Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 104985 dokumen yang sesuai dengan query
cover
Andre Sugioko
"Penjadwalan job shop dengan kriteria biaya keterlambatan merupakan permasalahan yang jarang digunakan dalam penelitian job shop. Umumnya penjadwalan job shop diselesaikan dengan menggunakan metode metaheuristik, salah satu metode metaheuristik yang populer dibicarakan adalah algoritma Bee Colony. Algoritma Bee Colony merupakan algoritma yang tidak memiliki metode untuk lepas dari local optimum, seperti yang dinyatakan pada penelitian Chong (Chong, et al. 2005), maka penelitian ini akan melakukan modifikasi terhadap algoritma Bee Colony dengan menggunakan tabu list, untuk meningkatkan perfroma pencarian solusi dan waktu komputasi untuk permasalahan penjadwalan job shop dengan kriteria biaya keterlambatan.
Hasil penelitian menunjukan bahwa algoritma Bee colony-Tabu memberikan perfroma yang serupa untuk kriteria biaya keterlambatan dan waktu komputasi terhadap algoritma Tabu Search dan lebih baik daripada algoritma Bee Colony dan Differentialial Evolution untuk kriteria biaya keterlambatan. Sedangkan untuk waktu komputasi algoritma Bee colony dengan Tabu List lebih unggul daripada algoritma Tabu Search dan Bee Colony, namun waktu komputasi algoritma Differentialial Evolution lebih unggul daripada algoritma Bee colony-Tabu, Tabu Search dan Bee Colony.

Job shop scheduling with tardiness cost is a problem that rarely exist in paper research. Generally, job shop scheduling solved using metaheuristik method, one of metaheuristik methods popular discussed in many paper are Bee Colony algorithm. Bee Colony Algorithm is an algorithm that does not have a method to escape from local optimum, as stated in the Chong?s research (Chong, et al. 2005), because of that this research will make modifications to the Bee Colony algorithm using the taboo list, to improve searching solution and computing time for job shop scheduling problems with late fees criteria.
The results showed that the Bee colony-Tabu algorithm gives perfromance similar to the Tabu Search algorithm and better than Bee Colony algorithm for late fees criteria and computation time, and Differentialial Evolution for the criteria for late fees. As for computational time Bee colony with Tabu List algorithm is superior to Tabu Search algorithm and the Bee Colony, but the computing time algorithm Differentialial Evolution algorithm is superior to Bee Colony-Tabu, Tabu Search and Bee Colony.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T30052
UI - Tesis Open  Universitas Indonesia Library
cover
Ervan Nugraha
"Pada perusahaan manufaktur, penjadwalan produksi job shop memegang peranan yang penting dalam hal tercapainya kondisi yang mendekati optimal dalam proses produksi. Melalui penelitian ini penulis bermaksud untuk menerapkan algoritma tabu search pada penjadwalan produksi job shop dengan tujuan minimasi penalty awal dari permasalahan yang ada lalu solusi tersebit dijadikan sebagai solusi terbaik. Solusi terbaik tersebut dimaksudkan ke dalam tabu list, setelah itu di proses di iterasi berikutnya sampai mendekati titik optimal. Penelitian ini mempunyai 5 job yang bertotalkan 95 komponen yang akan diproses di 24 mesin.
Dari hasil percobaan yang telah dilakukan, dapat disimpulkan bahwa algoritma tabu search mempunyai hasil sejumlah 5732 menit dan apabila dibandingkan dengan solusi awal mengalami penurunan makespan sebesar 6.2 % yang lebih baik pada permasalahan penjadwalan produksi job shop dengan tujuan minimasi penalti keterlambatan.

In manufacturing, production scheduling job shop plays an important role in the achievement of near-optimal conditions in the production process. Through this study the author intends to apply the tabu search algorithms on the production job shop scheduling with the goal of minimizing the initial penalty of existing problems and solutions tersebit serve as the best solution. The best solution is intended to the taboo list, after it was processed in the next iteration until near the optimum point. This study has 5 job that bertotalkan 95 components will be processed in 24 machines.
From the results of experiments that have been done, we can conclude that tabu search algorithms have the results of a number of 5732 minutes and when compared with the initial solution makespan decreased by 6.2% better on the production job shop scheduling problem with the objective of minimizing the delay penalty.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S57918
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ibni Ikhsan Ramadhiansyah
"Penelitian ini membahas masalah penjadwalan job shop pada sebuah perusahaan yang memproduksi produk stamping. Permasalahan yang terjadi adalah tingginya angka keterlambatan pemenuhan pesanan atau rendahnya performa on-time delivery. Oleh karena itu, tujuan dari penelitian ini adalah meminimumkan jumlah keterlambatan dari setiap job. Penjadwalan produksi pada sistem produksi job shop merupakan salah satu permasalahan yang kompleks sehingga dibutuhkan metode yang tepat untuk mendapatkan solusi yang optimal untuk masalah ini. Metode penelitian ini menggunakan algoritma tabu search. Tabu search menggunakan tabu list dan iterasi pada solusi tetangga untuk mencegah terjebak pada optimal lokal. Penelitian ini menjadwalkan 21 produk yang terbagi menjadi 208 job yang diproses di 16 mesin dengan spesifikasinya mesin yang berbeda-beda. Model penjadwalan ini menghasilkan jumlah keterlambatan sebesar 23 job yang sebelumnya 96 job, atau dengan kata lain terjadi penurunan jumlah keterlambatan sebesar 76,04 . Selain itu, rata-rata waktu tunggu proses barang setengah jadi juga mengalami penurunan sebesar 29,8

This research presents job shop scheduling at a company that produce stamping product. The problem that happened here is high number of tardiness or low on time delivery performance. Therefore, the objective of this research is to minimize number of tardiness. Job shop scheduling is a complex problem so that need appropriated method to produce the optimal solution for this problem. This research using tabu search algorithm method. Tabu search uses tabu list and iterations in neigborhood solution to prevent getting stuck on a local optimum. This research schedules 21 products which divided into 208 jobs which processed on 16 machines with different spesifications. This model produces the output has 23 jobs tardiness which before has 96 jobs, means that number of tardiness reduces of 76,04 . In addtion, average waiting time of work in process also reduces 29,8."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67082
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lina Astuti
"Penelitian ini membahas masalah penjadwalan job shop pada suatu perusahaan. Pada sistem ini akan dihasilkan sejumlah produk dalam beberapa jenis dengan rute yang dapat berbeda satu sama lain. Penjadwalan produksi merupakan suatu permasalahan yang kompleks sehingga dibutuhkan metode yang tepat untuk mendapatkan solusi yang optimal untuk masalah ini. Metode penelitian yang digunakan adalah salah satu dari metode meta-heuristik, yaitu algoritma differential evolution (DE). Prinsip algoritma DE sesuai dengan analogi evolusi biologi, yaitu terdiri dari proses inisialisasi populasi, proses mutasi, proses pindah silang, dan proses seleksi. Algoritma ini memiliki beberapa keunggulan, yaitu konsepnya sederhana, mudah diaplikasikan, cepat dalam menghasilkan solusi, dan tangguh. Fungsi tujuan dari permasalahan ini ialah meminimumkan total biaya keterlambatan seluruh job. Penjadwalan yang diperoleh melalui algoritma differential evolution menghasilkan total biaya keterlambatan seluruh job sebesar 28395 menit, sedangkan jadwal perusahaan menghasilkan 33190 menit. Jadi, usulan jadwal menghasilkan penurunan total biaya keterlambatan sebesar 14,45% dibandingkan jadwal perusahaan. Selain itu; jumlah job yang terlambat, total keterlambatan, dan total waktu penyelesaian seluruh job juga mengalami penurunan; yaitu secara berurutan sebesar 11,11%; 11,47%; dan 0,1%.

This research presents job shop scheduling at a company. This system yields large amount of different products with some different manufacture processes. Production scheduling is a complex problem so that appropriated method to produces the optimal solution of it is needed. Method of this research is one of metaheuristic algorithms, differential evolution (DE) algorithm. The principle of DE algorithm is based on analogy of biological evolution that consists of population initiation process, mutation process, crossover process, and selection process. This algorithm has some strengths because of its simply structure, ease to use, speed, and robustness. The objective function in this problem is to minimize total of tardiness costs of all jobs. The schedule that is obtained from differential evolution algorithm produces total of tardiness costs of 28395 minutes, meanwhile the schedule of company produces 33190 minutes. Thus, new schedule produces reduction of total of tardiness costs about 14.45% compared with schedule of company. Moreover, the number of tardy jobs, total of tardiness, and makespan also show reduction about 11.11%, 11.47%, and 0.1% respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S50391
UI - Skripsi Open  Universitas Indonesia Library
cover
Hasanudin
"Penelitian ini akan membahas masalah penjadwalan Job shop (Job shop scheduling problem). Kerumitan pada masalah penjadwalan job shop disebabkan karena pada proses setiap komponen memiliki aliran yang berbeda sehingga dibutuhkan penjadwalan untuk menentukan urutan pengerjaan setiap komponen. Karena kompleksnya masalah penjadwalan produksi, maka solusi penyelesaian terhadap masalah ini dilakukan dengan menggunakan pendekatan heuristik yaitu metode algoritma tabu search. Algoritma tabu search, yaitu suatu pendekatan heuristik dalam pencarian solusi berdasarkan pada metode optimasi, dimana algoritma ini menggunakan daftar tabu dan iterasi lokal untuk mencegah terjebak pada local optimal hingga tercapainya solusi mendekati terbaik. Pada model jobshop penelitian ini terdapat 5 job dengan 98 komponen yang di kerjakan di 8 mesin. Fungsi tujuan dari permasalahan ini ialah meminimalkan total waktu pengerjaan seluruh job. Hasil penjadwalan produksi yang diperoleh melalui algoritma tabu search setelah 20 iterasi menghasilkan minimal makespan seluruh job sebesar 197.50 jam. Jadi, jika dibandingkan dengan jadwal produksi yang lama, maka terjadi penurunan makespan yaitu sebesar 53,87 %.

This research will present Job shop scheduling problem. The complexity of the job shop scheduling problem is caused the process of each component having different flow process. that it takes to determine sequencing of processing for each component in the scheduling. Due to the complex problem of production scheduling, then the solution to the problem of settlement is done by using a heuristic approach to taboo search algorithm method. Taboo search algorithm, which is a heuristic search approach based on the solution methods of optimization, where this algorithm uses a local list of taboo and iterations to prevent getting stuck on a local optimum to the achievement of a solution approach the best. In this model there are 5 jobs with 98 components that are in working on the 8 machines. The purpose of this function is to minimize the problems of the total cost of makespan. Production scheduling results obtained through taboo search algorithm after 200 iterations produces minimal makespan whole job of 197.5 hours. So, when compared to the long production schedule, then decline the makespan of 53.87%."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S42363
UI - Skripsi Open  Universitas Indonesia Library
cover
Izmi Tania
"GMF Power Service merupakan unit bisnis non-aviasi yang menangani perbaikan turbin gas industri, khususnya work center part repair menangani perbaikan komponen-komponen penyusun turbin gas tersebut. Kegiatan perbaikan di work center part repair tergolong sebagai tipe job shop dinamis, dimana setiap komponen memerlukan alur penanganan yang berbeda-beda dan order konsumen datang dengan waktu yang berbeda pula. Penelitian ini dilakukan untuk memperoleh suatu penjadwalan kegiatan kerja yang optimal dengan menggunakan metode metaheuristik yaitu algoritma Tabu Search. Fungsi tujuan yang ingin dicapai adalah meminimumkan total biaya penalti akibat keterlambatan penyelesaian order. Keterlambatan didefinisikan sebagai selisih positif antara waktu tenggat (due date) dan waktu penyelesaian order.
Dengan menggunakan bantuan bahasa pemrograman DEPLHI, diperoleh penjadwalan kegiatan kerja optimal dengan total waktu penyelesaian (makespan) seluruh job sebesar 4640 jam, jumlah keterlambatan 4 job, dan total pinalti sebesar Rp 12.515. Dari hasil optimasi ini, total biaya penalti yang dihasilkan berkurang 49,53 % dari total biaya penalti solusi awal.

GMF Power Service is a unit business that repair non-aircraft industrial turbine gas, especially Part Repair work center handle the repairig of gas turbine’s components. All those repairing activities classified as dynamic job shop type, where each component requires the different repairing process route and the customer orders arrive with a different time. This study was conducted to obtain an optimal work scheduling using metaheuristic method, namely Tabu Search algorithm. The objective function is to minimize the total cost of penalty due to the lateness of orders completion. Lateness defined as the positive difference between due date and order completion time.
Using DELPHI programming language, the optimum solution of work activities scheduling generate optimal total completion time (makespan) of all jobs by 4640 hours, 4 number of lateness jobs, and total penalty cost Rp 12.515. From the optimum scheduling, the company can save 49.53% total penalty cost compared to the initial solution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46626
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raeywegha W. Panguri
"Penelitian ini membahas masalah penjadwalan job shop pada suatu perusahaan. Pada sistem ini akan dihasilkan sejumlah produk dalam beberapa jenis dengan rute yang dapat berbeda satu sama lain. Penjadwalan produksi merupakan suatu permasalahan yang kompleks sehingga dibutuhkan metode yang tepat untuk mendapatkan solusi yang optimal untuk permasalah ini. Metode penelitian yang digunakan yaitu algoritma Tabu Search. Fungsi tujuan dari permasalahan ini adalah meminimumkan total penalti keterlambatan.
Sebagai model job shop digunakan 7 jobs dengan total 219 komponen dan 6 mesin yang berbeda. Penjadwalan dengan metode algoritma Tabu Search memberikan solusi yang cepat. Hasil dari penjadwalan dapat menghemat 22.7% total biaya produksi, juga keterlamabatan mengalami perbaikan 31% terhadap jadwal solusi awal. Dengan demikian perusahaan bisa meningkatkan jumlah pesanan.

This study presents a job shop scheduling problem on a specific company. This research presents job shop scheduling at a company. This system yields large amount of different products with some different manufacture processes. Production scheduling is a complex problem so that appropriated method to produces the optimal solution of it is needed. Method of this research is using Tabu Search (TS) algorithm. The objective function in this problem is to minimize total penalty of tardiness.
The model used 7 jobs, 219 parts and 6 different machines. Tabu Search (TS) algorithm method is used to solve the problem, which minimizes the total penalty of tardiness. Scheduling with TS algorithm provides a quick solution. The results save 22.7% of total production costs, and improve tardiness 31% compared to old scheduling. With the proposed method the company can increase the numbers of orders.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1828
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhamad Emir Faysal Dacini Hidayatullah
"Sistem manufaktur telah mengalami kemajuan menuju personalisasi massal dalam konteks Industri 4.0, yang memiliki implikasi besar terhadap efisiensi produksi dan kepuasan konsumen. Tujuan dari penelitian ini adalah untuk menentukan metaheuristik mana yang paling berhasil untuk mengatasi masalah penjadwalan job shop umum antara Genetic Algorithm (GA), Particle Swarm Optimization (PSO), dan Ant Colony Optimization (ACO). Masalah-masalah ini dikenal sebagai NP-hard, yang menuntut penggunaan pendekatan metaheuristik. Penelitian ini menilai kinerja setiap metaheuristik pada kumpulan data kecil, menengah, dan besar, dengan fokus pada indikator utama makespan. Hasilnya menunjukkan bahwa GA secara konsisten menawarkan solusi yang mendekati optimal, mengungguli PSO dan ACO. PSO menunjukkan potensi dalam kumpulan data yang lebih besar namun kurang konsisten, sedangkan ACO adalah yang paling tidak berhasil, sering kali menghasilkan nilai makespan yang lebih tinggi. Kesimpulannya, GA direkomendasikan untuk aplikasi masalah penjadwalan job shop karena keandalan dan efektivitasnya.

Manufacturing systems have progressed toward mass personalization in the context of Industry 4.0, with substantial implications for production efficiency and consumer satisfaction. The goal of this study is to determine which metaheuristic is most successful for addressing general Job Shop Scheduling Problems (JSSP) among Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO). These issues are known to be NP-hard, demanding the use of metaheuristic approaches. The research assesses the performance of each metaheuristic on small, medium, and big datasets, with a focus on the key indicator of makespan. The results show that GA consistently offers near-optimal solutions, outperforming PSO and ACO. PSO demonstrated potential in larger datasets but lacked consistency, whereas ACO was the least successful, frequently producing higher makespan values. Consequently, GA is recommended for actual JSSP applications because of its dependability and effectiveness."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thasya Dwiayu Maydina
"Optimisasi portofolio adalah masalah fundamental pada lingkungan keuangan, dimana investor membentuk portofolio yang sesuai dengan yang diharapkan dengan mendapatkan return optimal dan risiko minimal. Pada skripsi ini, membahas masalah optimisasi portofolio dengan kendala di bidang keuangan seperti biaya transaksi, kardinalitas, dan kuantitas dibawah asumsi bahwa return dari aset berisiko adalah bilangan fuzzy. Karena hal tersebut, digunakan model optimisasi portofolio yaitu, mixed integer model nonlinear programming problem. Pertama, data saham di diversifikasi berdasarkan 7 skor rasio finansial EPS, PER, PEG, ROE, DER, Current Ratio dan Profit Margin dengan Agglomerative Clustering untuk menghasikan klaster yang homogen berdasarkan risiko. Selanjutnya, setiap klaster dicari proporsi dalam portofolio dengan menggunakan algoritme heuristik yaitu modified artificial bee colony MABC algorithm, dimana pada algoritme tersebut terdapat proses inisialisasi populasi yang dibangun berdasarkan pendekatan chaotic initialization. Pada akhirnya, return yang dihasilkan dibandingkan dengan S P 500 index return 12,34 dan Sharpe ratio 2,7 . Hasil dari performa Agglomerative Clustering Modified Artificial Bee Colony Algoritm yang dievaluasi menggunakan data aktual, menghasilkan nilai tertinggi dari rata-rata return sebesar 29,96 dan Sharpe ratio sebesar 17,562.

Portfolio optimization problem is a fundamental matter in the financial environment, where the investors form a satisfactory portfolio by obtaining optimal return and minimal risk. In this undergraduate thesis, we discuss the portfolio optimization problem with real world constraints such as transaction costs, cardinality, and quantity under the assumption that the returns of risky assets are fuzzy numbers. Thus, a mixed integer model nonlinear programming problem is discussed. At first, stock data is diversified based on their financial ratio scores the scores of EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin by using agglomerative clustering to produce a homogeneous cluster. Next, weight of each stock in the stock portfolio are determined using a modified artificial bee colony MABC algorithm, where in the algorithm there is a process of chaotic initialization approach. Finally, the obtained return will be compared to both the S P 500 index return 12,34 and Sharpe ratio 2,7. The results form the performance of Modified Artificial Bee Colony Algoritm with Agglomerative Clustering in portfolio optimization, evaluated based on some actual dataset show that the higher level of return is 29,96 and Sharpe ratio is 17,562."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dini Maghfirra
"Penelitian ini membahas masalah penjadwalan job shop. Pada sistem ini akan dilakukan kegiatan pemuatan barang ke dalam kontainer ekspor dimana waktu kedatangan dari kendaraan pembawa barangnya adalah bervariasi atau dinamis. Penjadwalan suatu kegiatan merupakan suatu permasalahan yang kompleks sehingga dibutuhkan metode yang tepat untuk mendapatkan solusi yang optimal untuk masalah ini. Metode penelitian yang digunakan adalah salah satu dari metode meta-heuristik, yaitu algoritma differential evolution (DE). Prinsip algoritma DE sesuai dengan analogi evolusi biologi, yaitu terdiri dari proses inisialisasi populasi, proses mutasi, proses pindah silang, dan proses seleksi. Algoritma ini memiliki beberapa keunggulan, yaitu konsepnya sederhana, mudah diaplikasikan, cepat dalam menghasilkan solusi, dan tangguh. Fungsi tujuan dari permasalahan ini ialah meminimumkan total biaya keterlambatan seluruh job. Penjadwalan yang diperoleh melalui algoritma differential evolution pada proses kegiatan pemuatan barang ekspor di perusahaan third party logistics dengan studi kasus PT.X menghasilkan total biaya lembur seluruh job sebesar Rp.8.244.000. Jadi, usulan jadwal menghasilkan penurunan total biaya keterlambatan sebesar 9% dibandingkan jadwal perusahaan.

This research presents job shop scheduling. This system will imply for stuffing activity where the arrival time of truck is dynamic. Production scheduling is a complex problem so that appropriated method to produces the optimal solution of it is needed. Method of this research is one of metaheuristic algorithms, differential evolution (DE) algorithm. The principle of DE algorithm is based on analogy of biological evolution that consists of population initiation process, mutation process, crossover process, and selection process. This algorithm has some strengths because of its simply structure, ease to use, speed, and robustness. The objective function in this problem is to minimize total of tardiness costs of all jobs. The schedule that is obtained from differential evolution algorithm produces in stuffing process of PT. X as a Third Party Logistics company, the total of overtime costs are 8.244.000 rupiah, Thus, new schedule produces reduction of total of tardiness costs about 9% compared with schedule of company."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26174
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>