Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 148282 dokumen yang sesuai dengan query
cover
Aditya Tejabaswara
"Pesatnya perkembangan teknologi disertai dengan tingkat penggunaannya membawa dampak positif di berbagai bidang kehidupan manusia, namun juga dapat membawa dampak negatif jika tidak didukung dengan tanggung jawab pengguna teknologi itu sendiri. Bidang telekomunikasi adalah salah satu bidang yang perkembangannya sangat dirasakan oleh manusia. Salah satu dari perkembangan telekomunikasi adalah lahirnya media sosial. Manusia menggunakan media sosial untuk berbagi informasi apapun kepada siapapun. Namun yang menjadi masalah kemudian adalah apakah informasi yang tersebar merupakan informasi yang nilai kebenarannya telah teruji atau hanya sebuah rumor. Rumor dapat saja mengakibatkan tersebarnya informasi yang salah di suatu golongan atau komunitas manusia.
Adapun topik yang terkait pada tugas akhir ini adalah siak-ng yang menjadi trending topic di media sosial twitter. l. Mengidentifikasi rumor pada media sosial online sangat krusial nilainya karena mudahnya informasi yang disebar oleh sumber yang tidak jelas.
Pada tugas akhir ini akan ditunjukkan salah satu cara pengidentifikasian rumor dengan menggunakan kalkulasi graph edit distance. Graph edit distance merupakan salah satu langkah yang paling cocok untuk menentukan persamaan antar grafik dan pengenalan pola jaringan kompleks. Untuk mencapai tujuan akhir, langkahlangkah yang dilakukan adalah pengambilan data, konversi data, pengolahan data, dan visualisasi. Dengan pengolahan data didapat Sembilan padanan kata antara Parent Node dan Child Node serta 3 kategori edge label. Pada akhirnya ditemukan bahwa rumor sistem siak-ng sedang mengalami load tinggi merupakan rumor yang nilai kebenarannya tinggi.

Rapid development of technology coupled with the utilizing bring positive impact in many areas of human life, but also have negative impacts if not supported with the responsibility of the users. Telecommunications is one area in which development is perceived by humans. One of the development of telecommunications is social media established.Humans use social media to share any information with anyone. However, the issue then is whether the spread of information is information whose truth value has been tested or just a rumor. Rumors will lead to the spread of false information in a group or people's community.
The topics related to this thesis is the SIAK-NG become trending topic on social media Twitter. Identifying online rumors on social media is crucial value because of the information ease spread by unverified sources.
At the end of this assignment will be demonstrated one way of identifying the rumor by using graph edit distance calculations. Graph edit distance is one of the most appropriate steps to determine the similarities between graphs and pattern recognition of complex networks. To achieve the ultimate goal, the steps taken are data retrieval, data conversion, data processing, and visualization. By data processing obtain nine words comparison between Parent node and Child Node with three edge label category. Finally, the tweet that said the system has high range of load was the true rumor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42944
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Fauzi
"Adanya peristiwa selama tahapan penyelenggaraan pemilu 2024, menimbulkan berbedaan pandangan diantara para Ahli, akan potensi terciptanya persepsi buruktentang Pemilu 2024. Sehingga dibutuhkan pengukuran perbandingan sentimen untuk menindaklanjuti dan membuktikan pandangan tersebut. Di sisi lain media sosial hadir sebagai tempat yang memungkinkan penggunanya untuk mengeskpresikan opini yang dimiliki, termasuk opini tentang penyelenggaraan Pemilu. Besarnya adopsi media sosial di Indonesia, memungkinkannya digunakan sebagai sumber data dalam pengukuran perbandingan sentimen masyarakat terkait dengan Pemilu 2024. Namun dalam menganalisa data yang berasal dari media sosial membutuhkan sumber daya dan waktu yang tidak sedikit jika dilakukan secara manual, dikarenakan adanya karakterstik high velocity, high volume dan high variety yang dimiliki oleh data yang berasal dari media sosial. Text analytics dengan pendekatan machine learning telah banyak digunakan dan menjadi state-of-the-art cara yang mengatasi permasalahan tersebut. Penelitian ini mengkomparasikan algoritma deep learning dengan algoritma machine learning tradisional seperti SVM, random forest dan logistic regression, dalam upaya membangun model analisis sentimen yang dapat digunakan untuk mengukur perbandingan sentimen masyarakat terhadap Pemilu 2024. Teknik pemodelan topik Latent Dirichlet Allocation juga digunakan untuk mengidentifikasi topik pembicaraan yang tersembunyi di dalamnya. Hasil dari penelitian menunjukkan algoritma SVM dengan teknik vektorisasi TF-IDF unigram muncul sebagai algoritma dengan hasil kinerja prediksi terbaik dengan nilai f1-score 0.7890. Selain itu terdapat dinamika pergeseran dominasi sentimen mulai dari masa kampanye, masa tenang dan masa pemungutan sampai dengan masa rekapitulasi suara. Hasil penelitian ini diharapkan dapat memberikan informasi yang bernilai bagi para pemangku kepentingan seperti: Pengamat politik, Praktisi politik, Pemerintah dan Penyelenggara Pemilu.

The events occurring during the stages of the 2024 General Election have sparked differing opinions among experts regarding the potential for negative perceptions of the election. Consequently, there is a need to measure sentiment patterns to follow up on and substantiate these views. Meanwhile, social media serves as a platform that allows users to express their opinions, including those about the election. The widespread adoption of social media in Indonesia enables it to be used as a data source for measuring public sentiment patterns related to the 2024 General Election. Analyzing data from social media requires significant resources and time if done manually, due to the high velocity, high volume, and high variety characteristics of social media data. Text analytics with a machine learning approach has been extensively used and has become the state-of-the-art method for addressing these challenges. This study compares deep learning algorithms with traditional machine learning algorithms such as Support Vector Machine (SVM), Random Forest, and Logistic Regression in an effort to build a sentiment analysis model that can be used to measure public sentiment patterns toward the 2024 General Election. The Latent Dirichlet Allocation (LDA) topic modeling technique is also used to identify hidden discussion topics within the data. The results of the study indicate that the SVM algorithm with TF-IDF unigram vectorization technique emerged as the algorithm with the best predictive performance, achieving an f1-score of 0.7890. Meanwhile, the measurement of sentiment patterns showed dynamic shifts in sentiment from the campaign period, the quiet period, and the voting period up to the recapitulation period. The findings of this study are expected to provide valuable information for stakeholders such as political observers, political practitioners, the government, and election organizers.
"
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Helmi Qosim
"ABSTRAK
Synthesis loop merupakan salah satu sistem kritis di pabrik amoniak. Oleh karena itu, ada urgensi untuk menjaga reliability dan availability pada sistem ini. Sebagian besar peristiwa shutdown di pabrik amoniak terjadi tiba-tiba setelah alarm tercapai. Jadi, perlu ada sistem deteksi dini untuk memastikan masalah anomali ditangkap oleh operator sebelum menyentuh set point alarm. Implementasi algoritma machine learning dalam membuat model deteksi potensi kegagalan telah digunakan di berbagai industri dan objek sebagai penelitian. Algoritma yang digunakan adalah classifier dasar dan ensemble untuk membandingkan algoritma mana yang menghasilkan hasil klasifikasi terbaik. Penelitian ini dapat memberikan ide dan perspektif baru ke dalam industri pabrik amoniak untuk mencegah terjadinya shutdown yang tidak terjadwal dengan memanfaatkan data menggunakan algoritma machine learning.

ABSTRACT
Synthesis loop is one of the critical systems in ammonia plant. Therefore, there is urgency for maintaining the reliability and availability of this system. Most of the shutdown events occur suddenly after the alarm is reached. So, there needs to be an early detection system to ensure anomaly problem captured by the operator before
touching the alarm settings. The implementation of machine learning algorithms in making fault detection models has been used in various industries and objects. The algorithm used is the basic and ensemble classifier to compare which algorithms generate the best classification results. This research can provide a new idea and perspective into ammonia plant industry to prevent unscheduled shutdown by utilizing
data using machine learning algorithm."
Depok: Fakultas Teknik Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jonathan Aurelius Faren
"Jakarta sebagai kota besar yang memiliki tingkat kepadatan yang tinggi pada saat jam-jam dan hari-hari kerja memiliki peraturan guna mengurangi kemacetan di jalan. Salah satu peraturannya adalah pemberlakukan plat nomor kendaraan ganjil genap sesuai dengan tanggal. Peraturan ini cukup efektif dalam mengurangi tingkat kemacetan di jalan-jalan protokol. Namun masih saja ada oknum-oknum yang melanggar peraturan ini dikarenakan kemampuan manusia yang terbatas sehingga tidak dapat selalu mengawasi plat nomor kendaraan secara maksimal. Dengan berkembangnya teknologi terutama di bidang computer vision masalah ini dapat dikurangi. Dengan menggunakan bantuan machine learning yaitu computer vision menggabungkan alat fisik yaitu kamera dengan komputer sehingga dapat mendeteksi dan membaca plat nomor pada kendaraan. Perkembangan teknologi membuat machine learning semakin berkembang sehingga proses melakukan deteksi dapat dilakukan dengan lebih cepat dan akurat. Untuk melakukan hal ini algoritma YOLOv7 dilatih untuk melakukan deteksi pada plat nomor kendaraan serta membacanya sehingga dapat diklasifikasian termasuk ganjil / genap sesuai dengan tanggal pendeteksian. Pada penelitian ini dilakukan pembangunan prototype sistem pendeteksi dan klasifikasi ini menggunakan machine learning dan computer vision untuk melakukan deteksi plat nomor pada kendaraan yang lewat di jalan-jalan protokol. Hasil dari penelitan ini adalah dengan menggunakan algoritma YOLOv7, model yang dihasilkan memiliki akurasi sebesar 86%, melakukan pembacaan plat nomor hasil deteksi dengan EeasyOCR memiliki tingkat kesalahan pembacaan per karakter 3.81% dan kesalahan pembacaan per kata sebesar 11.90%, sistem dapat melakukan deteksi dan pembacaan plat nomor secara real time dengan baik, melakukan identifikasi pada jenis tanggal (ganjil  genap) dan memberikan alert ketika ada plat nomor yang tidak sesuai ketentuan tanggal.

Jakarta as the big city and the capital of Indonesia that have high density rate in the work hours and days have a special rule to decrease the congestion rate in the road. One of the rules is the enforcement of odd even license plate rules that connect to the real time date. This rule is effective in decreasing the congestion rate in the major arterial roads. but there's still a loophole that makes people violate this rule, the human limited ability makes them can't always observe all the license plate. With the help of technology development in computer vision, can help to reduce the problem. Computer vision combines the video camera and computer to work side by side so it can read and detect the license plate number. Technology development also develops the computer vision ability so detection and recognition can be done with more accuracy and less time. To do this thing YOLOv7 algorithm trains a model to detect the license plate in a car and read the license plate so it can classify the license plate type (odd/even) and compare it with the research date type. This research build the prototype of detection and classifier system with machine learning and computer vision, to do the automatic odd /even license plate detection and recognition at the car in artery road. As the result of the research , the detection model made by YOLOv7 algorithm have a 86 % accuracy, and the character recognition with EasyOCR have a character error rate 3.81 %  and word error rate 11.90 % , the system prototype can run the detection and OCR in real time, the prototype can get the real time date and classified it as odd or even number, and give an alert when the detected license plate number violated the odd even rule.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akmal
"Dalam perkembangan teknologi saat ini, perlindungan jaringan komputer sangat diperlukan, maka kita membutuhkan sebuah sistem untuk melindunginya jaringan dari serangan, salah satu serangan paling sering di jaringan Komputer adalah DDoS. Proteksi DDoS ini dapat dilakukan dengan cara: menggunakan Supervised Learning atau Unsupervised Learning. Diawasi Pembelajaran adalah suatu metode dimana sistem diberi label data sehingga mampu mengklasifikasikan data uji yang diberikan, dan pembelajaran tanpa pengawasan maka jika data tidak berlabel diberikan, maka sistem harus klasifikasi tanpa bantuan label, keuntungan dari sistem tanpa label apakah sistem mampu mengidentifikasi serangan yang tidak sistem pembelajaran yang aktif. Sistem untuk mendeteksi ini membutuhkan efisiensi
agar dapat merespon dengan cepat terhadap serangan yang dilakukan.
Maka dimungkinkan untuk membuat suatu sistem yang dapat menghilangkan data tersebut tidak ada kemampuan serangan, sistem ini dapat dikonfigurasi dengan menggunakan LSTM. Studi ini mencoba keefektifan Sistem pembelajaran tanpa pengawasan melalui implementasi sistem penghapusan data, eksperimen pada sistem kepunahan data untuk menentukan arsitektur terbaik, dan melakukan modifikasi pada sistem pembelajaran tanpa pengawasan. Hasil penelitian ini menunjukkan efek sistem data terhadap sistem deteksi DDoS dan
potensi keuntungan dan kerugian dari penerapan sistem dilakukan pada kemampuan deteksi sistem DDoS

In today's technological developments, computer network protection
indispensable, then we need a system to protect it network from attacks, one of the most frequent attacks on the network Computers are DDoS. This DDoS protection can be done by: using Supervised Learning or Unsupervised Learning. Supervised Learning is a method in which the system is labeled data so that able to classify the test data given, and unsupervised learning then if unlabeled data is given, then the system must labelless classification, the advantages of the labelless system whether the system is able to identify attacks that are not active learning system. The system to detect this requires efficiency in order to be able to respond quickly to attacks carried out.Then it is possible to create a system that can eliminate data no attack capability, this system can be configured with using LSTM. This study tested the effectiveness Unsupervised learning system through system implementation data deletion, experiment on extinction system data to determine the best architecture, and make modifications to unsupervised learning system. The results of this study indicate the effect of data system against DDoS detection system and potential advantages and disadvantages of implementing the system performed on the DDoS detection capability. system
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syach Riyan Muhammad Ardiyansyah
"Pendeteksian topik merupakan sebuah proses dalam menganalisis data teks untuk menemukan sebuah topik-topik yang ada pada data teks. Pada era digital saat ini, pendeteksian topik sering digunakan untuk menganalisis topik dan mengelompokkan informasi berdasarkan topiknya. Machine learning membantu proses pendeteksian topik menjadi lebih cepat dan efisien, terutama pada data teks dengan ukuran data yang besar. Salah satu metode machine learning yang dapat digunakan untuk pendeteksian topik adalah metode clustering. Namun karena dimensi data yang tinggi membuat beberapa metode clustering kurang efektif menyelesaikan pendeteksian topik. Untuk mengatasi hal tersebut data yang memiliki ukuran dimensi yang cukup tinggi perlu dilakukan proses reduksi dimensi terlebih dahulu. Improved Deep Embedded Clustering (IDEC) merupakan sebuah metode clustering yang secara bersamaan melakukan reduksi dimensi data dan clustering. Oleh karena itu, pada penelitian ini dilakukan pendeteksian topik dengan metode clustering IDEC. Data yang digunakan pada penelitian ini merupakan data berita online AG News, Yahoo! Answer, dan R2. Namun pada metode IDEC, data teks tidak bisa langsung menerima input berupa data teks. Data teks perlu diubah menjadi vektor representasi yang dapat diterima input. Pada penelitian ini digunakan metode representasi teks Bidirectional Encoder Representation from Transformers (BERT). Data teks mula-mula akan diubah oleh BERT menjadi vektor representasi, setelah itu vektor representasi akan diterima dan dilakukan pendeteksian topik oleh metode IDEC. Kemudian pada proses simulasi dilakukan perbandingan kinerja model IDEC dengan representasi teks BERT dan model IDEC dengan representasi teks TF-IDF. Didapatkan hasil simulasi dari kinerja model IDEC dengan representasi teks BERT memiliki kinerja yang lebih unggul dibandingkan dengan model IDEC dengan representasi teks TF-IDF

Topic detection is a process in analyzing text data to find topics that exist in text data. In today's digital era, topic detection is often used to analyze topics and grouping the information by topic. Machine learning helps the topic detection process to be faster and more efficient, especially in text data with large data sizes. One of the machine learning methods that can be used for topic detection is the clustering method. However, because the high data dimensions make some clustering methods less effective in completing topic detection. To overcome this, data that has a sufficiently high dimension size needs to be carried out in a dimension reduction process first. Improved Deep Embedded Clustering (IDEC) is a clustering method that simultaneously performs data dimension reduction and clustering. Therefore, in this study, topic detection was carried out using the IDEC clustering method. The data used in this study is the online news data of AG News, Yahoo! Answer, and R2. However, in the IDEC method, text data cannot directly receive input in the form of text data. Text data needs to be converted into a vector representation that can accept input. In this study, the Bidirectional Encoder Representation from Transformers (BERT) text representation method was used. The text data will first be converted by BERT into a vector representation, after that the vector representation will be accepted and topic detection will be carried out by the IDEC method. Then the simulation process compares the performance of the IDEC model with the BERT text representation and the IDEC model with the TF-IDF text representation. The simulation results obtained from the performance of the IDEC model with the text representation of BERT which has superior performance compared to the IDEC model with the text representation of TF-IDF."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Riefky Arif Ibrahim
"Katarak merupakan salah satu jenis kelainan mata yang menyebabkan lensa mata menjadi berselaput dengan pandangan berawan, sehingga memungkinkan untuk mengalami kebutaan total. Penderita katarak dapat disembuhkan dengan operasi setelah sebelumnya dilakukan computed tomography (CT) scan dan magnetic resonance imaging (MRI) sebagai metode untuk mendapatkan citra digital mata. Namun, penggunaan metode ini tidak selalu memungkinkan, terutama untuk fasilitas kesehatan di negara berkembang, karena kurangnya rumah sakit atau klinik mata yang menyediakan fasilitas berteknologi lengkap. Penelitian ini bertujuan untuk membantu proses analisis citra mata agar lebih cepat dan akurat dengan menggunakan model deep learning untuk memprediksi mata katarak menggunakan arsitektur CNN dengan terlebih dahulu menganalisis performa model dan membandingkan akurasi/loss model dengan penelitian sebelumnya. Metode perancangan model deep learning ini dilakukan dimulai dari preprocessing, membangun arsitektur model, proses training, dan diakhiri dnegan evaluasi hasil model dengan mengguakan confusion matrix dan classification report. Dari perancangan ini, didapatkan hasil validasi akurasi model sebesar 92.97% dan hasil validasi loss 0.1539. Dari model yang penulis buat dihasilkan model deep learning dengan nilai evaluasi pendeteksian mata katarak dengan presisi 94.30%, recall 97.47%, dan f-1 score 95.85%. Hasil dari penelitian ini menunjukkan bahwa model yang penulis rancang telah dapat memprediksi gambar penyakit katarak dengan akurasi diatas 80 % dengan loss dibawah 30 % dengan hasil presisi, recall, dan f-1 score >90% dan menunjukkan tingkat overfitting yang minimal.

Cataract is an eye condition in which the lens of the eye becomes webbed and cloudy, resulting in total blindness. Cataract patients can be cured through surgery after undergoing computed tomography (CT) scans and magnetic resonance imaging (MRI) to obtain digital images of the eyes. However, due to a lack of hospitals or eye clinics that provide complete technology facilities, this method is not always feasible, particularly for health facilities in developing countries, particularly in Indonesia. By first examining the model's performance and comparing the model's accuracy/loss with prior research, this study intends to make the eye image analysis process faster and more accurate by employing a deep learning model to predict cataracts using the CNN architecture. Starting with preprocessing, designing the model architecture, training, and finally evaluating the model outcomes using a confusion matrix and classification report, this deep learning model design technique is followed. The model accuracy validation results from this design are 92.97 % and the loss validation results are 0.1539. A deep learning model with an evaluation value of cataract eye detection with a precision of 94.30 %, recall of 97.47 %, and an f-1 score of 95.85 % was produced from the author's model. According to the findings of this study, the author's model can predict cataract images with an accuracy of more than 80%, a loss of less than 30%, precision, recall, and f-1 score greater than 90%, and minimal overfitting.

"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzul Akbar
"Large Language Model (LLM) generatif merupakan jenis model machine learning yang dapat diaplikasikan dalam industri jurnalisme, khususnya dalam proses pembuatan dan validasi berita. Namun, LLM memerlukan sumber daya yang besar untuk operasionalnya serta membutuhkan waktu proses inferensi yang relatif lama. Penelitian ini bertujuan untuk mengembangkan layanan web machine learning yang memanfaatkan LLM generatif untuk proses pembuatan dan validasi berita. Tujuan lainnya adalah menciptakan sistem dengan mekanisme manajemen beban yang efisien untuk meminimalkan waktu inferensi. Pengembangan melibatkan beberapa tahap, yakni analisis kebutuhan stakeholder, perancangan desain dan arsitektur, implementasi, serta evaluasi. Dalam implementasi layanan web machine learning, pengembangan ini berfokus pada manajemen GPU untuk meningkatkan kecepatan proses inferensi LLM. Selain itu, dilakukan implementasi design pattern untuk meningkatkan skalabilitas dalam penambahan model machine learning. Untuk manajemen beban, dikembangkan dua mekanisme, yaitu load balancer dan scheduler. Implementasi load balancer memanfaatkan NGINX dengan metode round-robin. Sedangkan untuk scheduler, digunakan RabbitMQ sebagai antrean, dengan publisher menerima permintaan dan subscriber mendistribusikan permintaan ke layanan yang tersedia. Berdasarkan API Test, layanan ini berhasil melewati uji fungsionalitas dengan waktu respons API sekitar 1-2 menit per permintaan. Evaluasi performa pada kedua mekanisme manajemen beban menunjukkan tingkat keberhasilan 100%, dengan waktu respon rata-rata meningkat seiring dengan peningkatan jumlah request per detik. Pengelolaan beban dengan load balancer menghasilkan waktu respon yang lebih cepat, sementara pengelolaan beban dengan scheduler menghasilkan mekanisme yang lebih efektif pada proses koneksi asinkron.

Generative Large Language Model (LLM) is a type of machine learning model that can be applied in the journalism industry, especially in the process of news generation and validation. However, LLM requires large resources for its operation and requires a relatively long inference process time. This research aims to develop a machine learning web service that utilizes generative LLM for news generation and validation. Another goal is to create a system with an efficient load management mechanism to minimize inference time. The development involves several stages, namely stakeholder needs analysis, design and architecture, implementation, and evaluation. In the implementation of machine learning web services, this development focuses on GPU management to increase the speed of the LLM inference process. In addition, the implementation of design patterns is done to improve scalability in adding machine learning models. For load management, two mechanisms are developed: load balancer and scheduler. The load balancer implementation utilizes NGINX with the round-robin method. As for the scheduler, RabbitMQ is used as a queue, with the publisher receiving requests and the subscriber distributing requests to available services. Based on the API Test, the service successfully passed the functionality test with an API response time of about 1-2 minutes per request. Performance evaluation on both load management mechanisms showed a 100% success rate, with the average response time increasing as the number of requests per second increased. The use of a load balancer results in faster response times, while load management with a scheduler results in a more effective mechanism for asynchronous connection processes. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricki Taufik
"Penelitian ini bertujuan untuk meningkatkan prediksi time series pada jaringan seluler dengan memasukkan variabel lagged ke dalam model peramalan yang berbeda. Penelitian ini berfokus pada memprediksi Total Traffic Volume (Payload) pada jaringan seluler menggunakan model statistik dan machine learning. Teknik feature engineering melibatkan pemilihan variabel lagged, termasuk beban PRB, CQI, dan pengguna RRC, bersama dengan variabel waktu. Model yang memasukkan variabel lagged tambahan, yaitu SARIMAX, LSTM Multi, dan SVR Multi, memiliki performa lebih baik daripada model sebanding univariat tambahan, dengan hasil RMSE yang lebih rendah, MAE yang lebih rendah, dan nilai R-squared yang lebih tinggi. Penelitian ini menekankan pentingnya memasukkan variabel lagged dan menghitung peningkatan akurasi peramalan pada model multi-variabel dibandingkan dengan model variabel tunggal. Temuan ini berkontribusi pada pemahaman tentang peramalan time series pada jaringan seluler dan memberikan panduan untuk prediksi traffic volume yang akurat.

This research aims to improve time series prediction in cellular networks by incorporating lagged variables into different forecasting models. The study focuses on predicting the Total Traffic Volume (Payload) in cellular networks using statistical and machine learning models. Feature engineering involves selecting lagged variables, including PRB load, CQI, and RRC users, along with time variables. The models incorporating additional lagged variables, namely SARIMAX, LSTM Multi, and SVR Multi, outperform their counterparts without additional variables, resulting in lower RMSE, MAE, and higher R-squared values. The study highlights the importance of incorporating lagged variable and calculates the improvement of forecasting accuracy at multi-variable models compared to single variable models. These findings contribute to the understanding of time series forecasting in cellular networks and provide insights for accurate traffic volume prediction.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bayu Mulya Harsono
"ABSTRAK
Dengan berkembangnya teknologi mikrofabrikasi, maka mendorong industri manufaktur untuk memproduksi part ? part berskala mikro dengan waktu yang cepat dan murah, seperti proses injection molding. Sehingga dibutuhkan suatu mold yang berskala mikro untuk mendukung proses produksi tersebut. Pada penelitian ini dilakukan pemesinan produk ?micro mold? dengan material steel ST41 dan Aluminium AA 1100 menggunakan micro milling pergerakan tiga axis. Model produk yang di machining berupa sculptured surface dan logo Android dengan raw material berbentuk kubus berdimensi panjang 3 mm. Program finishing yang digunakan pada pemesinan model sculptured surface adalah contour area menggunakan tool path parallel zig ? zag dengan depth per cut 12.5 μm dan step over 5μm serta dua layer pemesinan. Cutting tool yang digunakan operasi tersebut, ball nose end mill 0.1 mm carbide coated. Setelah proses machining selesai, dilakukan pengambilan foto hasil pemesinan dengan SEM ( Scanning Electron Microscope) sehingga terlihat lebih detil permukaan pemesinan dan di analisa permukaan hasil pemesinan berdasarkan kesesuaian dengan designed surface pada CAD model. Selain itu, dianalisa pula banyaknya cutter location point (CL point) sebanyak 32 CL point per millimeter pada lintasan pahat yang bergerak di tengah sculptured surface pada proses finishing dan analisa machining tolerance pada lintasan pahat operasi finishing dengan lebar tolerance band sebesar 1 mikrometer untuk besarya setiap intol dan outol tolerance curve. Hasil analisa machining tolerance, menyatakan bahwa cutter contact point ( CC point ) dari lintasan pahat tersebut masih berada di dalam tolerance band. Sehingga perencanaan machining menggunakan CAM software dengan cutting parameter yang terkait dapat di gunakan untuk micro ? machining.

Abstract
The technology development of micro fabrications is encouraging manufacturers to produce micro-scaled industrial parts with a fast and cheap production, such as injection molding process. So it takes a micro-scale mold to support the production process. This research discusses about the results of micromilling in micro ? mold manufacturing which is using ST41 steel and aluminum AA 1100 materials with three axis machining. The model machined products are sculptured surface and android logo with a cubical raw material with 3 mm dimension length. The sculptured surface finishing program is used contour area with parallel zig tool ? path. The cutting tools were used 0.1 mm ball nose end mill carbide coated. The SEM (Scanning Electron Microscope) photograph was taken after the machining process, therefore the machined surface can be examined more detailed. From the SEM photograph, the geometry comparison between CAD model and machined surface was done. The analysis of the cutter location point (CL ? point) density was done on the center line of sculptured surface in finishing operation. The result of experiment and analysis shows that the density of CL ? point on observed too ? path segment is 32 CL ? point per millimeter. The width of tolerance band is 1 micrometer for each intol and outol tolerance. For the machining tolerance analysis, all the cutter contact points ( CC ? point ) are inside the tolerance band. It is concluded that the tool ? path designing with CAM software and its cutting parameter are capable for micro machining process."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43620
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>