Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 59133 dokumen yang sesuai dengan query
cover
Sari Widyanti
"Lapangan "X" merupakan salah satu lapangan sistem geotermal dengan high temperature dan high enthalpy yang merupakan bagian dari Bandung Volcanic Complex. Ia merupakan peralihan antara jenis sistem vapor dominated dengan liquid dominated. Hal ini terlihat dari sumur bagian utara yang memproduksi fluida dari sistem jenis vapor dominated, sedangkan sumur bagian Selatan memproduksi fluida dari sistem jenis liquid dominated. Di lapangan ini terdapat empat pusat fluid upwelling, dua di antaranya berasosiasi dengan G.Walawi andesite stratovolcano dan dua lainnya dengan G.Lani & G.Intan andesitic volcanoes. Untuk mengetahui karakteristik reservoar, letak dan besar energi heat source, serta hidrogeologi maka perlu dibuat pemodelan reservoar dengan simulator TOUGH2. Kesesuaian kurva yang didapatkan dari hasil pemodelan dengan 11 data sumur mengindikasikan tercapainya natural state. Diperoleh steam cap dari reservoar dipisahkan oleh Buri Horst dengan permeabilitas rendah, menghasilkan bagian utara dan selatan. Heat source terletak tepat di bawah zona reservoar dengan temperatur 320OC dan reservoar memiliki temperatur rata - rata 257OC dengan luas sekitar 40 km2.

Field "X" is one of many geothermal fields located in Bandung Volcanic Complex with high temperature and high enthalpy. It is a transition between vapor dominated with liquid dominated system. This is seen from the well at north producing fluids indicating vapor dominated system, meanwhile fluid is produced from a liquid dominated system at the south. The field has four fluid upwellings, two of them are associated with Mt.Walawi andesitic stratovolcano and two others with Mt.Lani & Mt. Intan andesitic volcanoes. To determine the reservoir‟s characteristic, location and total energy of heat source, and hydrogeology, modeling of the reservoir needed to be conducted with TOUGH2 simulator. The compatibility of curves gained from the modeling with well data indicates that the natural state has been reached. The result shows the steam cap of the reservoir is separated by the Buri Horst with low permeability, dividing it into the northern and southern sector. The heat source is located beneath the reservoir with temperature of 320OC and the average temperature of reservoir is 257OC with extensive area of 40 km2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S1979
UI - Skripsi Open  Universitas Indonesia Library
cover
Desy Rhobiatul Adhawiyah
"Sistem panasbumi lapangan "D" merupakan sistem panasbumi tipe kaldera yang terbentuk karena aktivitas tektonik dan vulkanik. Formasi batuannya merupakan formasi sedimen berumur tersier di bagian bawah, dengan formasi batuan beku berumur kuarter di bagian atasnya. Manifestasi permukaan yang ada berupa fumarol di atas Gunung Taf dan Gunung "D" serta mata air panas pada arah tenggara dari pusat sistem. Data MT menunjukkan adanya up-dome shape sedangkan data gravity menunjukkan keberadaan reservoar yang ditandai dengan anomali gravitasi rendah. Untuk memahami karakteristik reservoar, letak sumber panas, serta hidrogeologi, dilakukan pemodelan sistem panasbumi lapangan "D". Pemodelan dilakukan secara forward dengan software TOUGH2 dan inversi dengan software iTOUGH2. Input pemodelan forward dibuat berdasarkan data geologi, geofisika, geokimia, dan data sumur.
Output yang dihasilkan digunakan sebagai input untuk proses inversi dengan tujuan optimalisasi model Natural State yang ingin dicapai. Ketercapaian kondisi natural state ditunjukkan dengan adanya kesesuaian antara profil temperatur sumur dengan hasil pemodelan. Hasil pemodelan menunjukkan bahwa sumber panas berada di bawah Gunung Taf dan Gunung "D", dengan outflow ke arah tenggara, serta keberadaan zona recharge di sebelah barat daya dari sistem. Top reservoar diperkirakan berada pada elevasi 0 m. Dari profil temperatur juga diberikan rekomendasi wilayah yang tepat sebagai sumur produksi dan sumur reinjeksi.

Geothermal system at field "D" is a caldera-type system which was developed by volcanism and tectonism activities. The "D" area composed of pre-Tertiary-Tertiary sedimentary formation in the lower part, and unconformably covered by Quaternary volcanic rock formation. Surface manifestations present in this area are fumaroles right above Mount Taf and Mount "D" and hot-springs in north east and south east direction from the center of the system. MT data inform the present of up-dome shape, while gravity data show the reservoir location with low gravity anomaly. For understanding the characteristic of reservoir, heat source location, and hydrogeology, the modeling of geothermal system at field "D" was conducted using TOUGH2 and iTOUGH2 simulator in forward and inverse modeling respectively. Input for forward modeling were composed based on geological, geophysical, geochemical and well-bore data.
The calculated output from forward modeling was then used as input data for inversion process in order to optimize the Natural State condition being obtained. Natural State condition is reached when the temperature profiles of the model show relatively good agreement with measured temperature from wells. The result indicates that the heat source is located beneath Mount Taf and Mount "D", with present outflow to the south east and north east direction outward the system, while recharge zones are located at south west and north west from the system. Top of reservoir was estimated to be 200 m above sea level. Recommendation for production and reinjection wells is also given based on measured temperature profiles.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S45940
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurina KD
"Area geothermal Hayati merupakan daerah prospek yang terbentuk karena aktivitas tektonik dan vulkanik. Secara stratigrafi memiliki formasi batuan vulkanik yang terbentuk pada zaman kuarter di bagian atasnya, dan formasi sedimen terbentuk pada zaman pra- Tertier di bagian bawahnya. Sistem geothermal ini ditunjukkan dengan adanya upflow di bagian tengah yang diindikasikan oleh manifestasi fumarol, serta fluida yang mengalir membentuk outflow ke tenggara dengan ditemukannya hot springs di daerah tersebut. Data MT menunjukkan adanya lapisan clay cap yang membentuk up-dome shape dan data gravity membentuk kaldera. Untuk mengetahui karakteristik reservoir, letak dan besar energi heat source, serta hidrogeologi maka diperlukan pemodelan dan simulasi reservoir dengan menggunakan simulator TOUGH2. Parameter yang digunakan berdasarkan data geoiisika, geologi, geokimia dan data sumur yang meliputi batas sistem yang dimodelkan, permeabilitas, porositas, densitas batuan serta kapasitas panas spesifik.
Hasil model simulasi merupakan kondisi natural state yang dicapai ketika data temperatur sumur dan hasil simulasi sesuai. Pemodelan hasil simulasi divisualisasikan dalam bentuk 3-dimensi. Diperoleh bahwa heat source berada di sekitar G.Putik, G.Hayati dan G.Paras dengan top reservoir yang berada pada elevasi 200 m serta luas reservoir sekitar 6,7 kmz. Hasil simulasi juga merekomendasikan letak sumur-sumur produksi dan injeksi untuk tahap pengembangan.

Hayati geothermal is a geothermal prospect area formed due to tectonic and vulcanic activities. Stratigraphically this area is composed of volcanic rocks formations from the quartial age on its top and the formations of sedimentary rocks from the pre-tertiary age on its bottom. This geothermal system showed an upflow in center, indicated of fumarol manifestation, and fluid flow forming an outflow in the south east with occurred hot springs. MT data shows up-dome shape clay cap, and gravity data shows a caldera. To determine about reservoir characteristic, location and energy total of heat source, and hydrogeology, furthennore the reservoir simulation is done with TOUGH2 simulation. The simulation requires several parameters based on geophysics, geology, geochemistry, and well data are including the system boundary that will be modeled, penneability, porosity, rock density and specific heat capacity.
The result of the simulation is a natural state condition model that reached when the temperature well data and result of the simulation are match. Modeling of the simulation result are showed on three-dimensional. The obtained results are the heat source exists in the vicinity of Mt.Putik, Mt.Hayati, Mt.Paras with top reservoir exists on elevation 200 m and has a reservoir area of approximately 6.7 km2. As an addition, the simulation results are recommending of production and injection wells location for development stage."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S29383
UI - Skripsi Open  Universitas Indonesia Library
cover
Rivan Tri Yuono
"Lapangan geotermal Ulumbu berada di bagian selatan dari wilayah vulkanik tua Mandasawu ndash; Ranakah dan Poco Leok. Lapangan ini memproduksi energi listrik sebesar 4 x 2.5 MW pada tahun 2014 sampai sekarang. Sistem geotermal lapangan ini termasuk ke dalam jenis sistem dua fasa, dengan nilai temperatur reservoir sekitar 230 ndash; 240 oC. Penelitian ini bermaksud untuk melakukan simulasi reservoir lapangan Ulumbu. Proses simulasi reservoir ini bertujuan untuk mengetahui karakteristik dari sistem reservoir geotermal. Simulasi reservoir ini diawali dengan membuat model konseptual sebagai hasil dari interpretasi data geosains geologi, geokimia, dan geofisika. Tahap pertama yaitu melakukan pengolahan data magnetotelluric MT sebagai data utama dan digabungkan dengan hasil analisis data pendukung lainnya sehingga menghasilkan model konseptual. Model konseptual ini akan menjadi data input pada pemodelan numerik. Tahap kedua yaitu melakukan simulasi reservoir yaitu mengubah model konseptual menjadi model numerik. Penelitian ini berhasil membuat model natural state lapangan Ulumbu. Profil tekanan dan temperatur sangat representatif dengan data di ketiga sumur. Model natural state ini kemudian digunakan untuk membantu melakukan skenario pengembangan lapangan geotermal yaitu, menghitung cadangan sumber daya dan membuat rekomendasi zona pengeboran berikutnya.

Ulumbu geothermal field were located in the south of Mandosawu Ranakah Old volcanics and Pocoleok, Flores Island. This field produces 4 x 2.5 MW electric power in 2014 until now. The type geothermal system is natural two phase, with temperature between 230 ndash 240 oC. This study aims to perform reservoir simulation in the Ulumbu field. The reservoir simulation method aims to determine the reservoir characteristics of the geothermal field. This method begins by creating a conceptual model as a result of interpretation of geosciences data geology, geochemistry, geophysics. The first step is processing of Magnetotelluric MT data as the main data and then combine with the results of analysis supporting data so as to generate a conceptual model. This model will be the input data in numerical modeling. The second stage is doing reservoir simulation that is changing the conceptual model into a numerical model. This research succeeded in making natural state model of Ulumbu reservoir. The pressure and temperature profiles are very representative with the data in the three wells. The natural state model is then used to help undertake a geothermal field development scenario, that is, to calculate resource reserves and to make recommendations for subsequent drilling zones."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T50546
UI - Tesis Membership  Universitas Indonesia Library
cover
Faris Maulana Yunus
"Wilayah geothermal Tulehu ditandai oleh kemunculan manifestasi permukaan. Tidak ada manifestasi yang mengindikasikan zona upflow. Survei geosains telah dilakukan dan diikuti oleh pengeboran 4 sumur eksplorasi. Namun, penggambaran zona upflow suhu tinggi yang terkait dengan sumber panas masih sulit. Hal ini karena area survei geosains yang dilakukan belum mencakup keseluruhan sistem geotermal (daerah upflow dan outflow). Dugaan keberadaan sumber panas kemungkinan menuju G. Eriwakang seperti yang ditunjukkan oleh distribusi temperatur dari data sumur. Berdasarkan studi data geosains yang tersedia, diintegrasikan dengan data sumur yang ada, maka dibuat model konseptual yang mencakup kemungkinan keberadaan sumber panas (zona upflow) di sekitar G. Eriwakang dan kemunculan manifestasi permukaan sebagai zona outflow. Untuk menyelidiki kemungkinan lokasi sumber panas sistem geotermal Tulehu, maka simulasi reservoir dilakukan berdasarkan model konseptual yang telah dibuat dengan menggunakan simulator TOUGH2/iTOUGH2. Hasil simulasi setelah mencapai kondisi natural state menunjukkan bahwa sumber panas dimungkinkan berada di bawah G. Eriwakang. Hal ini ditunjukkan dengan kesesuaian kurva temperatur vs kedalaman antara hasil simulasi dengan data sumur. Untuk mengkonfirmasi hasil penelitian ini, maka direkomendasikan untuk dilakukan survei geosains lebih lanjut.

Tulehu geothermal area is characterised by surface manifestations. Fumarole and other steam-type manifestations are absent. Geoscientific surveys covering thermal manifestations area have been conducted followed by exploration drillings. However, delineation of high temperature up-flow zone associated with heat source is still challenging, even drilling data from 4 wells could not answer the question yet. Possible existence of the heat source is likely toward Mt Eriwakang as indicated by temperature distribution from wells. Based on the geoscientitic data study, integrated with the existing well data, a conceptual model was developed that includes the possibility of the existence of a heat source (upflow zone) around G. Eriwakang and the appearance of surface manifestations as the outflow zones. To investigate the possible location of the heat source of the Tulehu geothermal system, reservoir simulations using TOUGH2/iTOUGH2 simulator were carried out based on the conceptual model that has been made. Simulation results, after achieving natural state conditions, indicate that the heat source is possibly located under Mt. Eriwakang. This is indicated by the suitability of the temperature vs. depth curve between the simulation results and the well data. Furthermore, to confirm the existence of the heat source, further geoscientific surveys are recommended to be carried out in this area."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Perdana Putra
"Potensi energi geotermal Indonesia merupakan yang terbesar di dunia, namun kini baru diutilisasi sekitar 4% dari potensi tersebut. Penelitian ini bertujuan mengoptimalkan penempatan sumur produksi geotermal di lapangan X agar risiko aktivitas pengembangan skema produksi dapat diminimalisasi. Pada penelitian ini dilakukan pemodelan dan simulasi reservoir dengan menggunakan data 3G (Geologi, Geofisika dan Geokimia) dari lapangan X dan data dari sumur yang telah ada. Dengan menggunakan TOUGH2, PETRASIM dan GeoSlicer-X, pemodelan forward yang mencakup adjustment dari litologi dan posisi sources dilakukan hingga model reservoir mencapai kondisi natural state.
Data hasil simulasi reservoir kemudian diregresi menggunakan MATLAB serta dilakukan optimasi numerik guna mendapatkan titik-titik penempatan sumur produksi yang diajukan untuk penambahan kapasitas terpasang di lapangan X. Didapatkan hasil penelitian titik optimum penempatan sumur produksi pada koordinat x 3276 m dan y 4262 m dengan nilai entalpi spesifik maksimum 1529,9 kJ/kg; serta 6 titik penempatan sumur produksi dengan nilai entalpi spesifik 1500, 1450 dan 1400 kJ/kg. Dengan demikian, penambahan kapasitas terpasang dari skema produksi tambahan ini diestimasi dapat mencapai 43,5 MWe.

Indonesia has the biggest estimated geothermal energy reserve in the world, but only 4% of that reserve currently utilized to generate electricity. The purpose of this research is to optimize the production well placements at X field to minimize the failure risk of production scheme development. In the research, reservoir modelling and simulation is conducted based on 3G (Geological, Geophysical and Geochemical) data and existing wells data. Forward modelling process, which covers the lithology and sources position adjustment, is executed with TOUGH2, PETRASIM and GeoSlicer-X to validate the reservoir model towards natural state condition.
Using MATLAB, the resulting data is regressed and used to numerically optimize the production well placement decision based on the fluid specific enthalpy. The new production scheme is proposed to further increase the installed capacity in X field. The final result is the optimal point of well placement; which is 3276 m in x coordinate and 4262 m in y coordinate with the maximum specific enthalpy value of 1529,9 kJ/kg and 6 (six) other points with specific enthalpy of 1500, 1450 or 1400 kJ/kg. Thus, the improvement of the installed capacity with the proposed production scheme is estimated to reach 43,5 MWe.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54875
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Kurniawan
"Lapangan geotermal “x” merupakan salah satu lapangan geotermal di Indonesia yang sedang dalam proses pengembangan. Tahap eksplorasi merupakan tahapan yang paling mempunyai resiko yang besar. Untuk mengurangi resiko tersebut, diperlukan data – data yang saling terintegrasi untuk menggambarkan sistem geotermal bawah permukaan secara representatif. Data magnetotellurik dan gravitasi merupakan data utama dalam pembuatan model konseptual sistem geotermal lapangan “x”. Selain itu juga didukung dengan data geokimia dan data sumur landaian suhu. Dari metode magnetotellurik yaitu berupa analisis fasa tensor dan induction arrow didapatkan arah struktur utama atau bisa disebut dengan geoelectrical strike yaitu berarah Timurlaut – Baratdaya atau lebih tepatnya mempunyai arah N80oE. Hal ini juga diperkuat dari metode gravitasi berupa analisis derivatif dan data geologi regional dimana struktur yang teridentifikasi juga dominan berarah Timurlaut – Baratdaya. Dari hasil pengolahan data gravitasi berupa data complete bouger anomaly mempunyai nilai 53 – 82 mgal dimana daerah yang mempunyai anomali tinggi berada pada daerah sekitar manifestasi hingga ke Timur daerah penelitian. Hasil pemodelan inversi 3D dari data magnetotellurik didapatkan batuan claycap mempunyai ketebalan berkisar antara 400 – 500 m. Batuan yang berperan sebagai heatsource merupakan batuan intrusi yang mempunyai nilai resistivitas hingga mencapai 400 ohm-m. Dari analisis data geokimia menunjukkan daerah outflow pada sistem geotermal yaitu daerah dimana terdapatnya manifestasi yang muncul ke permukaan. Dari semua data tersebut dapat diintegrasikan menjadi model konseptual sistem geotermal dimana dapat digunakan sebagai acuan dalam melakukan pemboran geotermal.

The geothermal field "x" is one of the geothermal fields in Indonesia which is in the process of being developed. The exploration stage is the stage that has the greatest risk. To reduce this risk, integrated data is needed to describe the subsurface geothermal system in a representative manner. Magnetotelluric and gravity data are the main data in making a conceptual model of the field "x" geothermal system. Also besides supported by geochemical data and temperature sloping well data. From the magnetotelluric method, namely in the form of phase tensor analysis and induction arrow, the direction of the main structure is obtained or it can be called a geoelectrical strike, which is in the Northeast - Southwest direction or more precisely has a direction of N80oE. This is also reinforced by the gravity method in the form of derivative analysis and regional geological data where the identified structures are also predominantly northeast-southwest trending. From the results of processing gravity data in the form of complete bouge anomaly data has a value of 53 - 82 mgal where areas that have high anomalies are in the area around the manifestation to the east of the study area. The results of 3D inversion modeling from the magnetotelluric data show that clay cap rocks have a thickness ranging from 400 - 500 m. Rocks that act as heat sources are intrusive rocks that have a resistivity value of up to 400 ohm-m. The geochemical data analysis shows the outflow area in the geothermal system, namely the area where there are manifestations that appear to the surface. From all these data, it can be integrated into a conceptual model of the geothermal system which can be used as a reference in carrying out geothermal drilling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iskandar
"Lapangan geotermal X berada di area gunung A yangmana berdasarkan data geologi ditemukan adanya manifestasi berupa hot spring dan fumarole. Pengukuran MT dilakukan untuk mengetahui persebaran resistivity batuan di bawah permukaan. Pengolahan data MT dilakukan dari analisis time series dan filtering noise kemudian dilakukan Transformasi Fourier dan Robust Processing. Setelah itu baru dilakukan crosspower untuk menyeleksi data sehingga output dari proses ini berupa kurva MT. Setelah didapatkan kurva MT dilakukan koreksi statik dikarenakan kurva TE dan TM terjadi shifting. Untuk proses akhirnya baru dilakukan inversi 2D dan inversi 3D. setelah itu dilakukan perbandingan antara 2D dan 3D. Wilayah interest lapangan X berada di lintasan AA dan lintasan AB. Berdasarkan analisis 3D diidentifikasi bahwa zona alterasi menipis di wilayah upflow dan menebal ke arah outflow yangmana sesuai dengan teori. Wilayah upflow dapat diketahui dengan melihat manifestasi berupa fumarole.

The geothermal field X is located in the area of Mount A which based on geological data found the presence of hot spring and fumarole manifestations. MT measurements were carried out to determine the distribution of rock resistivity in the subsurface. MT data processing is starts from time series analysis and noise filtering then Fourier Transform and Robust Processing are performed. After that, crosspower is done to select data so that the output of this process is an MT curve. After got the MT curve then a static correction is done because the TE and TM curves are shifting. For the final process are 2D inversion and 3D inversion. After that make a comparison between 2D and 3D. The area of interest in field X is on the line AA and line AB. Based on the 3D analysis, it was identified that alteration zones thinned in the upflow region and thickened towards the outflow which is make sense with the theory."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Henny Lastriany
"Metode magnetotellurik (MT) merupakan salah satu tools dalam geofisika yang memanfaatkan gelombang elektromagnetik natural. Salah satu aplikasi metode ini yang optimal adalah untuk mendelineasi sistem geothermal yang memiliki kontras resistivitas, dalam penelitian tugas akhir ini yaitu sistem geothermal daerah "X". Parameter yang diukur yaitu fluktuasi medan listrik dan medan magnet terhadap waktu dan parameter yang dianalisis yaitu resistivitas semu dan fase. Beberapa langkah dalam pengolahan data magnetotellurik antara lain : pemilihan data time series, transformasi Fourier, robust processing, rotasi, seleksi crosspower, koreksi static shift serta inversi 2-D. Inversi 2-D yang dilakukan pada empat lintasan mampu menggambarkan sebaran resistivitas bawah permukaan sehingga pemodelan sistem geothermal secara utuh dapat digambarkan. Diintegrasikan dengan data geologi dan geokimia, sistem geothermal daerah "X" dapat dimodelkan terpusat pada bagian tenggara daerah penelitian dengan zona upflow ditandai oleh manifestasi "4 munir" serta zona outflow mengarah ke barat laut dan selatan daerah penelit ian. Sistem yang terdapat pada daerah "X" ini merupakan sistem dengan tipe hydrothermal volcanic system dengan high temperature system. Hasil model sistem geothermal menunjukkan bahwa luasan reservoir sekitar 21 km2 dan perkiraan potensi sistem geothermal daerah "X" ini untuk dijadikan pembangkit listrik sebesar 204 MWe.

Magnetotelluric (MT) method is one of the tools in geophysics that have captured electromagnetic waves from subsurface by the response of natural electromagnetic waves as the source. One of the most useful application MT method is used to delineate geothermal system that presented by resistivity contrast. In this work, we have delineated the geothermal system in "X" area. Firstly, we have analyzed time series data from good time series data selection. Time domain data was transformed by FFT into frequency domain. Then we have also perform robust processing, rotation, crosspower selection and 2-D inversion respect to FFT result‟s. The four profiles of area were obtained by 2-D inversion in subsurface resistivity distribution. Interestingly, the results showed a whole geothermal system model. With integrated geology and geochemistry data, geothermal system at "X" area can be modeled centralized on southeast research area, with upflow zone is characterized by "4 munir" surface manifestation and outflow zone leads to northwest so do south research area. Geothermal system at this "X" area is hydrothermal volcanic system type with high temperature system. As a result from geothermal system model shows that reservoir is about 21 km2 wide and estimated potential reserve up to 204 MWe."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52802
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gemmy Adyendra
"Pemodelan Impedansi Akustik untuk Karakterisasi Reservoar Coalbed Methane pada daerah X di Riau dilakukan dengan menggunakan seismik inversi. Pada studi ini data seismik diinversi menjadi nilai impedansi akustik yang diturunkan dari data sumur untuk mengubah data volume seismik menjadi data volume impedansi akustik. Inversi model base digunakan untuk melakukan proses tersebut. Hasil dari proses inversi dapat memperkirakan keberadaan lapisan batubara yang dalam hal ini menjadi reservoar yang dicari.
Kajian dalam terhadap hasil inversi ditekankan pada reservoar batubara yang terdapat pada lapisan batu pasir pada pengendapan pada formasi muara enim. Identifikasi reservoar pada data log sumur memperlihatkan indikasi yang jelas pada kedalaman antara 460 sampai 465 meter untuk Coal 1, dan juga pada kedalaman 604 ? 628 meter untuk Coal 2. Hasil inversi memperlihatkan bahwa distribusi nilai impedansi akustik mampu membantu mendeliniasi sebaran reservoar coalbed methane.

Reservoir Charactization of Coalbed Methane Using Acoustic Impedance Modeling of X Field, Riau is done by using seismic inversion. In this study the seismic inversion is constrained by well to change the volume of seismic data to the data volume of acoustic impedance. In this study model base inversion of seismic method is used to perform the inversion process. The inverted result is used as process to delinieate coal layering that as the reservoir.
This study is pointed out on sand reservoir, which was deposited at Muara Enim formation. Reservoir identification from log data shows a clear indication of reservoir at depths of 460 m - 465 m for Coal 1 and at depths of 604 m ? 628 m for Coal 2. AI inversion results are expected to help delineate the distribution of the Coalbed Methane reservoir.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S42415
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>