Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 98008 dokumen yang sesuai dengan query
cover
Muhammad Haikal
"ABSTRAK
Dalam geofisika dan reservoir engineering, metode neural network lazim digunakan
untuk melakukan prediksi hubungan antara data log dengan data seismik atau data log
lainnya, sehingga dengan data log yang tersedia dapat diperkirakan log lain yang tidak
tersedia datanya, bahkan dipergunakan juga untuk melakukan karakterisasi reservoir.
Namun metode ini juga memiliki sejumlah kekurangan dalam penerapannya guna
memprediksi hubungan antara satu jenis data dengan jenis data yang lain. Masalah umum
yang ditemui adalah metode ini sulit diterapkan pada data yang terbatas.
Para praktisi pasar modal menggunakan metode wavelet transform untuk meningkatkan
kemampuan jaringan pada neural network untuk mengenali deret data yang polanya
belum pernah ditemui dalam dataset pelatihan. Metode ini telah terbukti efektif dalam
prediksi pergerakan harga dan permintaan yang kerap mengalami perubahan trend
maupun pola pergerakannya. Kami menerapkan metode ini untuk meningkatkan nilai
validasi dari log hasil estimasi dengan data yang terbatas.
Studi ini menunjukkan hasil proses wavelet transform pada data log yang diklasifikasikan
dengan jaringan kompetitif akan menjadi bagian yang dapat memberikan arti penting
untuk meningkatkan kemampuan generalisasi jaringan backpropagation.

ABSTRACT
In geophysics and reservoir engineering, the neural network method commonly used to
predict the relationship between log data and seismic data or another log data, thus with
the available log data, we can expect any logs which have no data, even also can be used
to perform reservoir characterization. However this method has some lacks in its
application to predict the relationship between one data with the other data types. The
common problem encountered is the reduction of network ability for data prediction if its
applied on limited input data.
Practitioners of capital market use wavelet transform methods to increases the network
ability in neural network to recognized data series, which never found in training dataset.
This method has been effectively proven to predict price and demand movement, which
usually changes both in trend or movement pattern. We applied this method to increase
the validation value of the estimated log on limited input data.
This study shows that the classified result of wavelet transform using competitive
network will be an important part to enhance generalization of backpropagation network."
2012
T31120
UI - Tesis Open  Universitas Indonesia Library
cover
Mulyahari Zen
"Skripsi ini bertujuan untuk mengoptimalkan korelasi antara Transformasi Paket Wavelet dan jaringan Syaraf Tiruan topologi propagasi-balik umpan-maju dengan menggunakan pendekatan tingkah laku manusia dalam memahami obyek yang diamati. Tingkah laku ini dapat bersifat obyektif maupun subyektif tergantung dari keadaan dan tujuan pengamatan tersebut. Parameter obyektif menggunakan seluruh ciri sebagai dasar dalam melakukan klasiflkasi, sedangkan parsmeter subjektif hanya memanfaatkan ciri-ciri yang sesuai untuk memenuhi klasifikasi.
Hasil pengujian yang dilakukan menunjukkan bahwa tingkat keakuratan berkisar antara 92,861% - 97,86% jika digunakan untuk mengklasifikasikan obyek bidang datar. Sedangkan untuk tekstur antara 94,37% - 98,444%. Kemampuan perangkat lunak untuk mengenal obyek yang mengalami gangguan, yaitu maksimum sebesar 96% pada obyek yang tertranslasi, 90% pada obyek terrotasi, dan 92% pada obyek yang mengalami noise. Selain dari pada itu, kecepatan pembelajaran menjadi sangat singkat dengan rata-rata iterasi maksimal sebanyak 9134,8 kali dan waktu rata-rata kurang dari 261,726 detik.
Pengujian keseluruhan memberikan kesimpulan bahwa penambahan informasi-informasi tertentu yang berkaitan dengan ciri-ciri obyek, akan membantu dalam menghasilkan pembelajaran yang optimal dan pendeteksian yang maksimal."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S39595
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1998
S39409
UI - Skripsi Membership  Universitas Indonesia Library
cover
"At the time the use of non destructive test for pavement has been a trend because of its effectiveness and mobility. Falling weight deflectometer (FWD) is famous equipment for this aim...."
JJJ 26 (1-2) 2009
Artikel Jurnal  Universitas Indonesia Library
cover
Iqbal Mahmudy
"Penelitian dan pengembangan teknologi semakin berkesinambungan seiring giatnya eksplorasi di bidang sumber daya kelautan. Teknologi hidroakustik berperan besar khususnya dalam meningkatkan produksi ikan laut. Selain itu juga dikembangkan metode penelitian lain, misalnya proses pengidentifikasi spesies dalam sekelompok kawanan ikan (schooling).
Analisis difokuskan dalam hal pengolahan citra dari schooling yang datanya diambil dari hasil survei akustik dan observasi yang dilakukan Badan Penelitian Kelautan dan Perikanan. Data yang berbentuk citra ini tak lain adalah representasi target strength (koefisen pantul) dari sekelompok ikan, yang berikutnya diolah melalui konsep image processing dengan metode Jaringan Syaraf Tiruan (JST) pada MATLAB. JST disini berfungsi sebagai sebuah metode yang akan mengklasifikasi spesies yang data inputnya diambil dari nilai rata-rata matriks masing-masing citra schooling. Hasil klasifikasi selanjutnya akan langsung diidentifikasi untuk memastikan bahwa tingkat keakuratan dari sampel data pasca klasifikasi benar-benar terlihat.
Diharapkan metode ini akan menjadi sebuah alternatif yang cukup baik dalam menjawab berbagai permasalahan berkaitan dengan penelitian dan pendeteksian bawah air (hidroakustik).

Development of fishery and marine resources hydoacoustic technology has significant role for fish production improvement. It also develops other research method such as species in schooling of fish identification process.
The analysis is focused on images processing of fish schooling where the data is taken from the result of acoustic survey and observation by Fisheries and Marine Research Group. Data, as images that represents the coefficient of target strength of fish schoolings, processed by using images processing concepts with neural network and programmed in MATLAB. Neural Network has a function as method which will classify the species from its input data is taken from matrix averages of each schooling images. Clasification results would be identified directly to ensure the accuration level of this experiment is really seen.
Hopeful, this method could be an alternative of some problems related to the research and underwater detection (hydroacoustic).
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40409
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benyamin Kusumoputro
"Dalam makalah ini, penulis membahas dan memperkenalkan sebuah metodologi pencaharian struktur arsitektur Jaringan Neural Buatan propagasi balik berbasis fuzzy (JNB-Fuzzy) yang optimal dengan menggunakan algoritma genetika. Optimasi struktur jaringan neural dapat dilakukan dengan memperkecil jumlah neuron dalam lapis tersembunyi atau jumlah bobot dalam jaringan neural. Dalam makalah ini penulis membuat optimasi struktur jaringan dengan memperkecil jumlah bobot dalam jaringan, karena jumlah bobot ini jauh lebih besar daripada jumlah neuron yang ada. Jaringan neural yang telah dioptimasi ini kemudian digunakan sebagai subsistem pengenal pola pada Sistem Penciuman Elektronik yang dikembangkan oleh penulis. Hasil eksperimen dengan menggunakan jaringan ini menunjukkan peningkatan derajat pengenalan sistem, dari 70,4% pada struktur jaringan tidak dioptimasi, menjadi 85,2% bila menggunakan struktur jaringan yang telah dioptimasi.

In this article we proposed a method for optimizing the structure of a fuzzy artifi cial neural networks (FANN) through genetic algorithms. This genetic algorithm (GA) is used to optimize the number of weight connections in a neural network structure, by evolutionary calculating the fi tness function of those structures as individuals in a population. This fuzzy neural is then applied as the pattern recognition in our developed odor recognition system. Experimental results show that the optimized neural system provides higher recognition capability compare with that of unoptimized neural system. Recognition rate of the unoptimized neural structure is 70.4% and could be increased up to 85.2% in the optimized neural system. It is also shown that the computational cost of the optimized structure of neural system is also lower than the unoptimized structure."
Depok: Lembaga Penelitian Universitas Indonesia, 2002
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Lauren
"ABSTRACT
Skripsi ini membahas mengenai reduksi suatu kumpulan data menggunakan metode penggabungan data. Kumpulan data yang digunakan dalam penelitian ini adalah data bunga iris dengan 3 macam kelas dan data aroma dengan 18 macam kelas. Hasil penggabungan kumpulan data tersebut akan menjadi data masukan dalam pembelajaran algoritma jaringan saraf tiruan propagasi balik dan jaringan saraf probabilistik yang dipergunakan dalam penelitian ini. Hasil pembelajaran menggunakan data hasil penggabungan tersebut akan dibandingkan dengan hasil pembelajaran menggunakan data tanpa penggabungan. Hasil penelitian ini menyatakan bahwa penggunaan data hasil penggabungan akan mempercepat pembelajaran dan meningkatkan kestabilan keluaran sistem, namun mengurangi akurasi tingkat pengenalan

ABSTRACT
This thesis discusses about reduction of a data set using data merging method. The data set used in this study are iris set data with 3 kinds of classes and odor set data with 18 kinds of classes. The result of merging the data set become the input data in the learning algorithm backpropagation neural network and probabilistic neural network on learning part. Learning output using data with merging method will be compared with the results of the learning using data without merging. The results of this study suggest that the use of data resulting from this combination will accelerate learning and improve stability of output system, but reduces the level of recognition accuracy."
2014
S56492
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhi Putra
"Sistem pengenal huruf tulisan tangan ini merupakan penelitian lanjutan dari tugas akhir Emanual Philipus D. Sistem Pengenal Huruf Tulisan Tangan ini menggunakan jaringan neural buatan PNN, logika fuzzy dan tehnik pengolahan citra. Huruf tulisan tangan dicari kerangka hurufnya menggunakan tehnik pengolahan citra dan aproksimasi kerangka untuk mendapatkan kerangka huruf yang paling mendekati bentuk kerangka sebenarnya, kemudian kerangka huruf itu dianggap sebagai directed graph yang memiliki kumpulan titik awal atau titik akhir dan titik cabang dan rusuk (edge). Rusuk-rusuk ini dikenali sebagai garis lurus, kurva atau loop menggunakan logika fuzzy. Sistem ini terdiri dari 3 tahapan besar, yaitu: pra-pengolahan yang bertujuan untuk mendapatkan kerangka huruf, klasifikasi huruf yang bertujuan mengenali elemen-elemen penyusun dan keterhubungan antar elemen-elemen tersebut dari huruf dan terakhir adalah tahap jaringan neural buatan pnn untuk mempelajari dan mengenali huruf-huruf tersebut berdasarkan informasi elemen-elemen penyusun dan keterhubungan antar elemen-elemen tersebut dari huruf tersebut. Sistem ini telah diuji dengan data yang tidak terlatih dan mendapatkan hasil pengenalan 9,8% - 25%. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Restomi
"Dalam bidang pengenalan citra wajah dua dimensi telah diujikan sistem
jaringan saraf tiruan hibrida (JST-Hibrida) dan Averaging Representation berbasiskan Eigenface dan Fisherface. Dalam pengujiannya, JST-Hibrida memiliki kemampuan pengenalan yang lebih buruk dibandingkan Averaging Representation. Dalam penelitiannya, penulis mengimplementasikan jaringan saraf tiruan propagasi balik (JST-PB) yang ternyata memiliki kemampuan pengenalan di atas JST-Hibrida dan Averaging Representation. Untuk meningkatkan kinerja jaringan dan sekaligus mengoptimasi struktur jaringan maka digunakan algoritma genetika untuk memangkas koneksi-koneksi
yang tidak diperlukan. Algoritma genetika ternyata mampu menemukan solusi yang bagus dengan jumlah koneksi yang lebih kecil.
Dalam pengujiannya dipergunakan berbagai citra wajah dua dimensi
dengan berbagai variasi ekspresi dan pencahayaan. Metode yang digunakan untuk mereduksi dimensi citra adalah metode Fisherface. Metode Fisherface dapat mengenali wajah, baik untuk berbagai variasi cahaya dan ekspresi wajah. Hasil pengujian menunjukkan bahwa Algoritma Genetika mampu meningkatkan kemampuan pengenalan JST-PB terhadap citra wajah dua dimensi."
2000
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emmanuel Rieno Bobba Pratama
"Estimasi usia memainkan peran penting dalam analisis forensik, diagnosis klinis, dan investigasi kriminal. Metode tradisional untuk memperkirakan usia pada anak-anak dan remaja sering melibatkan pengamatan perkembangan gigi. Penelitian ini mengeksplorasi penggunaan deep learning untuk estimasi usia kronologis menggunakan 668 citra panorama gigi (OPG) dari usia 5 hingga 15 tahun dengan metode Convolutional Neural Networks (CNN). Penelitian ini menentukan model CNN terbaik dengan menggunakan augmentasi dan penyempurnaan parameter model VGGNet dan DenseNet. Teknik validasi silang k-fold, oversampling SMOTE, dan augmentasi gambar dengan ImageDataGenerator digunakan untuk mengatasi ketidakseimbangan kelas dan ukuran data sampel yang kecil. Tiga model berbeda dibandingkan (VGG16, VGG19, dan DenseNet-201), masing-masing menggunakan dua jenis augmentasi yang berbeda. Model terbaik, VGG16 dengan ImageDataGenerator, mencapai RMSE sebesar 0,98 tahun (10,85%), MAE sebesar 0,67 tahun, dan nilai R 2 sebesar 0,88 pada set pengujian, menunjukkan error yang rendah.

Age estimation plays a crucial role in forensic analysis, clinical diagnosis, and criminal investigation. Traditional methods for estimating age in children and adolescents often involve observing dental development. This study explores the use of deep learning for chronological age estimation using 668 panoramic dental images (OPG) from ages 5 to 15 years with Convolutional Neural Networks (CNN). The study determines the best CNN model by using augmentation and fine-tuning parameters of VGGNet and DenseNet models. Cross-validation technique k-fold, SMOTE oversampling, and image augmentation with ImageDataGenerator are used to address class imbalance and small sample sizes. Three different models (VGG16, VGG19, and DenseNet-201) are compared, each using two different types of augmentation. The best model, VGG16 with ImageDataGenerator, achieved an RMSE of 0.98 years (10.85%), an MAE of 0.67 years, and an R 2 value of 0.88 on the test set, indicating relatively low error."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>