Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 150596 dokumen yang sesuai dengan query
cover
Pebrida Nessya Arlis
"Semen Portland telah diteliti mampu digantikan oleh abu terbang kelas F yang memiliki kandungan tinggi aluminium dan silika, sebagai bahan dasar pada beton. Rendahnya kandungan kalsium mampu meningkatkan ketahanan beton terhadap lingkungan asam. Semakin banyak kation penyeimbang muatan anion yang terbebaskan, akan meningkatkan kompleksitas geopolimerisasi. Pada studi ini diteliti bahwa penggunaan NaOH memiliki nilai kuat tekan fleksural yang lebih tinggi, dibandingkan dengan KOH yang dicampurkan dengan aktivator natrium silikat karena ukuran molekul kalium lebih besar dari natirum. Nilai kuat tekan fleksural mampu dioptimasi sebanyak 95.79%, dari 12.2987 MPa hingga 24,0796 MPa, pada penggunaan NaOH 12M dan curing 900C. Peningkatan konsentrasi alkali akan mengakibatkan peningkatan alkalinitas seiring banyaknya OH- dan kation alkali, yang akan menyeimbangi muatannya melalui pemutusan pasangan anion. Baik kandungan H2O bebas maupun terperangkap, akan menguap membentuk pori ketika curing pada titik didihnya, yang mengakibatkan penurunan kekuatan.

Portland cement was observedly able to be replaced with F-class fly ash containing high aluminium and silica, as a raw material for concrete, since its manufacturing produces emission gas of CO2. The low calcium containing of fly ash can be increasing the high acidic environment resistance. The more charge balancing cation released as the fly ash mineral dissolution, the more complex its geopolymerization mechanism. In this study, was shown that NaOH gave higher flexural strength than KOH mixed with sodium silicate activator since sodium has a smaller molecule size than potassium does. Formulation of NaOH 12M using and 900C Curing, The flexural strength point optimizedly increase 95.79% reaching out 24,0796 MPa from 12,2987 MPa. The increasing of alkali concentration gives too high alkalinity representatively present excess OH- and its alkali cation, balancing their charge through anion pairing detachment. It?s either free H2O or trapped H2O could be evaporating leaving pores over its boiling point temperature in curing, and consequently gives strength decreasing."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42651
UI - Skripsi Open  Universitas Indonesia Library
cover
Alya Aryasatiana Azzahra
"Geopolimer adalah bahan bangunan ramah lingkungan sebagai subtitusi semen portland. Penelitian ini bertujuan untuk menentukan kondisi optimal dalam proses pembentukan geopolimer untuk mencapai nilai kuat tekan terbaik. Fokus penelitian ini adalah pada pengaruh suhu pelarutan aktivator, yaitu NaOH dan Na2SiO3, dengan variasi suhu pelarutan 30°C, 40°C, dan 50°C, serta penambahan semen portland sebesar 5%, 10%, dan 15% terhadap berat fly ash sebagai prekursor. Nilai kuat tekan terbaik, yaitu 20,12 MPa, dicapai pada sampel dengan suhu pelarutan aktivator alkali 40°C dan substitusi semen portland sebesar 15% terhadap fly ash. Nilai tersebut lebih tinggi daripada sampel kontrol semen portland yang memiliki kuat tekan sebesar 19,42 MPa. Sampel terbaik tersebut kemudian dikarakterisasi dengan beberapa uji, yang mengindikasikan pembentukan beberapa kristal baru seperti kuarsa, okenite, faujasite-Na, anortit, dan aluminocoquimbite yang memiliki tingkat kekerasan mineral cukup tinggi. Selain itu, terdeteksinya ikatan-ikatan seperti Si-O-Si dan Al-O-Si yang lebih kuat pada sampel dengan nilai kuat tekan tertinggi.

Geopolymer is an environmentally friendly building material used as a substitute for Portland cement. This research aims to determine the optimal conditions in the geopolymer formation process to achieve the best compressive strength value. The focus of this research is on the influence of the dissolution temperature of activators, namely NaOH and Na2SiO3, with dissolution temperature variations of 30°C, 40°C, and 50°C, as well as the addition of Portland cement by 5%, 10%, and 15% by weight of fly ash as a precursor. The best compressive strength value, which is 20.12 MPa, was achieved in samples with an alkali activator dissolution temperature of 40°C and a substitution of 15% Portland cement for fly ash. This value is higher than the control sample of Portland cement, which has a compressive strength of 19.42 MPa. The best samples were then characterized with several tests, indicating the formation of several new crystals such as quartz, okenite, faujasiteNa, anorthite, and aluminocoquimbite, which have a relatively high mineral hardness level. In addition, the presence of stronger bonds such as Si-O-Si and AlO-Si was detected in samples with the highest compressive strength value."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dedi Ferdian
"Kekuatan flexural dari material geopolimer sangat dipenaruhi oleh molekul yang terbentuk dari reaksi geopolimerisasi. Semakin kompleks molekul yang terbentuk maka kekuatan yang dihasilkan akan meningkat. Molekul geopolimer dibentuk pada reaksi geopolomerisasi yang reaksinya sangat dipengaruhi oleh gugus aktif aluminasilikat sebagai agen pereaksi yang diperoleh dari pelarutan oleh alkali basa, sehingga semakin tinggi konsentrasi OH yang ditambahkan maka menyebabkan semakin banyak gugus aktif yang terlarut dari fly ash. Dibuktikan dari kekuatan flextural yang meningkat pada pembuatan pasta geopolimer dengan menggunakan NaOH 7 M, hingga 12 M, dengan kekuatan flexural sebagai berikut: 21,03 MPa untuk NaOH 7 M dan 33,71 MPa untuk NaOH 12 M. Peningkatan dari OH terlarut ternyata juga berpengaruh pada kelarutan CaO dalam membentuk Ca(OH)2 sehingga menurunkan kelrutan partikel fly ash karena berkurangnya ion OH untuk pelarutan Si dan Al, dan meningkatnya laju pengerasan pasta sehingga pasta mengeras sebelum semua partikel fly ash sempat bereaksi. Dibuktikan dari sampel dengan NaOH 16 M yang memiliki kekuatan flexural yang lebih rendah yaitu sebesar 26,68 MPa. Selain dari peningkatan konsentrasi NaOH, penambahan Na2SiO3 juga menyebabkan peningkatan rasio Si/Al karena mengakibatkan peningkatan SiO2 terlarut. Semakin tinggi rasio Na2SiO3/NaOH maka akan mengakibatkan peningkatan rasio Si/Al terlarut. Pada rasio Na2SiO3/NaOH 1,25 hingga 2,25 kekuatan flexural meningkat dari mula-mula 25,69 MPa menjadi 32,91 MPa. Hubungan kekuatan flexural pasta geopolimer ini selanjutnya dinalisa berdasarkan pada struktur molekul yang terbentuk dan ikatan kimia di dalam molekulnya. Adanya fasa quartz dan mullite di dalam matriks geopolimer menandakan terdapat partikel fly ash yang tidak ikut bereaksi. Kekuatan ikatan kimia dan intensitas dari ikatan dalam membentuk molekul geopolimer juga merupakan indikasi keberhasilan reaksi geopolimerisasi."
Fakultas Teknik Universitas Indonesia, 2012
S42461
UI - Skripsi Open  Universitas Indonesia Library
cover
Siregar, Eviyanti Magdalena
"Penelitian ini bertujuan untuk mengevaluasi pengaruh penambahan electroplating sludge serta penggunaan kombinasi alkali aktivator NaOH – Na2CO3 terhadap sifat mekanis blok beton produk geopolimer. Studi ini didasarkan pada kebutuhan untuk meningkatkan kinerja beton geopolimer dengan mengintegrasikan limbah industri, yaitu electroplating sludge. Variabel yang diuji meliputi kombinasi alkali aktivator NaOH dan Na2CO3, serta variasi konsentrasi electroplating sludge yang dicampurkan dengan fly ash dari 5% hingga 20%. Rasio alkali aktivator terhadap fly ash dipertahankan pada 0,3, dan rasio Na2CO3 terhadap NaOH diatur pada 1:1. Dalam eksperimen ini, sebanyak 11 sampel blok geopolimer dibuat dan diuji. Dua sampel dengan kuat tekan terbaik adalah sampel C3 dengan kuat tekan 15,82 MPa dan sampel C4 dengan 16,15 MPa. Absorpsi air juga diamati, dengan sampel C3 sebesar 9,764% dan sampel C4 sebesar 1,406%. Hasil kuat tekan pada kode sampel C4 dipengaruhi oleh keberadaan unsur Si (19,757%), Al (8,557%), dan Ca (21,190%) yang tinggi, dengan kristalinitas kuarsa yang dominan sebesar 45%. Uji FTIR menunjukkan pembentukan jaringan geopolimer pada bilangan gelombang 987,22 cm-1 yang meningkatkan kuat tekan produk geopolimer. Selain itu, produk geopolimer yang dihasilkan memenuhi spesifikasi Standar Nasional Indonesia (SNI) 03-0961-1996, yakni minimal 8,5 MPa.

This research aims to evaluate the impact of adding electroplating sludge and the use of a NaOH – Na2CO3 alkali activator combination on the mechanical properties of geopolymer concrete blocks. The study is driven by the need to enhance the performance of geopolymer concrete by integrating industrial waste, specifically electroplating sludge. The variables tested include combinations of NaOH and Na2CO3 alkali activators and varying concentrations of electroplating sludge mixed with fly ash, ranging from 5% to 20%. The ratio of alkali activator to fly ash was maintained at 0.3, and the Na2CO3 to NaOH ratio was set at 1:1. In this experiment, a total of 11 geopolymer block samples were prepared and tested. The two samples with the highest compressive strength were sample C3 with a compressive strength of 15.82 MPa and sample C4 with 16.15 MPa. Water absorption was also observed, with sample C3 at 9.764% and sample C4 at 1.406%. The compressive strength results for sample C4 were influenced by the high presence of Si (19.757%), Al (8.557%), and Ca (21.190%), with dominant quartz crystallinity at 45%. FTIR analysis indicated the formation of a geopolymer network at a wavenumber of 987.22 cm-1, which contributed to the increased compressive strength of the geopolymer product. Additionally, the produced geopolymer met the specifications of the Indonesian National Standard (SNI) 03-0961-1996, which requires a minimum of 8.5 MPa."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shidiq Trianto
"Fly ash sebagai limbah padat dari pembangkit listrik dan senyawa karbonat hasil absorpsi CO2 belum termanfaatkan secara maksimal. Pada penelitian ini bertujuan untuk mengetahui pengaruh pengaruh jenis alkali aktivator dan rasio alkali aktivator dengan fly ash batubara dalam pembuatan material geopolimer. Jenis alkali aktivator yang dipakai NaOH/Na2CO3, NaOH/NaHCO3, KOH/K2CO3, KOH/KHCO3, dan NaOH/Na2SiO3. Sedangkan rasio alkali aktivator dengan fly ash (rasio AA/FA) yang digunakan adalah 0,10, 0,20, dan 0,30. Rata-rata kuat tekan pada penggunaan alkali aktivator KOH sebesar 8,431 MPa dan pada NaOH sebesar 7,923 MPa. Kuat tekan terbaik pada KOH/K2CO3 rasio 0,1 (rasio massa) dengan kuat tekan 24,284 MPa dan lebih besar 34,1% dari pada kuat tekan pada semen Portland yang hanya 18,104 MPa. Terjadinya reaksi geopolimerisasi ditanadai dengan adanya kristal moganit, ferinatrit, gehlenit, koesit, kristobalit, kuarsa, mikroklin, kiesirite, nosean, ortoenstatit, dan hematit. Ikatan geopolimer terbentuk untuk semua jenis alkali aktivator dengan adanya Si-O/Al-O, T-O-Si (T= Si/Al), dan Si-O-Si pada fingerprint region.

Fly ash as solid waste from power plants and carbonate compounds from CO2 absorption products have not been used optimally. This study aims to determine the effect of the type of alkali activator and the ratio of alkali activator with coal fly ash in the manufacture of geopolymer materials. The type of alkaline activator used is NaOH/Na2CO3, NaOH/NaHCO3, KOH/K2CO3, KOH/KHCO3, dan NaOH/Na2SiO3. While the ratio of alkali activator to fly ash (AA/FA ratio) used was 0.10, 0.20, and 0.30. The average compressive strength of KOH’s alkaline activator is 8,431 MPa and for NaOH 7,923 MPa. The best compressive strength is KOH/K2CO3 with ratio 0.1 (mass ratio) and this variation gives compressive strength result is 24.284 MPa and 34.1% higher than the compressive strength of Portland cement which is only 18.104 MPa. The geopolymerization reaction occurs by the presence of crystals of moganite, gehlenite, coesite, cristobalite, quartz, microcline, kiesirite, nosean, orthoenstatite, and hematite. Geopolymer bonds were formed for all types of alkaline activators in the presence of Si-O/Al-O, T-O-Si (T= Si/Al), and Si-O-Si in the fingerprint region."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulita Nabilla Putri
"Geopolimer merupakan material alternatif yang menarik untuk semen Portland dalam konstruksi modern dengan beberapa keunggulan seperti mengurangi jejak karbon, meningkatkan ketahanan terhadap api, dan bahkan memungkinkan penggunaan limbah industri sebagai prekursor yang dapat mendukung sustainability. Pada dasarnya, sifat mekanis dari geopolimer dapat ditingkatkan dengan mengatur komposisi bahan bakunya menyesuaikan kebutuhan aplikasinya. Dalam studi literatur ini, dilakukan peninjauan terhadap lima literatur utama yang masuk ke kriteria inklusi pemilihan literatur berupa penggunaan prekursor Fly Ash Kelas C, alkali aktivator berupa Natrium Hidroksida (NaOH) dan Natrium Silikat (Na2SiO3) serta diberikannya perlakuan curing berupa suhu ruang dan waktu yang beragam, serta digunakannya bahan baku tambahan yang beragam. Studi literatur ini berfokus kepada sifat mekanis berupa nilai kuat tekan sehingga pengujian yang dilakukan pada setiap literatur yang terpilih dijelaskan data spesifik tentang nilai kuat tekan. Titik optimal dengan nilai kuat tekan geopolimer paling baik berada pada NaOH dengan Molaritas sebesar 8M sebesar 34.04 MPa dengan curing time selama 7 hari. Pada variasi Alkali Aktivator, penggunaan NaOH dan Na2SiO3 bersamaan sebagai alkali aktivator menghasilkan nilai kuat tekan yang lebih baik dibandingkan hanya NaOH saja. Variasi komposisi menunjukkan hasil bahwa PPF membantu geopolimer untuk mendapatkan nilai kuat tekan yang baik dengan kadar paling optimal pada 0,25%. Kemudian pada penambahan Bottom Ash dibutuhkan kadar yang optimal untuk mendapatkan nilai kuat tekan yang baik dalam penambahan BA karena beresiko meningkatkan porositas mortar geopolimer, yang mengurangi kerapatan dan nilai kuat tekan. Serta penambahan fine sand pasir dolomit dibandingkan dengan pencampuran dolomite mixture memberikan hasil nilai kuat tekan yang lebih baik karena didapatkan produk utama berupa X-Ray Amorphous Sodium yang mengandung Aluminosilicate Hydrogel atau bisa disebut sebagai N-A-S-H yang dapat mengikat partikel-partikel di dalam matriks sehingga meningkatkan kekuatan tekan.

Geopolymer is an alternative material to Portland cement in modern construction with several advantages such as reducing the carbon footprint, increasing fire resistance, and even enabling the use of industrial waste as precursor that can support sustainability. Basically, the mechanical properties of geopolymers can be improved by adjusting the composition of the raw material to suit the application needs. In this literature study, a review of five main pieces of literature was carried out which were included in the inclusion criteria for literature selection in the form of the use of Class C Fly Ash precursors, Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3) as alkali activator, as well as providing curing treatment in the form of room temperature and various time, as well as the use of various additional raw materials. This literature study focuses on mechanical properties in the form of compressive strength values ​​so that the tests carried out in each selected literature explain specific data regarding compressive strength. The optimal point with the best geopolymer compressive strength is NaOH with a molarity of 8M of 34.04 MPa with a curing time of 7 days. In the Alkali Activator variation, the use of NaOH and Na2SiO3 together as alkali activator produces better compressive strength values ​​than NaOH alone. The variation in composition shows that Polypropylene Fibers helps geopolymer to obtain good compressive strength values ​​with the most optimal content at 0.25%. Then, when adding Bottom Ash, optimal levels are needed to get good compressive strength ​​when adding BA because it risks increasing the porosity of the geopolymer mortar, which reduces the density and compressive strength. The addition of fine dolomite sand compared to mixing dolomite mixture gives better compressive strength results because the main product of dolomite mixture is X-Ray Amorphous Sodium which contains Aluminosilicate Hydrogel or can be called N-A-S-H which can bind the particles in the matrix thereby increasing the strength.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rajagukguk, Christian Benedikt
"Geopolimer menjadi topik penelitian yang banyak dipelajari saat ini untuk sebagai bahan baku dalam kontruksi dan infrastruktur kerena lebih ramah lingkungan dibanding semen portland. Abu terbang kelas F yang didapat dari PLTU Paiton dimanfaatkan sebagai prekursor. Sintesis mortar dilakukan dengan teknik aktivasi alkali menggunakan larutan NaOH dan sodium silikat sebagai aktivator. Bahan pengisi serbuk TiO2 ditambahkan dengan variasi 2,5%, 5,0%, hingga 10,0% yang dihitung berdasarkan berat prekursor. Pembuatan mortar dilakukan dengan mencampurkan prekursor dan pengisi TiO2 dengan larutan aktivator. Pasta yang diperoleh kemudian di cetak menggunakan cetakan berbentuk kubus dengan ukuran sisi 5 cm. Pasta akan dibiarkan mengeras selama 24 jam, lalu akan dirawat pada oven selama 24 jam pada temperature 60 oC. Setelah itu, mortar akan di rawat selama 7 hari pada temperatur ruang. Mortar akan diuji kekuatan tekannya dan dikarakterisasi menggunaan SEM-EDS. Data yang diperoleh menunjukkan bahwa penambahan TiO2 pada geopolimer berpengaruh pada waktu ikat dan kekuatan tekan mortar. Waktu ikat pasta mengalami peningkatan seiring dengan penambahan TiO2. Penambahan TiO2 juga berpengaruh pada kuat tekan geopolimer, dimana penambahan pengisi TiO2 dapat menurunkan kuat tekan. Penambahan serbuk TiO2 sebanyak 2,5%. 5,0%, dan 10,0% dapat menurunkan kuat tekan sebesar 28,3%, 44,8%, dan 0,6%.

Geopolymer is a research topic that is currently being studied a lot as a raw material in construction and infrastructure because it is more environmentally friendly than Portland cement. Class F fly ash obtained from PLTU Paiton is used as a precursor. Mortar synthesis was carried out using an alkali activation technique using NaOH and sodium silicate solutions as activators. TiO2 powder filler is added with variations of 2,5%, 5,0%, and 10.0% which is calculated based on the weight of the precursor. Mortar is made by mixing TiO2 precursor and filler with activator solution. The paste obtained is then molded using a cube-shaped mold with sides measuring 5 cm. The paste will be pre-cured for 24 hours, then it will be cured in the oven for 24 hours at a temperature of 60 oC. After that, the mortar will be cured for 7 days at room temperature. The mortar will be tested for compressive strength and characterized using SEM-EDS. The data obtained shows that the addition of TiO2 to geopolymer has an effect on the setting time and compressive strength of the mortar, where paste setting time increased with the addition of TiO2. The addition of TiO2 also affects the compressive strength of the geopolymer, where the addition of TiO2 filler can reduce the compressive strength. Addition of 2,5%, 5.0%, and 10.0% TiO2 powder on geopolymer can reduce compressive strength by 28,3%, 44,8% and 0,6%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fisabilla Magma Anggreia Vistha
"Penelitian mengenai penggunaan geopolimer sedang banyak dilakukan karena keunggulannya yang lebih ramah lingkungan sehingga menjadi pilihan dalam pembangunan infrastruktur. Semakin tingginya tingkat pembangunan menyebabkan dibutuhkannya waktu yang lebih efektif selama proses pembangunan. Pada penelitian ini, dilakukan penambahan accelerator Calcium Aluminate Cement (CAC) pada geopolimer untuk mempercepat waktu pengikatan, namun tetap memiliki nilai kuat tekan tinggi. Penelitian ini bertujuan untuk mengetahui pengaruh accelerator pada geopolimer, dosis accelerator yang lebih baik digunakan untuk meningkatkan kuat tekan, mekanisme kerja accelerator pada geopolimer, serta perbedaan morfologi permukaan struktur mikro. Penelitian dilakukan dengan membuat geopolimer fly ash dan menambahkan accelerator sebesar 0%, 1%, dan 2%, kemudian melakukan curing pada temperatur ruang selama 1, 3, 7, dan 28 hari. Selanjutnya, dilakukan pengujian kuat tekan, vicat, DSC, SEM, XRD, dan FTIR. Hasil penelitian menunjukkan bahwa penambahan accelerator meningkatkan kuat tekan dan mempercepat waktu pengikatan. Pada umur 28 hari, nilai kuat tekan geopolimer dengan 0%, 1%, dan 2% accelerator secara berturut-turut adalah 32,16 MPa, 48,4 MPa, dan 53,3 MPa. Penambahan 2% accelerator memberikan hasil kuat tekan yang lebih maksimal, namun dengan perbedaan yang tidak signifikan dengan penambahan 1% accelerator. Peningkatan kuat tekan kemungkinan disebabkan oleh terbentuknya gel N-A-S-H, C-S-H, dan C-A-S-H yang menyebabkan struktur mikro menjadi lebih rapat.

Research on the use of geopolymers is being widely conducted due to their environmental advantages, making them a preferred choice in infrastructure development. The increasing rate of construction necessitates more efficient construction processes. In this research, an accelerator in the form of Calcium Aluminate Cement (CAC) was added to geopolymer in order to achieve faster setting time while still maintaining high compressive strength. The purpose of this research was to investigate the effect of the accelerator on geopolymer, determine the better dosage of the accelerator to enhance compressive strength, understand the mechanism of the accelerator on geopolymer, and differences in microstructure morphology. The research was conducted by making fly ash-based geopolymer mortar with the addition of accelerator at concentrations of 0%, 1%, and 2%, followed by curing for 1, 3, 7 and 28 days. Then, compressive strength test, vicat test, and DSC test were carried out as well as SEM, XRD, and FTIR characterization. The test results showed that the addition of the accelerator improved the compressive strength and accelerated the setting time. At 28 days, the compressive strength values of the geopolymer with 0%, 1%, and 2% accelerator were 32,16 MPa, 48,4 MPa, and 53,3 MPa, respectively. The addition of 2% accelerator gives maximum compressive strength results in geopolymer, but with an insignificant difference with the addition of 1% accelerator. The increase in compressive strength possibly due to the formation of N-A-S-H, C-S-H, and C-A-S-H gels which caused the microstructure to become denser."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Marta Nurjaya
"Abu terbang hasil dari pembakaran batubara dapat digunakan sebagai prekursor geopolimer. Pengisi berupa serbuk alumina, serat asikular wolastonit, serat karbon dan serat kaca ditambahkan untuk menghasilkan komposit matrik geopolimer. Campuran prekursor dan aktivator dikarakterisasi dengan mesin uji viskositas dinamik Brookfield dan peralatan Vicat Needle. Sintesa geopolimersasi diamati dengan menggunakan XRD, FTIR dan pengamatan SEM, sedangkan pengujian mekanis menggunakan mesin uji tarik universal. Temperatur awal pembekuan dari campuran memberikan pengaruh besar terhadap kekuatan mekanis dari resin yang dihasilkan. Penambahan pengisi serat asikular wolastonit sebanyak 2,50 persen berat mampu meningkatkan kekuatan fleksural sebesar 13,52 persen dan penambahan pengisi alumina sebesar 7,50 persen mampu meningkatkan kekuatan tekan sebesar 26,62 persen. Setelah ekspos panas, komposit berpengisi serat kaca mampu menghasilkan kekuatan mekanis terbaik.

Fly ash from coal combustion can be used as a geopolymer precursor. Fillers such as alumina powder, acicullar wolastonit, carbon fibers and glass fibers are added to produce geopolymer matrix composites. The mixture of precursors and activators characterized by Brookfield dynamic viscosity tester and Vicat Needle apparatus. Geopolymerisation syntesa observed using XRD, FTIR and SEM, while the mechanical testing using a universal tensile testing machine. The initial temperature of the mixture gives a major influence on the mechanical strength of the resin produced. The addition of acicullar wollastonite fillers as much as 2.50 percent by weight can improve the flexural strength of 13.52 percent and the addition of 7.50 percent alumina can improve the compressive strength of 26.62 percent. Upon heat exposure, composite using glass fiber as filler able to produce the best mechanical strength."
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2195
UI - Disertasi Membership  Universitas Indonesia Library
cover
Nabila Fahira Jatiputro
"Pada penelitian ini, pembentukan geopolimer divariasikan rasio arang tempurung kelapa terhadap abu terbang sebagai sumber aluminasilikat sebesar 0%, 5%, 10%, dan 15%.  Sumber aluminasilikat yang divariasikan kemudian dicampur dengan larutan alkali aktivator yang berupa NaOH dan water glass dengan berbagai suhu yaitu, 30oC (suhu ruang), 40oC, dan 50oC. Karakterisasi yang akan diujikan berupa analisis kuat tekan, analisis komposisi XRF, analisis kristalinitas XRD, dan analisis gugus fungsi FTIR. Kuat tekan terbaik yang dihasilkan bernilai 21,34 MPa dengan rasio bahan baku 85% abu terbang dan 15% arang tempurung kelapa, yang melalui proses pencampuran alkali aktivator pada suhu 40oC. Nilai tersebut lebih tinggi dari sampel semen Portland sebagai sampel kontrolnya yang bernilai 19,42 MPa. Dalam variasi rasio arang tempurung kelapanya, nilai kuat tekan tersebut naik 48% dibanding variasi tanpa arang tempurung kelapa. Sementara dalam variasi suhu pelarutan alkalinya, nilai kuat tekan naik 62% dari pelarutan pada suhu ruang. Hasil analisis XRF menunjukan adanya peningkatan kadar Si dan Al pada sampel geopolimer dibanding bahan bakunya. Hail analisis XRD menunjukan adanya mineral pargasite, kuarsa, girolit, dan biotit pada geopolimer. Sementara hasil analisis FTIR menunjukkan adanya ikatan Si-O/Al-O pada bilangan gelombang 1399,69 dan ikatan Si-O-Si pada bilangan gelombang 1078,67

In this study, the ratio of coconut shell ash to fly ash as a source of aluminasilicate was varied by 0%, 5%, 10%, and 15%. The various aluminasilicate sources were then mixed with an alkaline activator solution in the form of NaOH and water glass at various temperatures, such as 30oC (room temperature), 40oC and 50oC. The characterization that will be tested is in the form of compressive strength analysis, composition analysis of XRF, crystallinity analysis of XRD, and functional groups analysis of FTIR. The best compressive strength is 21.34 MPa with a ratio of 85% fly ash and 15% coconut shell ash, which is mixed with an alkaline activator at 40oC. This value is higher than the Portland cement sample as the control sample which is 19.42 MPa. In the variation of the coconut shell ash ratio, the compressive strength value increased by 48% compared to the variation without coconut shell ash. Meanwhile, with variations in the temperature of the alkaline dissolving, the compressive strength increased by 62% from dissolution at room temperature. The results of the XRF analysis showed an increase in Si and Al levels in the geopolymer samples compared to the raw materials. The results of the XRD analysis showed the presence of pargasite, quartz, gyrolite and biotite minerals in the geopolymer. While the results of FTIR analysis showed the presence of Si-O/Al-O bonds at wave number 1399.69 and Si-O-Si bonds at wave number 1078.67."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>