Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75871 dokumen yang sesuai dengan query
cover
Imia Ribka
"Nanokarbon adalah material karbon yang diproduksi dengan struktur dan ukuran nanometer. Dekomposisi katalitik metana merupakan salah satu sintesis nanokarbon dengan metode CVD (Chemical Vapour Deposition) yang cukup ekonomis untuk menghasilkan nanokarbon. Penelitian ini dilakukan menggunakan katalis Fe dan karbon aktif sebagai substrat. Karbon aktif yang digunakan dibuat dari kulit buah pisang dengan menggunakan zat aktivasi KOH yang dapat memberikan luas permukaan karbon aktif yang lebih besar. Katalis dan karbon aktif kulit buah pisang dipreparasi dengan menggunakan metode impregnasi. Katalis dan karbon aktif yang telah diimpregnasi direaksikan dengan metana pada temperatur 700°C dan tekanan 1 atm dengan waktu reaksi selama 60, 120, dan 300 menit. Hasil penelitian menunjukkan nanokarbon yang terbentuk pada 60 menit adalah carbon onion quasi-sphere dengan konversi metana sebesar 14%, pada 120 menit membentuk CNT dengan konversi metana sebesar 18% dan pada 300 menit terjadi peningkatan pembentukan nanokarbon berkualitas rendah dengan konversi metana sebesar 44%.

Nanocarbon is a carbon material produced by the nanometer structure and size. Catalytic decomposition of methane is one of the economic methods for synthesis nanocarbon by CVD (Chemical Vapour Deposition) to produce nanocarbon. The research was conducted using the catalyst Fe and activated carbon as catalyst support. Activated carbon was made from banana peel by using KOH as activating agent which can provide a large surface area. Catalyst Fe and banana peel activated carbon prepared by impregnation method. Catalyst and activated carbon which has been impregnated is reacted with methane which the reaction temperature of 700°C and atmospheric pressure during 60, 120 and 300 minutes reaction times. The results showed nanocarbon formed at 60 minute reaction time is carbon onions quasi-sphere with methane conversion of 14%, at 120 minute reaction time is CNT with methane conversion of 18% and at 300 minute reaction time an increase the formation of nanocarbon low quality with methane conversion of 44%."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42810
UI - Skripsi Open  Universitas Indonesia Library
cover
Najma
"Dalam penelitian ini, karbon aktif dari limbah kulit pisang digunakan sebagai sumber karbon untuk pertumbuhan nanokarbon dan karbon nanotube. Proses pertumbuhannya adalah dengan menggunakan metode pirolisis sederhana dan dekomposisi metana. Dibutuhkan suhu yang lebih tinggi untuk menghasilkan CNT dengan pirolisis sederhana yaitu 950°C sedangkan karbon aktif yang diimpregnasi dengan katalis Fe dan didekomposisi metana menghasilkan MWCNT tipe tip-growth. Aliran N2/CH4 memiliki hasil yang lebih baik daripada hanya aliran CH4 dalam suhu 800°C dan waktu reaksi 1 jam.
Karbon aktif yang dikalsinasi terlebih dahulu dapat menghasilkan nanokarbon dengan diameter lebih rendah yaitu 1,5-23nm dari pada karbon aktif tanpa kalsinasi (17-40nm). Konsentrasi metana rata-rata 1%wt Fe/karbon aktif 65,27% lebih besar daripada 5%wt Fe/karbon aktif 64,30%. Karbon aktif dari limbah kulit pisang ini dapat menghasilkan nanokarbon dan karbon nanotube walaupun memiliki luas permukaan rendah.

Activated Carbon (AC) from banana peel waste is used to growth of nanocarbon and carbon nanotube with Simplicity pyrolisis method and methane chemical vapour decomposition. Synthesis nanocarbon with simplicity pyrolisis have to in high temperature 950°C but with catalytic impregnation Fe and activated carbon via methane chemical vapour decomposition can produce MWCNT. CNTs formed over Fe catalyst illustrated a typical tip-growth phenomenon. The ideal condition at reaction temperature of 800°C and reaction time of 1 hour for Nanocarbons growth was noticed under N2/CH4 gas flow ratio of 2:1 rather than only CH4 atmosphere.
Activated carbon with calcination can produce nanocarbon with small diameter (1,5nm-23nm) rather than activated carbon with noncalcination (17-40nm). Average methane concentration 1%wt Fe/AC (65,27%) more high than 5%wt Fe/AC (64,30%). Therefore as a result, banana peel activated carbon can produce nanocarbon although have low-surface area.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42598
UI - Skripsi Open  Universitas Indonesia Library
cover
Isdiana Karina Purti
"Carbon foam merupakan material yang menjanjikan sebagai substrat katalis. Namun, ketiadaan mikropori pada carbon foam menyebabkan rendahnya luas permukaan untuk deposit katalis. Luas permukaan dapat ditingkatkan dengan menumbuhkan nanokarbon di dalamnya. Metode yang digunakan adalah dekomposisi katalitik metana dengan nikel sebagai katalis, dengan variasi waktu reaksi 2,5 jam; 5 jam; dan 7,5 jam.
Karakterisasi yang dilakukan adalah BET, SEM, dan uji adsorpsi gas hidrogen. Substrat nanokarbon-carbon foam dengan waktu reaksi lima jam menghasilkan luas permukaan dan kemampuan adsorpsi hidrogen paling tinggi, yaitu 98,19 m2/gram dan 4,2% wt hidrogen pada tekanan 250 psia. Waktu reaksi tersebut telah dapat menumbuhkan karbon nanofiber dalam carbon foam.

Carbon foam is a promising material as a catalyst substrate. However, the absence of mikropores on carbon foam resulting in low surface area to deposit the catalyst. The surface area can be be increased by growing nanocarbon in it. The method used is the catalytic decomposition of methane, with variations in reaction time of 2.5 hours, 5 hours, and 7.5 hours, and the catalyst used is nickel.
Characterization that done is BET, SEM, and hydrogen gas adsorption test. Nanocarbon-carbon foam substrate with a reaction time of five hours produces the highest surface area and hydrogen adsorption capacity, that is 98.19 m2/gram; 4.2% wt hydrogen at a pressure of 250 psia. The reaction time has been able to grow carbon nanofiber in the carbon foam.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S51757
UI - Skripsi Open  Universitas Indonesia Library
cover
Irma Kartika Sari
"Karbon aktif kulit buah pisang dapat digunakan sebagai prekursor CNT dikarenakan kandungan karbon pada kulit buah pisang sebesar 41,37%. Pada penelitian ini, campuran karbon aktif kulit buah pisang dan minyak mineral 2% disintesis menjadi CNT dengan melibatkan deposisi katalis Fe. Metode sintesis CNT yang digunakan adalah metode pirolisis yang difokuskan pada pengaruh suhu dan waktu reaksi. CNT dianalisis dengan menggunakan Fourier Transform Infra Red (FTIR), X-Ray Diffraction (XRD), dan Transmission Electron Microscopy (TEM). Suhu reaksi 1200°C menyebabkan minyak mineral tidak berfungsi dengan baik dan katalis teracuni. Waktu reaksi yang lebih dari 60 menit menyebabkan terjadinya deaktivasi katalis Fe. Hasil penelitian ini menunjukkan bahwa suhu dan waktu reaksi terbaik untuk sintesis CNT adalah 1100°C dan 60 menit.

Banana peel activated carbon can be used as CNT’s precursor because it has carbon content of 41, 37%. In this experiment, banana peel activated carbon mixed with 2% mineral oil is synthesized to produce CNT which involves Fe catalyst deposition. CNT were synthesized by pyrolysis method which focused on reaction temperature and time effect. CNT were analyzed by Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Mineral oil is not functioning properly and catalyst poisoning at 1200°C. Furthermore, especially under reaction time more than 60 minutes make Fe catalyst to deactivate. These results demonstrate that the best reaction temperature and time for CNT synthesis were 1100°C and 60 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54591
UI - Skripsi Membership  Universitas Indonesia Library
cover
Herry Prasetyo Anggoro
"Reaktor terstruktur gauze digunakan sebagai solusi dari masalah yang ditemukan pada penggunaan reaktor fixed bed untuk reaksi dekomposisi katalitik metana. Reaktor terstruktur gauze memiliki beberapa kelebihan, yaitu memiliki pressure drop yang rendah dan konversi lebih tinggi.
Pada penelitian ini, dilakukan pemodelan dan simulasi reaktor terstruktur gauze menggunakan Computational Fluid Dynamics yang mengacu pada kinetika Snoeck, 1997. Pemodelan hanya mempertimbangkan neraca massa dan momentum, di mana reaktor diasumsikan bersifat isotermal.
Simulasi dilakukan dengan mengubah-ubah variabel proses seperti temperatur reaktor, komposisi masukkan, tekanan masukkan, dan kecepatan masuk. Melalui simulasi variasi proses, dapat diketahui pengaruh perubahan kondisi operasi terhadap kinerja reaktor, seperti pada kenaikan temperatur akan menyebabkan konversi reaktor semakin meningkat.

Gauze structured reactors are used as the solution of problems found in the use of fixed bed reactor for reaction of catalytic decompotition methane. Gauze structured reactor has several advantages, having a low pressure drop and higher conversion.
In this study, the modeling and simulation of structured gauze reactor using Computational Fluid Dynamics refers to the kinetic Snoeck, 1997. Modelling only consider the mass balance and momentum, where the reactor is assumed to be isothermal.
Simulations carried out by varying process variables such as reactor temperature, inlet composition, inlet pressure and inlet velocity. Through the simulation process variations, we can know the effect of changing operating conditions on reactor performance, such as the rise in temperature will cause the reactor conversion increases.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51793
UI - Skripsi Open  Universitas Indonesia Library
cover
Refani Iskandar
"Penelitian ini dilakukan untuk mendapatkan rancangan reaktor katalis terstruktur pelat sejajar yang digunakan untuk memproduksi nanokarbon dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis multimetal Ni-Cu-Al 3:2:1. Pada reaktor katalis terstruktur pelat sejajar ini dilakukan pengujian untuk 20 menit dan 355 menit reaksi. Pada 20 menit reaksi, konversi metana tertinggi yang didapat adalah 70,16% dengan kemurnian hidrogen 74,29% dan yield karbon 2,58 gram. Pada 355 menit reaksi, didapatkan bahwa konversi metana mengalami penurunan dari 76,15% hingga 46,06% dan naik kembali pada menit ke-235 sebesar 59,90% kemudian cenderung stabil setelah menit ke-235. Pada 6 jam reaksi uji stabilitas, yield karbon yang dihasilkan 17,25 gram.

The purpose of this research is to construct plate catalyst structured to produce nanocarbon and hydrogen with catalytic decomposition of methane. Catalyst which is used in this research is multimetal catalyst, Ni-Cu-Al 3:2:1. Two experiment that had already done were twenty minutes and 355 minutes reactions. The highest conversion of methane is 70,16% and 74,29% hydrogen purity for twenty minutes reaction and yield carbon was 2,58 gram. For 355 minutes reaction, the conversion of methane decreasing from 76,15% to 46,06% and increase to 59,90%. After that, methane conversion relative stabil. After 355 minutes reaction , yield carbon was 17,25 gram."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51732
UI - Skripsi Open  Universitas Indonesia Library
cover
Yulhafidz
"Pengaplikasian Carbon Nano Tube (CNT) di berbagai bidang mulai dari elektronik hingga kesehatan terus meningkat setiap tahunnya. Dengan potensi pasar CNT yang menjanjikan, perlu dilakukan analisis tekno ekonomi untuk melihat kelayakan proses produksi CNT.
Hasil penelitian menunjukkan bahwa reaksi dekomposisi katalitik metana menggunakan reaktor katalitik terstruktur dapat memproduksi CNT komersial dengan biaya yang murah. Reaktor katalitik terstruktur memberikan konversi metana yang optimum dengan kondisi operasi pada suhu 700 °C, tekanan atmosferik dan perbandingan berat katalis dengan laju alir umpan sebesar 0,006 gr menit/ mL.
Perhitungan parameter keekonomian mengindikasikan bahwa investasi bersifat ekonomis karena didapat IRR sebesar 23,73% dan NPV Rp4.138.422.889,27

Application of Carbon Nano Tube (CNT) is increasing in many fields, from electronics till health sector. With CNT promising market potential, technoeconomic analysis is needed to see the feasibility of CNT production processes.
The results showed that catalytic decomposition reaction of methane using a structured catalytic reactor to produce commercial CNT has low cost. Structured catalytic reactor provides optimum methane conversion with operating condition at a temperature of 700 °C, atmospheric pressure and weight ratio of catalyst to feed flow rate of 0.006 g min / mL.
The calculation of economic parameters indicate that the investation are profitable because it acquired the investment IRR of 23.73% and NPV Rp4.138.422.889, 27
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S51713
UI - Skripsi Open  Universitas Indonesia Library
cover
Friska Amalia
"Carbon foam merupakan material yang menjanjikan sebagai substrat katalis terstruktur karena keunggulan sifatnya yang memiliki luas permukaan yang besar serta pressure drop yang rendah. Penumbuhan nanokarbon pada carbon foam dapat menghasilkan luas permukaan yang jauh lebih besar untuk deposisi inti aktif katalis. Penumbuhan nanokarbon dilakukan melalui reaksi dekomposisi katalitik metana dengan katalis nikel pada suhu 500_C selama 5 jam. Katalis nikel dipreparasi menggunakan metode presipitasi. Precipitating agent yang digunakan adalah urea dan amonia. Deposisi katalis nikel dengan urea dilakukan selama 12 jam dan 24 jam, dengan loading masing-masing sebesar 0,0285 dan 0,0448 g Ni/g CF. Hasil deposisi katalis dikarakterisasi menggunakan SEM. Hasil SEM menunjukkan bahwa waktu deposisi yang lebih lama menghasilkan dispersi katalis yang lebih merata. Hasil penumbuhan nanokarbon pada carbon foam dikarakterisasi menggunakan SEM dan BET. Hasil SEM menunjukkan bahwa pertumbuhan nanokarbon belum optimal, sedangkan hasil BET menunjukkan peningkatan luas permukaan carbon foam sebesar 11,55 m2/g.

Carbon foam is a promising material for structured catalyst support because it offers high surface area and low pressure drop. Growth of nanocarbon on carbon foam increasing accessible surface area of carbon foam to deposit catalyst particle. Growth of nanocarbon was done by catalytic decomposition of methane at 500_C. Reaction occurred in 5 hours. The catalyst used in this reaction is nickel which has been prepared by precipitation method, using urea and ammonia as precipitating agent. Deposition of nickel catalyst using urea as precipitation agent was carried out for 12 hours and 24 hours. Each deposition time produced different catalyst loading, which are 0.0285 and 0.0448 g Ni/g CF respectively. Products of deposition were characterized using SEM. SEM results showed that a longer deposition time produces a more uniform dispersion of catalysts. Product of nanocarbon growth on carbon foam was characterized using SEM and BET. SEM results showed a poor quality of nanocarbon grown on carbon foam, while the BET results showed an increasing surface area of 11.55 m2/g approximately."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51683
UI - Skripsi Open  Universitas Indonesia Library
cover
Bernadet Valentine
"ABSTRAK
Produksi nanotube karbon jenis Single Walled Nanotube Carbon (SWNT) dan
Few Walled Nanotube Carbon (FWNT) masih sulit untuk dilakukan. Salah satu
penyebab utama adalah pemilihan katalis yang kurang tepat. Penelitian ini
menggunakan katalis Fe/Mo/MgO untuk menghasilkan SWNT atau FWNT
(diameter luar nanotube karbon kurang dari 10 nm). Katalis Fe/Mo/MgO
dipreparasi dengan metode sol gel/spray coating. Nanokarbon akan dihasilkan
melalui reaksi dekomposisi katalitik metana pada suhu 850oC dengan katalis
Fe/Mo/MgO. Hasil penelitian menunjukkan konversi metana tertinggi mencapai
97,64% dan yield karbon sebesar 1,48 gc/gkat. Nanokarbon kemudian
dikarakterisasi dengan Transmission Electron Microscope (TEM). Nanokarbon
yang dihasilkan pada penelitian ini terdiri atas nanotube karbon jenis FWNT
(range diameter luar 4,5 nm ? 10 nm). Selain itu, MWNT (Multi Walled Nanotube
Carbon, range diameter luar 10 nm ? 89,5 nm), carbon nanofiber, coil nanotube,
dan bamboo-shaped carbon juga telah dihasilkan. Jenis nanokarbon yang
dihasilkan bukan hanya jenis nanotube karbon disebabkan oleh waktu reaksi yang
terlalu panjang serta diameter partikel katalis 20 nm hingga 100 nm yang
terdeteksi dari hasil X-Ray Diffraction (XRD) dan Field Emmision Scanning
Electron Microscope (FE SEM). Untuk memperbaiki hasil ini, running pada
penelitian ini dilakukan sekali lagi dengan waktu reaksi 30 menit dengan waktu
reduksi 30 menit di suhu 850oC dan suhu kalsinasi 550oC di udara. Hasil
nanokarbon yang diperoleh memiliki range diameter luar yang lebih kecil dan
berkisar antara 8,5 nm hingga 66,85 nm yang terukur pada FE SEM. Namun, jenis
nanokarbon belum diketahui berupa FWNT atau MWNT atau nanokarbon
lainnya.

Abstract
Production of Single Walled Nanotubes Carbon (SWNT) dan Few Walled
Nanotubes Carbon (FWNT) is really hard to do recently. It occured due to
inappropriate catalyst selection. Fe/Mo/MgO catalyst, used in literature, was used
to make nanotubes carbon. Fe/Mo/MgO catalyst was prepared by sol gel/spray
coating method and it would be reacted with methane in 850oC (methane
decomposition catalytic reaction). The research result shows that the highest
methane conversion reached 97,64% and carbon yield is 1,48 gc/gkat.
Transmission Electron Microscope (TEM) indicated that the synthesized product
was FWNT (carbon nanotubes with outer diameter between 4,5 nm ? 10 nm),
MWNT (Multi Walled Nanotubes Carbon, outer diameter between 10 nm ? 89,5
nm), coil nanotube, carbon nanofiber, dan bamboo-shaped carbon. It is happened
due to longer time reaction and catalyst diameters have range between 20 nm ?
100 nm which detected by XRD and SEM characterization. Then, methane
decomposition catalytic reaction to get nanotube carbon was done once again in
shorter times (30 minutes), longer time of reduction (40 minutes), and lower
calcination temperature (550oC) in air. FE SEM indicated that range of outer
diameter nanocarbon between 8,5 nm ? 66,85 nm but its types can not be
determined by FE SEM."
Fakultas Teknik Universitas Indonesia, 2012
S43615
UI - Skripsi Open  Universitas Indonesia Library
cover
Francy
"Scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity menghasilkan laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter gauze 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm 2. Penelitian ini bertujuan untuk memproduksi nanokarbon dan hidrogen dengan katalis terstruktur gauze melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al. Pada reaktor katalis terstruktur gauze ini dilakukan uji aktifitas selama 20 menit dan uji stabilitas selama 17 jam pada suhu 700°C. Untuk uji stabilitas dengan 20 L/jam metana, konversi metana tertinggi adalah 96,77% dan kemurnian hidrogen tertinggi adalah 97,46%. Yield karbon yang dihasilkan oleh 1,83 gram katalis adalah 170,36 gram karbon. Untuk uji aktivitas dengan laju alir metana 6 L/jam diperoleh konversi metana tertinggi adalah 76,1% dan kemurnian hidrogen tertinggi adalah 79,3%. Yield karbon yang dihasilkan oleh 1,81 gram katalis adalah 57,34 gram karbon. Dari hasil percobaan diperoleh bahwa kapasitas reaktor ini adalah 393,19 gram/hari.

Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity results in 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm gauze diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to produce nanocarbon and hydrogen by gauze-type structural catalyst through catalytic decomposition of methane with Ni-Cu-Al catalyst. Two experiment that have already done are stability test for 17 hours and activity test for 20 minutes at 700°C. In stability test with 20 L/h methane flow, the highest conversion of methane is 96,77% and the highest hydrogen purity is 97,46%. Yield carbon that produced by 1,83 gram catalyst is 170,36 gram carbon. In activity test with 6 L/h methane flow, the highest conversion of methane is 76,1% and the highest hydrogen purity is 79,3%. Yield carbon that produced by 1,81 gram catalyst is 57,34 gram carbon. From the experiment, the production capacity of the reactor is 393,19 gram C/day."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52239
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>