template.
Based on characterization results, mesoporous ZSM-5 zeolite with double template has better characteristics than single template as catalyst. Catalysis test of commercial Co-ZSM-5 zeolite in methane oxidation reaction using atmospheric fixed bed reactors did not produce methanol or formaldehyde.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S1693
UI - Skripsi Open  Universitas Indonesia Library
cover
Makhdum Muhardianaputra
"ABSTRAK
CCGT Combined Cycle Gas Turbine merupakan siklus pembangkit listrik yang umum digunakan di Indonesia. Gas hasil pembakaran pembangkit listrik mengandung CO2 yang tinggi menyebabkan terjadinya pemanasan global apabila langsung dibuang ke atmosfer. Sehingga diperlukan proses penangkapan dan pemanfaatan CO2 agar memiliki nilai jual yang lebih tinggi serta mengurangi jumlah emisi CO2 yang dihasilkan. Pada penilitian ini, dilakukan simulasi terhadap 3 skema proses terintegrasi. Skema proses tersebut adalah tri-reforming untuk menghasilkan sintetis gas, hidrogenasi CO2 berbasis energi terbarukan dan gabungan dari kedua proses tersebut. Skema proses tersebut akan dianalisis kinerja teknis dan ekonomi yaitu dalam bentuk intensitas CH4, intensitas energi, penyusutan CO2 serta biaya tambahan untuk pemanfaatan CO2 menjadi metanol. Diperoleh bahwa skema 2 memiliki nilai intensitas CH4 dan nilai penyusutan CO2 paling baik 0,7 tonCH4/tonMetanol 1,2 tonCO2/tonMetanol sedangkan skema 1 memiliki intensitas energi paling rendah 51 GJ/tonMetanol serta memiliki nilai keuntungan dalam pemanfaatan CO2 menjadi metanol 1930 USD .

ABSTRACT
CCGT Combined Cycle Gas Turbine is a power plant cycle that commonly used in Indonesia. Flue gas power plants contain high CO2 and cause global warming when directly discharged into the atmosphere. So that required the process of capture and utilization of CO2 in order to have a higher selling value and reduce the amount of CO2 emissions produced. In this research, simulation of 3 integrated process schemes was performed. The process scheme is tri reforming to produce synthetic gases, hydrogenation of CO2 based on renewable energy and a combination of both processes. The process scheme will be analyzed technical and economic performance that is in the form of intensity of CH4, energy intensity, CO2 abatement as well as additional cost for the utilization of CO2 to methanol. It is found that scheme 2 has the highest intensity value of CH4 and CO2 abatement value 0.7 tonCH4 tonMethanol 1.2 tonCO2 tonMethanol whereas scheme 1 has the lowest energy intensity 51 GJ tonetolol and has a gain value in CO2 utilization To methanol 1930 USD. "
2017
S66930
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahara
"Reaksi oksidasi parsial metana menjadi metanol dengan katalis Co-ZSM?5 dipelajari dengan tiga variasi kondisi reaksi yaitu laju feed, waktu reaksi, dan ukuran pori katalis. Dua jenis zeolit ZSM ? 5 (mikro dan mesopori) disintesis dan dianalisa dengan XRD, FTIR, BET dan SEM ? EDS. Preparasi katalis Co-ZSM-5 dilakukan menggunakan metode impregnasi basah dan dianalisa dengan AAS dan FTIR. Tiga variasi laju feed CH4 : N2 (0.5:2, 0.75:2 dan 1:2 bar) serta dua variasi waktu reaksi dipelajari untuk mengetahui feed dan waktu yang menghasilkan persen konversi optimum. Perbedaan ukuran pori katalis Co-ZSM-5 selanjutnya dipelajari pada kondisi optimum yang telah di dapat. Analisa produk yang terbentuk dilakukan menggunakan instrumen GC-FID dengan metode standar adisi untuk mengetahui persen konversi produk yang terbentuk.
Hasil yang diperoleh menunjukkan bahwa reaksi dengan katalis Co-ZSM-5 mesopori optimum terjadi pada saat rasio feed CH4:N2 sebesar 0.75:2 bar dengan persen konversi sebesar 8.93%. Waktu reaksi optimum pada saat laju feed optimum dengan katalis Co-ZSM-5 mesopori yang diperoleh adalah selama 60 menit reaksi dengan persen konversi sebesar 41.97%. Pengaruh ukuran pori katalis dipelajari pada saat feed dan waktu reaksi optimum ini. Hasil yang didapat menunjukkan bahwa Co-ZM-5 mikropori menghasilkan persen konversi yang lebih kecil yaitu sebesar 16.46%.

Partial oxidation of methane to methanol using Co-ZSM-5 catalysts has been studied with three variation of reaction condition namely reaction feed, reaction time and catalysts pore size. Two kinds of ZSM?5 (microporous and mesoporous) were synthesized and characterized by XRD, FTIR, BET and SEM-EDS. Co-ZSM-5 catalysts were prepared using wet impregnation method and characterized by AAS and FTIR. Three kinds of reaction feed ratio CH4:N2 (0.5:2, 0.75:2 and 1:2 bar) and two kinds of reaction time were employed to obtain the optimum methane conversion. The differences of catalysts pore size then was studied at optimum feed and reaction time. The reaction product then was analyzed by GC ? FID using standard addition method.
The results showed that optimum reaction feed using mesoporous Co-ZSM-5 catalyst was at CH4 : N2 ratio = 0.75 : 2 bar with conversion was 8.93%. Optimum reaction time at optimum reaction feed using mesoporous Co-ZSM-5 catalyst was 60 minutes with conversion was 41.97%. The influence of catalysts pore size was studied at optimum reaction feed and time. And the result showed that microporous Co-ZSM-5 gave the lower conversion by 16.46 %.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46308
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Faisal
"ZSM-5 telah berhasil disintesis melalui metode hidrotermal dari mineral alam zeolit alam Bayat dan kaolin Bangka sebagai sumber alumina dan silika, TPAOH sebagai agen pengarah struktur MFI dan PDDA-M sebagai pengarah mesopori. ZSM-5 kemudian dimodifikasi permukaannya dengan oksida logam Fe dan Co melalui metode impregnasi basah untuk meningkatkan aktivitas katalitiknya pada reaksi oksidasi parsial metana. Modifikasi dengan oksida logam ini juga dilakukan untuk ZSM-5 sintetik sebagai pembanding dalam aktivitas katalitiknya. ZSM-5 alam dan ZSM-5 sintetik termodifikasi oksida logam dikarakterisasi dengan instrumen FTIR, XRD, SEM-EDX, surface area analyzer dan XPS untuk mengetahui pengaruh modifikasi permukaan terhadap struktur, morfologi dan aktivitas katalitiknya. Analisis komposisi unsur dari ZSM-5 alam terimpregnasi oksida Fe dan Co menunjukkan % loading Fe dan Co berturut-turut sebesar 2,37% dan 1,78%. Hasil pengujian isoterm adsorpsi menunjukkan baik ZSM-5 alam maupun ZSM-5 alam terimpregnasi oksida logam Fe dan Co memiliki kurva tipe IV H4 yang merupakan kurva ciri khas material berpori hirarki. Analisis XPS menunjukkan spesi oksida logam Fe dan Co yang menempel pada ZSM-5 berturut-turut adalah Fe2O3 dan Co3O4. Hasil uji analisis kandungan gas menggunakan GC-TCD menunjukkan berkurangnya mol metana setelah reaksi yang menandakan metana telah terkonversi menjadi metanol dan formaldehida yang terlihat dari puncak kromatogram GC-FID. Hasil analisis produk dengan GC-FID menunjukkan reaksi oksidasi parsial metana menggunakan Fe/ZSM-5 menghasilkan formaldehida dan menggunakan Co/ZSM-5 menghasilkan metanol dan formaldehida.

ZSM-5 has been successfully synthesized through hydrothermal method using Bangka Kaolin and Bayat Natural Zeolite as the precursors, TPAOH as MFI-structure directing agent; PDDA-M as mesopore directing agent. Furthermore, the surface of ZSM-5 was impregnated with metal oxide of Fe and Co to improve its catalytic performance through partial oxidation of methane reaction. As comparison, ZSM-5 synthesized from pro analysis precursors was also impregnated with metal oxide of Fe and Co and tested through the reaction. Metal oxide of Fe and Co impregnated ZSM-5 were characterized with XRD, SEM-EDS, XPS and SAA-BET instruments to see the effect of impregnation to the structure and characteristic of both materials. Analysis of the elemental composition of Fe/ and Co/ZSM-5 was 2,37% and 1,78% respectively. The N2 isotherm adsorption curve shows a type IV H4 indicates that the materials has hierarchical characteristic. XPS analysis show the Fe and Co oxide that impregnated to ZSM-5 is Fe2O3 and Co3O4. GC-TCD analysis show there is a decreases of methane mol after reaction indicates that the methane has been converted. GC-FID analysis show that the partial oxidation of methane using Fe/ZSM-5 yielded formaldehyde whereas for Co/ZSM-5 yielded methanol and formaldehyde."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T54844
UI - Tesis Membership  Universitas Indonesia Library
cover
Eni Mulyatiningsih
"ABSTRAK
Sintesis gas (syngas) dapat diproduksi melalui proses CO2 reformation of methane. Pemecahan molekul CO2 memerlukan tekanan dan suhu tinggi, sehingga akan memakan biaya yang besar. Dengan memanfaatkan reaktor plasma non-termal berjenis dielectric barrier discharge (DBD), reduksi biaya dapat dilakukan karena proses pemecahan molekul CO2 dilakukan pada kondisi normal. Pemodelan reaktor ini pun diperlukan untuk mendapat model yang mampu menggambarkan kondisi reaktor plasma jenis DBD, sehingga menurunkan risiko kegagalan scale-up. Program yang digunakan untuk pemodelan adalah Computational Fluid Dynamic (CFD), yaitu COMSOL Multiphysics. Perhitungan dilakukan dengan mengombinasi data kinetika eksperimen dan peristiwa perpindahan sehingga didapat suatu model reaktor. Model disimulasi dengan variasi tegangan atau voltase, suhu dan rasio umpan masuk untuk melihat pengaruhnya terhadap konversi dan produksi gas-gas yang dihasilkan. Konversi CH4 dan CO2 terbesar adalah 63% dan 20% yang dicapai pada rasio umpan CH4/CO2 = 0,5. Pada rasio umpan 0,5 juga dihasilkan rasio syngas terbesar, yaitu H2/CO = 2. Konversi yang dihasilkan tidak mengalami perubahan yang signifikan dengan naiknya suhu awal di dalam reaktor. Sedangkan produksi syngas baik H2 dan CO menurun dengan meningkatnya suhu.

ABSTRACT
Syngas can be produced using CO2 reforming of methane. Dissociation of molecule CO2 has to be done under high pressure and temperature condition. Therefore its process requires a lot of money. Using plasma non-thermal reactor or dielectric barrier discharge (DBD) can reduce cost requirement, because CO2 dissociation can be done under normal condition. Hence, modeling of plasma reactor is needed to get valid model in order to reduce risk of scale up failure. We use Computational Fluid Dynamic (CFD) program or COMSOL Multiphysics for modeling the reactor. Calculation is done using combination of kinetic experiments data and transfer phenomena to get a reactor model. Model will be simulated under voltage, tempperature, and feed ratio variation to analyze the effect to conversion, and syngas production. Highest conversion of CH4 and CO2 reach maximum at CH4/CO2=0.5 with 63% and 20% respectively. Syngas rasio also reach maximum at 0.5 feed ratio with H2/CO=2. There is no significant effect of temperature variazion to conversion. However, increasing temperature lead to low syngas production."
2016
S64068
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dafa Adham Haritz
"Pada penelitian ini digunakan variasi prekursor senyawa azida aromatik untuk menyintesis turunan 1,4-dihidropiridin dan variasi prekursor senyawa aldehida aromatik untuk menyintesis 1,4-dihidropiridin triazol hibrida kalkon. Pada sintesis 1,4- dihidropiridin bermotif 1,2,3-triazol melalui reaksi propargilasi, kondensasi Hantzsch, dan sikloadisi azida-alkuna, sedangkan pada sintesis hibrida 1,4-dihidropiridin kalkon bermotif 1,2,3-triazol melalui reaksi kondensasi Claisen-Schmidt. Sintesis menggunakan variasi prekursor dengan tujuan membandingkan hasil yield produk dan keberhasilan sintesis dengan mengubah struktur senyawa induknya. Produk-produk pada penelitian ini diharapkan bisa menjadi referensi dalam menyintesis suatu senyawa kalkon baru dengan gugus dihidropiridin dan triazol sebagai cincin penghubung. Didapatkan massa dan yield produk : dihidropiridin-triazol etil 4-benzoat (0,258 g; yield 94,37%), dihidropiridin- triazol-4-asetil (0,539 g; yield 93,90%), dihidropiridin-triazol-kalkon(tiofena) (0,054 g; yield 32,33%), dihidropiridin-triazol-ka lkon(t rans-s inam aldeh ida) (0,096 g; yield 57,48%). Produk-produk senyawa tersebut dikarakterisasi dengan instrumen titik leleh, FTIR, LC-MS/MS, dan NMR. Dengan demikian maka variasi dari azido aromatik tidak terlalu berpengaruh terhadap yield produk dihidropiridin-triazol, sedangkan variasi aldehida aromatik berpengaruh terhadap yield produk dihidropiridin-triazol-kalkon.

In this study, a variety of aromatic azide compound precursors were used to synthesise 1,4-dihydropyridine derivatives and a variety of aromatic aldehyde compound precursors to synthesise 1,4-dihydropyridine triazole hybrid chalcones. In the synthesis of 1,4-dihydropyridine patterned 1,2,3-triazole through propargylation reaction, Hantzsch condensation, and azide-alkyne cycloaddition, while in the synthesis of 1,4- dihydropyridine chalcone hybrid patterned 1,2,3-triazole through Claisen-Schmid t condensation reaction. The synthesis used a variety of precursors with the aim of comparing product yields and the success of synthesis by changing the structure of the parent compound. The products in this study are expected to be a reference in synthesising a new chalcone compound with dihydropyridine and triazole groups as connecting rings. The mass and yield of the products: dihydropyridine-triazole ethyl 4-benzoate (0.258 g; yield 94.37%), dihydropyridine-triazole-4-a cety l (0.539 g; yield 93.90%), dihydropyridine-triazole-chalcone(thiophene) (0.054 g; yield 32.33%), dihydropyridine- triazole-chalcone(trans-cinnamaldehyde) (0.096 g; yield 57.48%). The products were characterised by melting point, FTIR, LC-MS/MS, and NMR instruments. Thus, the variation of aromatic azido does not affect the yield of dihydropyridine-triazole product, while the variation of aromatic aldehyde affects the yield of dihydropyridine-triazole- chalcone product."
Depok: Fakultas Matematika dan Ilmu Pengetahuan ALam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>