Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 134487 dokumen yang sesuai dengan query
cover
Yonaniko Dephinto
"Virus influenza A/(H1N1) dapat menyebabkan infeksi akut pada sistem pernapasan manusia. Peran penting neuraminidase dalam replikasi virus dan tingginya conserved pada sisi aktif, membuat neuraminidase menjadi target utama dalam perancangan obat antiviral virus influenza. Namun perkembangan mutasi virus yang sangat cepat menyebabkan beberapa obat antiviral mulai mengalami resistensi terhadap virus tersebut. Pemilihan peptida sebagai kandidat obat karena peptide memiliki aktifitas dan selektifitas yang baik. Pembentukan siklisasi disulfida pada perancangan ligan peptida bertujuan untuk meningkatkan kestabilan dari peptida tersebut.
Dari perancangan ligan didapatkan 5096 heksapeptida siklis sebagai kandidat obat. Simulasi molecular docking dilakukan untuk menapis ligan yang memiliki nilai ΔG dan interaksi antara ligan dan enzim dan molecular dynamics dilakukan untuk melihat interaksi intra dan intermolekuler, mencakup perubahan bentuk ikatan antara atom akibat adanya tekukan, uluran atau rotasi. Kedua simulasi dilakukan dengan menggunakan software MOE2008.10.
Berdasarkan pada hasil simulasi molecular docking dan drug scan menunjukan terdapat dua ligan yang memiliki interaksi terhadap residu target dan sifat yang baik. Ligan tersebut adalah CRMYPC dan CRNFPC. Kedua ligan ini memiliki nilai ΔGbinding -31,7402 kkal/mol dan -31,0144 kkal/mol. Dan kedua ligan ini tidak bersifat mutagenik dan karsinogenik, dan bioavabilitas oral yang baik. Ligan CRMYPC memiliki interaksi yaitu ikatan hidrogen dengan residu sisi aktif neuraminidase pada simulasi molecular dynamics. Hasil diatas menunjukan bahwa ligan CRMYPC dapat digunakan sebagai kandidat penghambat neuraminidase untuk melawan virus influenza A subtibe H1N1.

Influenza A virus/ (H1N1) can cause severe infection in human respiratory system. Neuraminidase has important role in viral replication, which makes neuraminidase be a major target in drug design. However, the influenza A virus is evolving fast, some drug resistance strains are emerging. Thus, it is critical to seek potential alternative treatments. Peptides are preferable for designing inhibitor because of its high activity and specificity.
Cyclization of peptide ligands by S-S disulfide bridge in order to increase its stability. We have designed 5096 hexapeptide cyclic as drug candidates. We used MOE 2008.10 software for the molecular docking and dynamics simulation.
Based on the results of molecular docking simulations and drug scan showed there are two ligands that have good residual interaction of the target and properties. They are CRMYPC and CRNFPC, that have ΔGbinding -31,7402 kcal/mol and -31,0144 kcal/mol. Both of these ligands are not mutagenic and carcinogenic, and good oral bioavailability. The molecular dynamics simulation was performed ligand CRMYPC have hydrogen bonding interactions with residues active side of neuraminidase. Based on docking and dynamics simulation result, ligand CRMYPC could be proposed as a potential inhibitor of neuraminidase.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T30296
UI - Tesis Open  Universitas Indonesia Library
cover
Mochamad Reza Rahdiansyah
"Baru-baru ini penyebaran virus influenza A subtipe H1N1 telah menjadi wabah pandemik dari virus influenza strain baru yang diidentifikasi pada bulan April 2009, yang sering kita sebut penyakit flu babi (swine flu). Protein M2 channel virus influenza A subtipe H1N1 merupakan target dari obat anti influenza amantadine dan rimantadine. Akan tetapi, kedua obat tersebut kehilangan 90% bioaktivitasnya karena mutasi virus yang terjadi selama dua puluh tahun belakangan ini. Terjadinya resistansi virus influenza A terhadap amantadine perlu dilakukan pengembangan obat antivirus adamantane-based drugs yang lebih efektif. Beberapa penelitian menggunakan metode molecular docking telah dilakukan untuk merancang dan menemukan ligan yang dapat berperan sebagai inhibitor potensial untuk protein M2 channel sehingga dapat menghambat replikasi virus influenza A.
Pada penelitian ini dipelajari dan dievaluasi interaksi ligan terhadap enzim dalam keadaan terhidrasi menggunakan metode simulasi dinamika molekul pada dua temperatur berbeda. Analisis interaksi ligan menunjukkan bahwa ligan AM-L6-R6 merupakan ligan yang memiliki afinitas paling baik terhadap protein dibandingkan ligan T-R6-L6, T-L6-R12 dan standar. Ditunjukkan dengan interaksi ligan terhadap sisi aktif enzim yang tetap terbentuk selama simulasi dilakukan. Pada akhir simulasi temperatur 300 K, ligan AM-L6-R6 memiliki kontak residu dengan Arg45 dan berikatan hidrogen dengan Asp44. Kemudian pada akhir simulasi temperatur 312 K, ligan AM-L6-R6 dapat berikatan hidrogen dengan Asp44. Perubahan konformasi yang terjadi pada enzim memperlihatkan dinamisasi protein dalam pelarut dan adanya pengaruh kehadiran inhibitor.

Recently, the outbreak of H1N1 influenza A virus is a pandemic of a new strain of influenza virus identified in April 2009, commonly referred to as 'swineflu'. M2 proton channel of H1N1 Influenza A virus is the target protein anti-flu drugs amantadine and rimantadine. However, the two once powerful adamantane-based drugs lost their 90% bioactivity because of mutations of virus in recent twenty years. The resistance of influenza A virus to amantadine need to develop more effective adamantane-based drugs. Several researchs by molecular docking method have been conducted to design and discover ligand which become potential inhibitors for the M2 channel protein of influenza virus in order to inhibit the replication of influenza virus.
In this research was studied and evaluated the interaction of ligands towards the protein in the hydrated state using molecular dynamics simulations at two different temperatures. Analysis of ligand interaction yields that AM-L6-R6 ligand has best affinity towards the protein than the T-R6-L6, T-L6-R12 and the standard ligand. It is shown by the ligand interaction on the enzyme active site which remains to be formed during the simulation performed. At the end of simulation temperature of 300 K, AM-L6-R6 ligand has a residue contact with the Arg45 and formed hydrogen bond with Asp44. Then at the end of simulation temperature of 312 K, AM-L6-R6 ligands also could form a hydrogen bond with Asp44. Conformational changes of protein which occur during simulation showed the dynamicization of an protein in the presence of solvent and inhibitor.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T29057
UI - Tesis Open  Universitas Indonesia Library
cover
Rizky Arcinthya Rachmania
"Resistansi terhadap oseltamivir yang baru-baru ini dialami oleh virus pandemik 2009 menjadi masalah utama sejak munculnya resisten pada virus tersebut. Mutasi H274Y pada framework neuraminidase menyebabkan oseltamivir resisten terhadap strain H1N1. Penelitian ini bertujuan memodifikasi oseltamivir sebagai penghambat neuraminidase dalam melawan virus influenza A subtipe H1N1. 1232 ligan oseltamivir modifikasi dirancang berdasarkan sifatsifat residu asam amino pada sisi katalitik neuraminidase. Molekul-molekul ligan dan oseltamivir dan zanamivir sebagai ligan standar didocking berdasarkan pada energi terendah sebagai energi pengikatan dan interaksi ikatan pada sisi katalitik. Interaksi tiga ligan terbaik dievaluasi pada keadaan terhidrasi menggunakan simulasi dinamika molekul pada dua temperatur. Hasil docking menunjukkan ligan AD3BF2D (N-[(1S,6R)-5-amino-5- {[(2R,3S,4S)-3,4-dihydroxy-4-(hydroxymethyl) tetrahydrofuran-2-yl]oxy}-4- formylcyclohex-3-en-1-yl]acetamide-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate) memiliki energi pengikatan dan interaksi yang lebih baik dibandingkan ligan standar. Energi pengikatan yaitu -7,8885 kkal/mol dan memiliki 10 ikatan hidrogen sebagai interaksi terhadap sisi katalitik neuraminidase. Ligan AD3BF2D memiliki interaksi yaitu ikatan hidrogen dengan residu sisi katalitik sebagai afinitas ligan AD3BF2D terhadap neuraminidase pada simulasi dinamika molekul. Pada akhir simulasi temperatur 300 K terbentuk ikatan hidrogen dengan Glu278. Pada akhir simulasi temperatur 312 K terbentuk ikatan hidrogen dengan Glu278, Arg293, dan Arg293. Perbedaan konformasi enzim selama simulasi menunjukkan pengaruh adanya pelarut dan inhibitor. Hasil diatas menunjukkan bahwa ligan AD3BF2D dapat digunakan sebagai kandidat penghambat neuraminidase untuk melawan virus influenza A subtipe H1N1.

The emergence of oseltamivir resistance 2009 pandemic virus remains a major concern, since widespread oseltamivir resistance has been observed in seasonal H1N1 viruses recently. The H274Y neuraminidase mutation on the framework residue confers oseltamivir resistance on the currently circulating H1N1 strain. This research is focused on modification of oseltamivir functional groups as neuraminidase inhibitor to against influenza A virus subtype H1N1. 1232 oseltamivir modified ligands were designed base on properties of amino acid residues in catalytic site of neuraminidase. All molecules and oseltamivir as standard ligands were docked based on the lowest energy as the binding energy and the interaction binding to the catalytic site were analyzed. Three of the best ligands interaction were evaluated in the hydrate state using molecular dynamics simulations at two different temperatures. The docking result showed that AD3BF2D ligand (N-[(1S,6R)-5-amino-5-{[(2R,3S,4S)-3,4- dihydroxy-4-(hydroxymethyl) tetrahydrofuran-2-yl]oxy}-4-formylcyclohex-3-en-1- yl]acetamide-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate) has better values than oseltamivir as standard. Binding energy is -7.8885 kcal/mol and able to form 10 hydrogen bonds to the catalytic site of neuraminidase. AD3BF2D has interaction to form hydrogen bond with residue in catalytic site as the affinity of AD3BF2D ligand to the neuraminidase in molecular dynamics simulation. At the end simulation temperature of 300 K hydrogen bond was formed with Glu278 and at the end simulation temperature of 312 K three hydrogen bonds were formed with Glu278, Arg293 and Arg293. Different conformation of enzymes which occur during simulation showed the dynamic behaviour of the presence of solvent and inhibitor. The results show that AD3BF2D ligand can be used as the candidate of neuraminidase inhibitor to against influenza A inhibitor virus subtype H1N1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T29021
UI - Tesis Open  Universitas Indonesia Library
cover
Riski Imaniastuti
"Resistensi oseltamivir sebagai inhibitor neuraminidase virus influenza A subtype H1N1 telah dilaporkan oleh Cheng, et al pada tahun 2009. Sebagai salah satu upaya mengatasi pemasalahan ini, beberapa penelitian yang menggunakan metode simulasi molecular docking telah dilakukan untuk merancang dan menemukan ligan peptide siklis yang dapat berperan sebagai inhibitor potensial neuraminidase H1N1 sehingga dapat menghambat replikasi virus tersebut.
Pada penelitian ini dipelajari dan dievaluasi interaksi ligan terhadap enzim dalam keadaan terhidrasi dengan menggunakan metode simulasi dinamika molekul pada temperatur yang berbeda. Simulasi dilakukan terhadap tiga inhibitor peptida siklis disulfida yaitu DNY, LRL, NNY dan oseltamivir, zanamivir sebagai ligan standar. Hasil penelitian menunjukkan pergerakan dinamis yang dimiliki oleh kelima kompleks enzim-ligan dalam keadaan terhidrasi mempengaruhi interaksi ligan terhadap residu asam amino enzim.
Pada akhir simulasi temperatur 300 K, ligan DNY memiliki interaksi dengan sisi katalitik enzim Asp 151, Arg 293, ligan LRL dengan Arg 118, Arg 293, ligan NNY dengan Asp 151, Glu 425 dan Arg 293. Pada temperatur 312 K, ligan DNY tidak memiliki interaksi dengan sisi katalitik enzim. Ligan LRL memiliki interaksi dengan sisi katalitik enzim Asp 151, Glu 425, Tyr 402, ligan NNY dengan Asp 151, Glu 278 dan Arg 293. Konformasi yang terlihat berbeda pada enzim memperlihatkan perilaku dinamis enzim dalam pelarut dan adanya pengaruh kehadiran inhibitor. Konformasi yang berubah akibat perilaku dinamis kompleks enzim-ligan juga dapat terlihat dalam plot kurva RMSD.

Resistence of oseltamivir as an inhibitor of neuraminidase influenza A virus subtype H1N1 has been reported by Cheng, et al in 2009. To solve this problem, several researchs by molecular docking method have been conducted to design and discover disulfide cyclic peptide ligand which become potential inhibitors for neuraminidase H1N1 to inhibit the replication of this virus.
This research was studied and evaluated the interaction of ligands toward enzyme in the hydrated state using molecular dynamics simulation at two different temperatures. Simulations performed on three disulfide cyclic peptide inhibitors namely DNY, LRL, NNT along with oseltamivir, zanamivir as a standard ligand. The result provided that dynamic movement of five proposed ligand in the hydrate state affecting ligand interaction of the enzyme amino acid residues.
In the end of simulation, two of three disulfide cyclic peptide inhibitors have good interaction with catalytic site of the enzyme. At the end of simulation temperature of 300 K, DNY formed hydrogen bond with catalytic site Asp 151, Arg 293, LRL with Arg 118, Arg 293, NNY with Asp 151, Glu 425 and Arg 293. Then at the end of simulation temperature of 312 K, DNY could not form hydrogen bond with catalytic site of enzyme. LRL formed hydrogen bond with Asp 151, Glu 425, Tyr 402, NNY with Asp 151, Glu 278, and Arg 293. Different conformations of enzymes which occur during simulation showed the dynamic behaviour of the enzyme in the presence of solvent and inhibitor. The changing of enzymes conformation as the result of dynamic behaviour of the enzyme in the presence of solvent and inhibitor also could be seen in RMSD curve.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S105
UI - Skripsi Open  Universitas Indonesia Library
cover
Yossy Carolina Unadi
"ABSTRAK
Highly Pathogenic Avian Influenza H5N1 telah menarik banyak perhatian sebagai
virus yang memiliki potensi pandemik pada manusia sejak pertama kali
dibuktikan sebagai penyebab kematian manusia. Neuraminidase memiliki peranan
yang penting dalam replikasi virus, sehingga menjadikannya sebagai target utama
dalam perancangan antiviral virus influenza. Namun perkembangan mutasi virus
yang sangat cepat menyebabkan beberapa obat antiviral mulai mengalami
resistensi. Pemilihan peptida sebagai kandidat obat karena peptida memiliki
aktivitas dan selektivitas yang baik. Jembatan disulfida pada perancangan ligan
peptida bertujuan untuk meningkatkan kestabilan. Perancangan ligan dilakukan
berdasarkan polaritas residu asam amino pada sisi aktif neuraminidase. Hasil
perancangan ligan diperoleh 4200 pentapeptida siklis sebagai kandidat antiviral.
Simulasi molecular docking menggunakan MOE 2008.10 dilakukan untuk
menapis ligan berdasarkan nilai afinitas pada sisi aktif enzim (􀇻Gbinding). Uji
ADME Tox (adsorpsi, distribusi, metabolisme, ekskresi dan toksisitas) dilakukan
untuk mengetahui toksisitas ligan. Interaksi intra dan intermolekuler, termasuk
perubahan bentuk ikatan diuji melalui simulasi dinamika molekul pada temperatur
310K dan 312K. Hasil simulasi molecular docking dan uji toksisitas menunjukkan
bahwa ligan CLDRC, CILRC dan CIWRC 􀁐􀁈􀁐􀁌􀁏􀁌􀁎􀁌􀀃􀁑􀁌􀁏􀁄􀁌􀀃􀇻􀀪binding terendah, yaitu
-40,5854 kkal/mol, -40,3614 kkal/mol dan -39,9721 kkal/mol serta tidak bersifat
mutagenik dan karsinogenik. Hasil simulasi dinamika molekul menunjukkan
bahwa ligan CILRC mempunyai konformasi yang cenderung stabil pada
temperatur 310K dan 312K. Jadi dapat disimpulkan bahwa ligan CILRC dapat
digunakan sebagai kandidat antiviral neuraminidase virus H5N1.

ABSTRACT
Highly Pathogenic Avian Influenza H5N1 has attracted much attention as a
potential pandemic virus in humans since it was first shown to cause human death.
Neuraminidase has an important role in viral replication, making it a key target in
the design of antiviral influenza virus. But very rapid mutation viral developments
causes some antiviral drugs began to experience resistance. Selection of peptides
as drug candidates because peptides have activity and good selectivity. Disulfide
bridges in the peptide ligand design aims to enhance system stabilitu. The design
is based on the polarity of the ligand amino acid residues in the active site of
neuraminidase. The results obtained designing ligands cyclical pentapeptide 4200
as a candidate antiviral. Molecular docking simulations performed using MOE
2008.10 to filter based on the value of the affinity ligand in the active site of
􀁈􀁑􀁝􀁜􀁐􀁈􀁖􀀃􀀋􀇻􀀪binding). To determine the toxicity of the ligands tested in ADMETox
(adsorption, distribution, metabolism, excretion and toxicity). Intra and
intermolecular interactions, including changes in the form of bonds tested by
molecular dynamics simulations at temperatures of 310K and 312K. Results of
molecular docking simulation and toxicity indicates that the ligand CLDRC,
􀀦􀀬􀀯􀀵􀀦􀀃􀁄􀁑􀁇􀀃􀇻􀀪binding CIWRC have lowest value, which is -40.5854 kcal / mol, -
40.3614 kcal / mol and -39.9721 kcal / mol, also non-mutagenic and carcinogenic.
The results of molecular dynamics simulations have shown that ligand
conformation CILRC stable at temperatures 310K and 312K. So it can be
concluded that the ligands can be used as a candidate CILRC antiviral
neuraminidase H5N1 virus.
"
2013
T32565
UI - Tesis Membership  Universitas Indonesia Library
cover
Noval Amri
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S30733
UI - Skripsi Open  Universitas Indonesia Library
cover
Harry Noviardi
"Perkembangan mutasi virus yang sangat cepat menyebabkan beberapa obat antiviral sudah mulai mengalami proses resistensi terhadap virus tersebut. Oleh karena itu diperlukan untuk mencari pengobatan baru di dalam mengatasi infeksi virus tersebut. RNA-dependent RNA polymerase (RdRp), yang terdiri atas polymerase A, B1, dan B2, mempunyai peranan terhadap proses replikasi dan transkripsi pada virus. Interaksi yang terjadi antara polymerase A dan B1 merupakan daerah target obat potensial baru yang sedang mulai dikembangkan. Pemilihan peptida sebagai kandidat obat karena disebabkan oleh aktifitas dan selektifitas peptida yang cukup baik. Penentuan sequence asam amino peptida berdasarkan pada sifat permukaan dari interaksi antara polymerase A dan B1.
Residu asam amino pada ligan peptida dirancang berdasarkan pada hasil analisis secara in vivo terhadap residu asam amino polymerase PB1 yang memiliki peranan terhadap interaksi ikatan pada PA. Residu asam amino tersebut merupakan penyusun dari 48 asam amino polymerase B1 pada posisi N-terminal. Sebanyak 12 asam amino awal pada polymerase B1 memberikan kontribusi terhadap interaksi pengikatan terhadap polymerase A. Residu asam amino tersebut digunakan sebagai penyusun ligan peptida. Pembentukkan siklisasi disulfida pada peptida bertujuan untuk meningkatakan kestabilan dari peptida tersebut. Hasil perancangan ligan peptida siklis didapatkan sebanyak 1728 ligan kandidat obat.
Simulasi molecular docking dan dynamics dilakukan dengan menggunakan software MOE 2008.10. Analisis simulasi docking dilakukan terhadap energi bebas ikatan, ikatan hidrogen, kontak residu, dan analisis drug scan berdasarkan aturan Lipinski. Simulasi molecular dynamics dilakukan untuk melihat interaksi kompleks enzim di dalam keadaan terhidrasi. Selain itu melihat pengaruh konformasi kompleks enzim terhadap kehadiran molekul pelarut. Stabilitas konformasi enzim dapat dilihat dari hasil perhitungan perubahan nilai RMSD terhadap waktu simulasi. Berdasarkan pada hasil molecular docking dan dynamics, hanya terdapat dua ligan peptida siklis yang dapat berinteraksi dengan polymerase A dan B1 (PAC-PB1N). Ligan tersebut adalah ligan CKTTC dan CKKTC.

The influenza A virus is evolving fast, some drug resistance strains are emerging. Thus, it is critical to seek potential alternative treatments. The viral RNA-dependent RNA polymerase (RdRp) in influenza A virus consisting of three subunits, PA, PB1, and PB2, has crucial roles in viral replication and transcription. The highly conserved PB1 binding site on PA can be considered as a potential target for the development of new anti-influenza drugs. Peptides are preferable for designing inhibitors because of its high activity and specificity.
In this work, the peptide ligands were designed based on the same characteristic with molecular surface of the crystal structure PAC and PB1N. Molecular surface of the crystal structure PAC-PB1N had the hydrophobic pockets. The N-terminal 48 amino acids of PB1, termed domain α, contain the residues required for binding PA. The first 12 amino acids of PB1 were found to constitute the core of the interaction interface. We made combination from the first 12 amino acids of PB1 to become peptide. We cyclized our peptide ligands by S-S disulfide bridge in order to increase its stability. 1728 cyclopentapeptide inhibitors have already designed in this study.
We used MOE 2008.10 software for the molecular docking and dynamics simulation. The docking method was performed to carry out enzyme-inhibitor binding interactions, free energy binding, estimated Ki values and five Lipinski rules. The molecular dynamics simulation was performed to know solvation effect into complex enzyme-ligand, and also to understand the interactions within the inhibitor and the enzyme's binding sites. RMSD was calculated to know the stabilty of complex enzyme. Conformational changes of enzymes which occur during molecular dynamics simulation showed the dynamicization of an enzyme in the presence of solvent and inhibitor. Based on the docking and dynamics simulation result, only two cyclopentapeptide, namely CKTTC and CKKTC, could be proposed as a potential inhibitor to the interaction polymerase A and B1 (PAC-PB1N) in A/2009(H1N1) virus.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T29073
UI - Tesis Open  Universitas Indonesia Library
cover
Fadilah
"Influenza A (H1N1) adalah penyakit yang disebabkan oleh infeksi virus Influenza type A subtipe H1N1. Influenza ini telah menjadi masalah kesehatan utama di negara tropis dan subtropis. Virus ini selalu mengalami mutasi dan menjadi resisten terhadap obat-obat yang digunakan. Pada penelitian ini dilakukan penapisan senyawa bioaktif dari famili jahe-jahean (Zingiberaceae) yang dapat berperan sebagai inhibitor neuraminidase virus Influenza melalui pendekatan docking.
Hasil evaluasi mengindikasikan bahwa senyawa 1,2-di-O- β-D-glucopyranosyl-4-allylbenzene (BGA) memiliki afinitas dan kemampuan untuk menghambat neuraminidase. Untuk mengetahui interaksi dan kontak residu digunakan senyawa standard zanamivir dan isoliquertigenin. Kontak residu senyawa BGA terhadap neuraminidase terdapat 14 kontak residu dan 8 kontak residu dengan sisi katalitik enzim. Hasil docking menunjukkan bahwa BGA memiliki energi binding dan affinitas yang lebih baik dibandingkan dengan senyawa bioaktif lainnya dan juga dengan standard.

Influenza A (H1N1) is a disease caused by infection of Influenza A virus subtype H1N1. It has become a major health problem in tropical and subtropical countries. This virus constantly mutates and consequently drug-resistant strains emerge. In this research, we have conducted docking study to screen bioactive compounds from Zingiberaceae family, which has a role as neuraminidase inhibitor of Influenza A virus.
The docking result identified that 1,2-di-O- β-D-glucopyranosyl-4-allylbenzene (BGA) compound has affinity and ability to inhibit neuraminidase. To understand the interaction and contact residues of complex, we used Zanamivir (ZNM) and Isoliquertigenin (ILG) as standards. There are indications of fourteen contact residues of BGA compound to neuraminidase and eight contact residues of enzyme that formed hydrogen bonds with catalytic site. The docking result showed that BGA has better binding energy and affinity than other bioactive compounds and the standards used.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T29024
UI - Tesis Open  Universitas Indonesia Library
cover
Raima Syahidah Noors
"Pada penelitian terdahulu telah diusulkan dua buah ligan polipeptida siklik disulfida-CDEEC dan CDGSC-sebagai inhibitor potensial untuk enzim RNA-dependent RNA-polymerase virus dengue melalui molecular docking. Simulasi molecular docking dilakukan dengan keadaan tanpa pelarut dimana enzim dibuat rigid dan ligan dibiarkan bebas berotasi untuk mencari konformasi terbaik. Pada kenyataan dalam sistem seluler terdapat pelarut yang membuat enzim memiliki pergerakan dinamis. Oleh karena itu dalam penelitian ini dilakukan simulasi dinamika molekul untuk memperkirakan sistem kompleks enzim-ligan yang lebih nyata. Simulasi dinamika molekul dijalankan pada selama 5ns pada suhu 300 dan 312 K. Pada akhir simulasi 300 K CDEEC membentuk ikatan dengan dua residu penting pada RdRp yaitu Arg-729 dan Arg-737 sedangkan CDGSC tidak berikatan dengan residu penting manapun. CDEEC juga memberikan hasil yang lebih baik dibanding CDGSC pada simulasi 312 K. CDEEC membentuk ikatan dengan dua residu penting yaitu Arg-737 dan Ser-710 sementara CDGSC tidak berikatan dengan satupun residu penting. Berdasarkan hasil tersebut CDEEC merupakan inhibitor yang lebih baik dan layak untuk dikembangkan sebagai obat anti dengue.

Previous researches have proposed two ligands of disulfide cyclic polypeptide which are CDEEC and CDGSC as potential inhibitor of RNA-dependent RNA-polymerase dengue virus by molecular docking. Molecular docking simulation is done without a solvent in which enzyme is made rigid and ligand was left free to rotate to find teh best conformation. In fact in a cellular system there is a solvent that makes the enzyme has a dynamic movement. Therefore in this paper molecular dynamics simulation is done to estimate more reliable condition of enzyme-ligand complex. In this work molecular dynamics simulation is done during 5 ns with two different temperature, 300 and 312 K. At the end of MD simulation at 300 K, CDEEC binds to two RdRp important residues, Arg-729 and Arg-737 while CDGSC doesn’t bind to any important residues. Simulation at 312 K also revealed nearly the same result, CDEEC binds to two RdRP important residues, Arg-737 and Ser-710, whereas CDGSC doesn’t bind to any important residues. Based on the result of these two simulation, CDEEC is proposed as a better inhibitor of RdRp dengue virus and feasible to be developed as anti-dengue drug."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S30694
UI - Skripsi Open  Universitas Indonesia Library
cover
Johannes Salim
"Virus influenza A subtipe H1N1 menjadi perhatian kesehatan global karena memiliki patogenisitas yang tinggi disebabkan gen penyusunnya berupa RNA yang mudah mengalami mutasi. Pengobatan dengan antiviral (oseltamivir dan zanamivir) adalah salah satu upaya untuk mencegah pandemik influenza, namun terjadi resistansi terhadap obat antiviral tersebut. Resistansi ini sudah diatasi dengan penemuan laninamivir. Laninamivir terbukti mampu menginhibisi aktivitas neuraminidase virus influenza A dan B, termasuk subtipe N1 sampai N9 dan virus yang resistan terhadap oseltamivir. Penelitian ini akan dilakukan drug design berbasis laninamivir, hal ini disebabkan laninamivir dapat menghambat kerja neuraminidase secara efektif, sehingga hasil modifikasi dari laninamivir dapat menghambat kerja neuraminidase lebih efektif daripada laninamivir itu sendiri. Proses molecular docking dilakukan untuk mendapatkan 3 ligan terbaik dari 336 ligan modifikasi. Hasil molecular docking menunjukkan bahwa AM3G1, CA3G1 dan F1G2 memiliki energi bebas ikatan dan interaksi yang lebih baik daripada standar. Selanjutnya dari hasil analisis toxicological properties secara keseluruhan ligan AM3G1, CA3G1, dan F1G2 tidak bersifat carcinogen dan mutagen.

Influenza A virus subtype H1N1 becomes a global concern because it has high pathogenicity, due to the constituent genes of the virus is RNA. Treatment with antiviral (oseltamivir and zanamivir) is the way to prevent pandemic influenza, but influenza virus resistance to antiviral drugs. This resistance has been overcome by laninamivir. Laninamivir proved able to inhibit neuraminidase activity of influenza A and B viruses, including subtypes N1 to N9 and viruses resistant to oseltamivir. This research was conducted to modify laninamivir-based
drug design, so that results of modified laninamivir can inhibit neuraminidase more effective than laninamivir itself. Molecular docking was conducted to get 3 best ligand modifications from 336 modifications. Results of molecular docking indicated that AM3G1, CA3G1 and F1G2 have interaction and free binding energy better than standards. Furthermore, the analysis of toxicological properties of the ligand AM3G1, CA3G1, and F1G2 shown that the ligands have noncarcinogen and non-mutagen.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S147
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>