Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81208 dokumen yang sesuai dengan query
cover
Readyas Wibawa
"Siklus rankine organik (ORC) merupakan sebuah sistem pembangkit yang berasal dari sumber energi yang telah diperbaharui. Sumber energi tersebut dapat berasal dari panas matahari, energi biomass, dan energi banyak energi yang dapat diperbaharui lainnya. Siklus rankine organik ini berguna untuk mengkonversikan energi panas yang didapat agar menjadi energi mekanis yang kemudian dikonversikan lagi menjadi energi listrik dengan temperatur rendah yang dihasilkan dari sumber energi. Pada sistem siklus rankine organik digunakan 2 buah alat penukar kalor, dimana masing-masing alat tersebut berfungsi sebagai evaporator dan condenser. Fluida kerja yang digunakan yaitu fluida refrijeran tipe R-22 dengan melting point pada T = -175,42oC, boiling point pada T = -40,7oC dan tekanan vapor pada p = 980 KPa saat T = 20oC . Proses kerja siklus rankine organik dilakukan dengan temperatur dan tekanan tertentu untuk mencapai kondisi yang diinginkan. Hal ini berfungsi agar mengetahui performa putaran turbin yang diaplikasikan dengan turbocharger untuk memutar generator listrik dengan daya 50 KW.

Organic Rankine Cycle (ORC) is a system of generating energy from sources that have been refurbished. The energy source can be derived from solar heat, biomass energy, and many energy other renewable energy. The organic Rankine cycle is useful for converting heat energy into mechanical energy in order to obtain a longer and then converted into electrical energy with low temperatures resulting from the energy source. In the organic Rankine cycle system used two pieces of equipment heat exchanger, where each device functions as an evaporator and condenser. The working fluid used is the type of fluid refrijeran R-22 with the melting point at T = -175,42oC, boiling point at T = -40,7oC and vapor pressure at p =980 KPa at T = 20oC. Organic Rankine cycle process work done by the temperature and pressure to achieve the desired condition. This works in order to know the performance of spin applied to the turbocharger turbine to rotate the electric generator with a 50 KW power."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42508
UI - Skripsi Open  Universitas Indonesia Library
cover
Dieter Rahmadiawan
"Organic Rankine Cycle ORC pada kondisi temperature rendah yang mana penelitian ini dilakukan berdasarkan kondisi laboratorium. Refrijeran R134a digunakan sebagai fluida kerja pada sistem ini. Prosedur kerja dari sistem ini akan dijelaskan sebagai berikut. Air bertemperatur tinggi dengan range 60C-80C akan digunakan untuk memanaskan refrijeran yang mana terjadi pada plate heat exchanger yang berfungsi sebagai evaporator. Uap panas akan dihasilkan dan ditersukan ke expander yang mana output dari expander ini akan ditersukan ke condensing unit. Sistem pendingin akan bekerja untuk mengubah refrijeran uap menjadi cair dan ditersukan ke Pompa Gear yang mana berfungsi sebagai pemberi tekanan dan mengaliri sistem sehingga siklus termodinamika dapat diulang.

This paper carried out the experimental of the perfomance under laboratory condition of a Low Temperature Organic Rankine Cycle system. The refrigerant R134a used as ORC working fluid for this study. The operation of the system is given briefly below. Hot water at temperature range of 60C ndash 80C were used to heat the refrigerant in plate heat exchanger working as evaporator. This occurence produce the super heated vapour and driven to expander where expander outlet is directed to condensing unit. The cooling system work for the condensing unit to convert into saturated liquid. A gear pump then is used and then the thermodynamic cycle is repeateds. "
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69157
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alif Kurniaputera Artanto
"Dewasa ini kebutuhan akan bahan bakar minyak dalam Indonesia semakin meningkat, tetapi tidak disertai oleh peningkatan produksi minyak dan gas. Salah satu cara untuk mengatasi hal tersebut adalah dengan menggunakan batubara lignit dalam proses gasifikasi untuk membentuk syngas yang kemudian digunakan untuk mensintesis bahan bakar. Untuk proses gasifikasi tersebut diperlukan charcoal yang memiliki luas permukaan yang besar yang dapat dihasilkan dari proses pirolisis batubara lignit. Penelitian ini bertujuan untuk mengetahui kondisi pirolisis yang optimal untuk mendapatkan charcoal dengan luas permukaan yang terbesar.
Pada penilitian ini, telah ditemukan bahwa kenaikan suhu akhir pirolisis dapat meningkatkan luas permukaan charcoal, sedangakan meningkatkan laju pemanasan akan menurunkan luas permukaan charcaol. Selanjutnya, dari penelitian ini diketahui bahwa peningkatan suhu akhir dan laju pemanasan dapat meningkatkan pengurangan massa dari sampel. Berdasarkan uji BET kondisi yang dapat menghasilkan luas permukaan yang terbesar adalah pada suhu akhir 850°C dan laju pemanasan 3°C/menit dengan luas permukaan sebesar 168,6 m2/g.

Presently, Indonesia’s requiremenets on fossil fuels continues to increase yet this increase is not accompanied by an increase in the production of oil and gas. One method to overcome this problem is to gasify lignite coal in order to produce synthetic gas which would be then used to be able to produce synthetic fuel. As a requirement for the gasification process, the charcoal used must require a large surface area which can be achieved through the pyrolisis of lignite coal. This research aims to identify the optimum operating conditions which would lead to the production of charcoal with the largest surface area.
In this research it was found that an increase in the final pyrolysis temperature would increase the surface area, on the other hand an in crease in the heating rate would decrease th surface area. Next, it was also apparent that an increase in final temperature and heating rate would both cause an increase in the weight loss of the sample. According to the BET analysis, the conditions which produced the largest surface area was at a final temperature of 850°C and a heating rate of 3°C/minute, with a surface area of 168,6 m2/g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S52854
UI - Skripsi Membership  Universitas Indonesia Library
cover
Engkos Achmad Kosasih
"Penulisan ini menggunakan metode beda hingga secara implisit, yang dituliskan dalam bentuk Persamaan Differensial Parsial {PDE), Hasil akhir dari penyelesaian persamaan differensial parsial di atas memberikan distribusi temperatur dan koefisien perpindahan kalor di silinder bagian dalam alat penukar kalor air ke udara-aliran Lawan arah. Pada tulisan ini juga akan diberikan langkah-langkah perhitungan untuk menyelesaikan permasalahan. Dari perhitungan numerik yang diperoleh akan dibandingkan hasilnya dengan hasil eksperimen. Sehingga dapat diberikan beberapa kesimpulan pada bagian akhir tulisan ini."
Depok: Universitas Indonesia, 1999
LP-Pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
"Aliran crossflow pada silinder ditandai dengan terjadinya fenomena titik stagnasi, separasi shear layer dan terbentuknya wake. Karakteristik flow regimes alirannya bisa berupa unsteady laminar (regime terbentuknya vortex shedding), transitional (regime dengan pola aliran transisi menuju turbulen pada daerah wake) dan sub-critical (regime terbentuknya turbulen pada shear layer). Besarnya nilai Reynolds number sangat berpengaruh pada karakteristik flow regimes aliran ini, sedangkan proses perpindahan panasnya banyak dipengaruhi oleh nilai Prandtl number. Besarnya nilai heat transfer ditunjukkan dengan parameter Nusselt number. Penelitian ini menggunakan studi numerik dengan memodifikasi kuantitas turbulen, yaitu pada turbulent viscosity dengan melakukan interpret UDF (user define function). Hasil studi numerik yang berupa Nusselt number akan dibandingkan dengan nilai Nusselt number hasil eksperimen dan dapat dijadikan basis konsep untuk mempelajari mekanisme fenomena aliran dan perpindahan panas pada tube banks heat exchanger. Metode penelitian yang digunakan adalah simulasi numerik 2-D RANS (Reynolds-Averaged Navier Stokes) steady dan unsteady dengan 3 pemodelan, yaitu standard k-є, standard k-ω, dan SST k-ω turbulence model."
Bandung: Unisba Pusat Penerbitan Universitas (P2U-LPPM), 2017
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Adhyatma Evan Danendra
"Perpindahan panas merupakan suatu proses atau fenomena untuk menghasilkan energi panas, dan proses perturakan energi panas. Fenomena perpindahan panas ini sering kali terjadi pada industri – industri proses manufaktur. Perpindahan panas biasa terjadi secara konduksi. Konduksi adalah perpindahan panas yang membutuhkan medium atau perantara dan tanpa disertai dengan perpindahan perantara yang ada. Konduksi biasa terjadi pada beragam jenis material atau perantara, bisa berfasa padat, cair, maupun gas. Perpindahan panas bisa diketahui dengan pengukuran konduktivitas termal. Pengukuran ini biasa dilakukan dengan alat ukur tertentu seperti thermometer dan termokopel. Dalam penelitian kali ini, pengukuran dilakukan menggunakan temperature data logger dan dihubungkan dengan cooling box peltier. Material yang digunakan adalah besi untuk fasa padat dan untuk fasa cair digunakan aquades dengan variasi yang berbeda-beda. Penurunan temperatur selama 30 detik akan menjadi acuan dan setelah didapatkan nilainya, kemudian akan diolah untuk mendapatkan nilai kl serta kesalahan relatif nya.

Heat transfer is a process or phenomenon of heat energy production, and heat energy exchange processes. Heat transfer phenomena often occur in the manufacturing process industry. Heat transfer usually occurs by conduction. Conduction is a heat transfer that requires medium without transfer the intermediate medium. Conduction can occurs in a variety of materials and media, can be liqud, solid, even gas. Heat transfers can be determined by measuring thermal conductivity, in this research measurements were done by using a temperature data logger connected to a peltier cooling box. The material used in the measurement is iron for solid phase and aquadest as a liquid phase. A temperature drop of 30 seconds will be the reference and after the value is obtained, it will be processed to obtain the value of kl and relative error.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kisna Dewangga
"Studi ini membahas tentang koefisien perpindahan kalor pada kanal mini dengan refrigeran R-22. Tujuannya adalah untuk mengetahui karakteristik koefisien perpindahan kalor pada kanal mini dan deviasi nilai koefisien perpindahan kalor antara hasil perhitungan data eksperimen terhadap hasil perhitungan korelasi dan hasil simulasi.
Pengujian dilakukan dengan kondisi operasi : heat flux yang diberikan antara 5 kW/m² s/d 80 kW/m², mass flux divariasikan 50 s/d 600 kg/m².s, dan temperatur saturasi antara -5°C, 0°C, 5°C dan 10°C. Sedangkan untuk bagian test section terbuat dari pipa stainless steel dengan diameter dalam 3 mm, diameter luar 5 mm dan panjang 1000 mm.
Dalam studi ini digunakan tiga metode untuk mendapatkan nilai koefisien perpindahan kalor. Sehingga akan didapat tiga hasil yaitu hasil perhitungan data eksperimen, perhitungan korelasi, dan hasil simulasi. Perhitungan dilakukan dengan menggunakan program MATLAB dan simulasi dengan program FLUENT.
Analisa dari hasil perhitungan didapatkan bahwa semakin besar heat flux dan mass flux yang diberikan maka nilai koefisien perpindahan kalor akan semakin besar pula. Deviasi terkecil diperoleh pada penggunaan perhitungan korelasi dibandingkan dengan penggunaan simulasi.

This study discusses the heat transfer coefficient in minichannel with refrigerant R-22. The aim is to investigate the characteristics of heat transfer coefficient on minichannel and the deviation coefficient of heat transfer between the calculation results of experimental data on the results of the correlation calculation and simulation results.
The experiment was running based on the following conditions : heat flux given between 5 kW/m² to 80 kW/m2, mass flux was varied 50 to 600 kW/m²s, and saturation temperature between -5°C, 0°C, 5°C and 10°C. As for the test section is made of stainless steel pipe with inner diameter 3 mm, outer diameter 5 mm and length 1000 mm.
In this study we used three methods to get the value of the coefficient of heat transfer. So that will be obtained three results, those are the calculation results of experimental data, the correlation calculation, and simulation results. The calculation is accomplished by using the MATLAB program and the simulation with FLUENT program.
Analysis of the calculation result is obtained that the greater the heat flux and mass flux is given, the greater value of the heat transfer coefficient. The smallest deviation was obtained at the use of correlation calculation compared with the use of simulation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S50920
UI - Skripsi Open  Universitas Indonesia Library
cover
Eko Oktorio
"Isu lingkungan mengenai pembatasan penggunaan refrijeran R-22 mulai diberlakukan. Untuk itu dibutuhkan refrijeran alternatif yang lebih baik untuk menggantikannya. Ciri dari refrijeran yang baik yaitu refrijeran yang memiliki nilai perpindahan kalor yang tinggi karena berpengaruh terhadap jumlah panas yang ditransfer dalam proses pendinginan. Dengan heat transfer yang tinggi, maka dapat membuat evaporator menjadi lebih kecil untuk menyerap besar kalor yang sama, sehingga ukuran dimensi sistem pendingin dapat dibuat lebih compact dan dapat menghemat ruang dalam kapal.
Tujuan dari penelitian ini adalah untuk mengetahui fenomena didih alir dan karakteristik Koefisien perpindahan kalor dari refrigeran R-290 dan R-22 pada pipa konvensional. Penelitian ini juga menjelaskan pengaruh dari mass flux, heat flux dan temperature saturasi terhadap nilai koefisien perpindahan kalor. Hasil dari eksperimen kemudian dibandingkan dengan persamaan yang telah diberikan peneliti sebelumnya yaitu Gungor-Winterton, Shah, Kwang-il Choi, Tran dan Kandlikar.

Environmental issues concerning usage restrictions R-22 came into effect. That requires refrijeran better alternative to replace it. Characteristic of the good is refrijeran refrijeran which has a high value of heat transfer due to an effect on the amount of heat transferred in the cooling process. With the high heat transfer, it can make a smaller evaporator to absorb the heat of the same, so the size dimension cooling system can be made more compact and can save space in the ship.
The purpose of this study was to determine the characteristics of the phenomenon of boiling flow and heat transfer coefficient of R-290 and R-22 in the conventional pipeline. The study also describes the effect of mass flux, heat flux and saturation temperature of the heat transfer coefficient. The results of the experiment were compared with the equation given previous research Gungor-Winterton, Shah, Kwang-il Choi, Tran and Kandlikar.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47550
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rino Ardianto
"ABSTRAK
Penanganan beban termal pada dunia industri sangat diperlukan. Sistem alat penukar kalor bisa dikembangkan pada sisi fluida yang digunakan dan desain pipa yang digunakan. Respon dalam bidang thermal adalah maraknya kembali perhatian akan pentingnya alat penukar kalor (heat exchanger). Sebuah alat penukar kalor yang baik
harus ditunjang oleh koefesien perpindahan panas yang baik. Koefesien perpindahan panas sendiri di pengaruhi oleh bilangan Reynolds. Dalam penelitian ini, dilakukan rancang bangun sebuah alat penukar kalor tipe double pipe dengan variasi pada pipa air panas, dimana pada pipa luar adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang pipa 1 m, diameter luar (Ø out) 88.6 mm, dan diameter dalam (Ø in) 85 mm dan pipa dalam adalah pipa baja karbon memiliki koefisien perpindahan kalor konduksi 54 W/m.K dan memiliki dimensi panjang
pipa 1.2 m, diameter luar (Ø out) 30 mm, dan diameter dalam (Ø in) 28 mm. Bedasarkan pengujian didapatkan grafik kenaikan nilai koefisien perpindahan kalor sebanding dengan kenaikan bilangan Reynolds. Profil kotak memiliki nilai koefisien perpindahan panas
yang lebih tinggi jika dibandingkan dengan profil bulat. Pada perbedaan jenis aliran Psangat berpengaruh terhadap nilai koefisien perpindahan panas profil bulat, sedangkan pada profil kotak tidak begitu terlihat perbedaannya.

ABSTRACT
Handling of thermal load on the industrial world is indispensable. Heat exchanger system can be developed on the side of the fluid used and the design of pipe used. Response in the thermal field is widespread concern about the importance of re-heat exchanger (heat exchanger). A good heat exchanger must be supported by a good heat transfer coefficient. Heat transfer coefficient itself is influenced by the Reynolds number. In this study, carried out design and construction of an appliance type double pipe heat exchanger with a variation on the hot water pipes, where the outer pipe is carbon steel pipe has a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1 m length of pipe, outer diameter (Ø out) 88.6 mm, and diameter in (Ø in) 85 mm and pipe in carbon
steel pipe is a conduction heat transfer coefficient of 54 W / mK and has dimensions of 1.2 m length of pipe, outer diameter (Ø out) 30 mm, and diameter in (Ø in) 28 mm. Based on the obtained testing the graph increases the heat transfer coefficient is proportional to the increase in Reynolds number. Profiles box has a heat transfer coefficient values are higher if compared to the rounded profile. In different types of flow greatly affect the heat transfer coefficient value rounded profile, whereas the profile square is not so pronounced."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1413
UI - Skripsi Open  Universitas Indonesia Library
cover
Panjaitan, Peter Lewis Hamonangan
"Penelitian ini membahas tentang karakteristik perpindahan kalor aliran dua fasa yang didapat berdasarkan pengujian dan dibandingkan dengan prediksi korelasi yang terdapat pada literatur. Percobaan ini dilakukan dengan menggunakan refrijeran R-22 dan R-290 yang dilakukan dalam pipa konvesional berdiameter 7,6 mm dengan bahan stainless steel (SS 316) dan panjang 1,07 m. Pengujian dilakukan dengan variasi fluks kalor (q), fluks massa (G), dan temperatur saturasi.
Hasil yang didapat pada penelitian ini adalah nilai fluks massa yang tinggi cenderung memiliki nilai koefisien perpindahan kalor yang tinggi pada awal evaporasi dan jika diberikan fluks kalor yang tinggi maka nilai koefisien perpindahan kalor juga akan naik, dan sistem dengan nilai temperatur saturasi yang tinggi maka akan dipengaruhi oleh koefisien perpindahan panas nucleat boiling. Perbandingan refrijeran mengindikasikan bahwa nilai koefisien perpindahan kalor R-290 lebih tinggi daripada R-22.

This study discusses about the characteristics of two-phase flow which obtained by experiment and the data is compared with predictions data of correlations in the literature. This experiment was conducted using refrijeran R-22 and R-290 in a conventional 7,6 mm pipe with stainless steel (SS 316) material and length of 1,07 m. Tests carried out with variations of heat flux (q), mass flux (G), and the saturation temperature.
The result of this study is high value of the mass flux values tend to have a high coefficient of heat transfer at the beginning of evaporation and high heat flux will increase the heat transfer coefficient value. Systems with a high value of the saturation temperature will be influenced by nucleat boiling heat transfer coefficient. Refrijeran comparison indicates that the value of heat transfer coefficient of R-290 is higher than R-22.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55395
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>