Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 90340 dokumen yang sesuai dengan query
cover
Siska Afrianita
"ABSTRAK
Vehicle Routing Problem with Time Windows (VRPTW) merupakan permasalahan kombinatorik yang sering terjadi pada sistem pendistribusian barang. VRPTW adalah masalah penentuan rute sejumlah kendaraan untuk mendistribusikan barang ke sejumlah pelanggan dengan biaya minimum. Kendaraan yang digunakan memiliki kapasitas serta setiap kendaraan memulai dan mengakhiri perjalanan di depot. Setiap pelanggan yang dilayani akan memberikan time windows dan setiap pelanggan hanya boleh dilayani satu kali. Untuk memperoleh tujuan VRPTW, ada dua tujuan yang harus dicapai yaitu meminimumkan banyaknya kendaraan yang digunakan dan meminimumkan total waktu tempuh kendaraan. Pada skripsi ini akan digunakan algoritma Multiple Ant Colony System (MACS) yang dikembangkan dari algoritma Ant Colony System (ACS) yang termasuk dalam Ant Colony Optimization (ACO). ACO merupakan suatu metode metaheuristik yang terinspirasi dari perilaku hewan yaitu semut. Pada algoritma MACS ini, terdapat dua koloni semut yang masing-masing akan mengoptimisasi tujuan yang akan dicapai pada VRPTW.

ABSTRACT
Vehicle Routing Problem with Time Windows (VRPTW) is one of combinatorial problems which mostly happen in a logistic system. VRPTW is an optimization problem which aims to minimize cost of using fleets of vehicles. The vehicles start and end the route at depot must serve or distribute goods to several customers. Every customer gives time windows and should be visited only once. The objective of VRPTW can be reached by multiple objectives. First, minimizes number of vehicles used, and then minimizes the total travel time. In this final project, it will be used Multiple Ant Colony System algorithm for solving VRPTW. MACS is based on Ant Colony System (ACS) algorithm which is one of Ant Colony Optimization (ACO). ACO is a metaheuristic method inspired by foraging behavior of real colonies of ant. MACS algorithm consider a hierarchical objective for solving VRPTW and these objectives would be optimized by two colonies of ants."
Universitas Indonesia, 2011
S1897
UI - Skripsi Open  Universitas Indonesia Library
cover
Rezi Jennica
"Hazardous material (hazmat) merupakan material yang berpotensi membahayakan manusia, infrastruktur dan lingkungan (US DOT, 2004). Karena berpotensi membahayakan, maka pada pengangkutan hazmat perlu memperhatikan risiko yang mungkin timbul (baik risiko jiwa maupun harta benda) selain mempertimbangkan faktor biaya, sehingga permasalahan pengangkutan hazmat termasuk ke dalam permasalahan multi obyektif.
Salah satu cara untuk menangani permasalahan multi obyektif adalah dengan menerapkan konsep optimasi Pareto, yaitu konsep yang mengatakan bahwa suatu solusi dikatakan optimal jika tidak mungkin lagi meningkatkan suatu nilai fungsi tujuan tanpa mengurangi nilai fungsi tujuan yang lain. Konsep tersebut bekerja untuk menemukan himpunan solusi non-dominated dengan menerapkan aturan dominan pareto (pareto dominance rule).
Pada skripsi ini akan dibahas masalah pemilihan rute kendaraan untuk mengangkut hazmat dengan memperhatikan waktu pelayanan (time windows) yang telah ditentukan yang dimodelkan ke dalam Hazmat Vehicle Routing Problem with Time windows (HVRPTW). Rute yang terpilih merupakan jalur non dominated, yaitu jalur dengan tingkat risiko dan biaya perjalanan yang paling kecil. Untuk memilih rute tersebut digunakan metode Multi-Objective Ant Colony System yang merupakan pengembangan dari metode Ant Colony System, yaitu metode yang mengadaptasi perilaku semut dalam mencari makanan dengan bantuan pheromone (zat kimia aromatik yang dikeluarkan oleh spesies semut).

Hazardous materials (hazmat) is defined by any substance or material which capable of causing harm to human, property and environment (US DOT, 2004). Therefore, in every hazmat transportation needs to pay attention to possible risks (both life and property risk) in addition to considering the cost factor. So that the problem of transporting hazmat belongs to the multi-objective problems.
The best approach to deal with multi objective problem is to apply the concept of Pareto optimization. This concept declare that an optimal solution is if there is no possibility to increase the value of objective function without eliminate the value of others objective function. This concept works to determine a set of non-dominated solutions applying conditions of Pareto dominance.
This research discuss about the problem of route selection of vehicles for transporting hazmat with focusing on service time (time windows) that has been determined and known as Hazmat Vehicle Routing Problem with Time Windows (HVRPTW). A non-dominated paths as selected path is the path with the smallest amount of risk and scheduled time. The route is selected by using Multi-Objective Ant Colony System algorithm which is the development of Ant Colony System methods that belongs to Ant Colony Optimization. This method adapts the behavior of ants in looking for feed helped by a pheromone (a chemical released by the aromatic species of ants).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S60925
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amalia Rahmadienna
"Kegiatan berbelanja secara online di e-commerce akhir-akhir ini sedang ramai dilakukan karena dinilai lebih praktis dan tidak membuang banyak waktu. Hal ini berbanding lurus dengan banyaknya permintaan pengiriman yang harus dipenuhi oleh pihak last-mile delivery. Last-mile delivery adalah proses pengiriman langsung ke lokasi pelanggan. Pihak last-mile delivery harus melakukan pengiriman dengan biaya yang seminimal mungkin. Biaya perjalanan dapat semakin meningkat apabila terjadi pengiriman berulang yang disebabkan pelanggan tidak berada di rumah saat dilakukan pengiriman. Alternatif pengiriman roaming delivery dapat menjadi solusi dari permasalahan tersebut karena dapat mengurangi jarak dan waktu tempuh serta mengurangi emisi serta kemacetan. Vehicle Routing Problem with Roaming Delivery Locations adalah permasalahan permintaan transportasi dengan pelanggan dapat memiliki lebih dari satu lokasi pengiriman. Pada skripsi ini, digunakan metode Multiple Ant Colony System (MACS) untuk membentuk solusi yang optimal. Multiple Ant Colony System terinspirasi dari perilaku koloni semut dalam mencari sumber makanan. Dalam membentuk sebuah solusi, dibutuhkan data pelanggan berupa koordinat lokasi pengiriman serta time window masing-masing lokasi dan banyaknya permintaan pelanggan. Sebelum dibentuk solusi terbaik menggunakan MACS, dibutuhkan solusi awal yang akan dibentuk dengan menggunakan Nearest Neighbor Heuristic. Berdasarkan simulasi program yang dilakukan pada skripsi ini, dengan data yang digunakan sebanyak 30 pelanggan dengan masing-masing pelanggan memberikan dua lokasi pengiriman, didapatkan alternatif pengiriman roaming delivery memiliki biaya perjalanan yang lebih kecil dibandingkan home delivery yang merupakan pengiriman yang hanya dapat dilakukan ke rumah pelanggan, dengan selisih sebesar 46%.

Nowadays, online shopping in e-commerce caught more attention than offline shopping because considered more practical and does not waste much time. This has led to increasing the demand for shipments made by last-mile delivery. Last-mile delivery is the final step of the delivery process, the delivery made by sending directly to the customer's house. The package must be delivered using the least-costed routes. Missed deliveries caused by customers are not at home while the deliveries made, can increase the total travel cost. There is an alternative of deliveries that can overcome this problem, i.e., roaming delivery. Roaming delivery can be a solution to these problems because it can reduce distance and travel time as well as reduce emissions and congestion. Vehicle routing problem with roaming delivery location is the variant of vehicle routing problem which each customer can have more than one delivery locations. This thesis proposed multiple ant colony system methods to find the optimum solution of vehicle routing problems with roaming delivery locations. Multiple Ant Colony System is a method inspired by the foraging behavior of colonies of ants. The input of this method is a set of customers' data, i.e., locations' coordinates, time window of each location, and the number of demands. Multiple Ant Colony System requires an initial solution constructed by the nearest neighbor heuristic which is then optimized by reducing the number of vehicles and total travel time. Based on the simulation that use 30 customers where each of the customers gives 2 different locations, the total cost of roaming delivery is cheaper than home delivery up to 46%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aufar Rizki Putra
"

Perkembangan teknologi memungkinkan perusahaan untuk senantiasa meningkatkan kinerjanya dalam berbagai kegiatan usaha. Salah satu kegiatan usaha yang menjadi perhatian adalah distribusi. Penentuan rute distribusi harus mempertimbangkan permintaan pelanggan dan biaya transportasi. Perancangan rute distribusi yang meminimalisir jarak tempuh transportasi dapat menghemat biaya distribusi. Di sisi lain, ketepatan waktu pengiriman juga masih menjadi salah satu faktor penting distribusi. Penelitian ini berfokus pada perancangan algoritma penyelesaian Vehicle Routing Problem with Time Windows (VRPTW) dengan metode heuristik Lin Kernighan Helsgaun dan Local Search. Hasil dari algoritma ini adalah rute distribusi yang memenuhi permintaan pelanggan dengan memenuthi batasan kapasitas kendaraan dan rentang waktu pelayanan.


Technology development has enabled businesses to continuously improve their performance on various activities. One of the highlighted activity is distribution. The planning of distribution routes must consider customer demands and transportation cost. A better distribution route planning that minimizes transportation distances would save distribution costs. On the other hand, timeliness remains one of the important factors of distribution. This research focuses on designing an algorithm that solves Vehicle Routing Problem with Time Windows (VRPTW) using the heuristic methods which are Lin Kernighan Helsgaun and Local Search. The result of the algorithm is a list of routes that fulfills all demands and within the constraints of limited capacity and a drop off time window.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sri Astuti
"Vehicle Routing Problem with Time Windows (VRPTW) adalah masalah penentuan rute kendaraan dalam pendistribusian barang/jasa ke sejumlah pelanggan yang memiliki biaya minimum dengan tambahan kendala time windows, biaya direpresentasikan oleh total jarak yang ditempuh kendaraan dari depot dan kembali ke depot.
Pada tugas akhir ini, digunakan algoritma genetika hibrida untuk menyelesaikan VRPTW. 50% populasi awal dibentuk dengan menggunakan metode Push Forward Insertion Heuristic (PFIH) dilanjutkan dengan -Interchange, dan 50% lainnya dibentuk secara acak. Tiga operator utama algoritma genetika yang digunakan adalah ranking based selection, merge-heuristic crossover, dan sequence based mutation. Pada tugas akhir ini juga akan diimplementasikan algoritma genetika hibrida pada VRPTW dengan perangkat lunak.

Vehicle Routing Problem with Time Windows (VRPTW) is a problem of determining the route of vehicles that has minimum cost in the distribution of goods /services to a number of customers with addition of time constraint, the cost is represented by the total distance traveled by vehicles from depot and returned to depot.
In this final project, a hybrid genetic algorithm used to solve VRPTW. 50% of initial population is generated by Push Forward Insertion Heuristic (PFIH) and then -Interchange, and the other 50% is randomly generated. Three major operator that used in this final project are ranking based selection, merge-heuristic crossover, and sequence based mutation. Hybrid genetic algorithm is implemented on Solomon?s benchmark data of VRPTW.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43252
UI - Skripsi Open  Universitas Indonesia Library
cover
Triani Aulya Fitri
"Pada masa sekarang permasalah penentuan rute kendaraan merupakan keadaan yang harus diperhitungkan dalam bisnis pengiriman. Dalam logistic permasalah penentuan rute kendaraan memiliki peranan kunci bagi perusahaan guna meminimalisir biaya transportasi, biaya penalti atas keterlambatan, dan meningkatkan kualitas layanan pada pengiriman. Permasalahan ketepatan waktu dalam proses pengiriman pada saat sekarang ini. Penelitian ini berpusat pada pengoptimalan biaya bahan bakar dan pinalti. Dalam makalah ini nantinya penulis memakai Vehicle Routing Problem with Time Windows (VRPTW). Dimana VRPTW sendiri merupakan masalah penentuan rute kendaraan yang paling banyak dibahas dalamĀ  dunia nyata. Algoritma Artificial Bee Colony (ABC) dan Algoritma Camel (CA) akan diterapkan dalam penelitian ini. Selanjutnya kedua algoritma akan dilihat mana dari kedua algoritma yang paling ideal untuk penyelesaian permasalahan penentuan rute dalam VRPTW.

At present The problem of determining vehicle routes is a condition that must be taken into account in the shipping business. In logistics, the problem of determining vehicle routes has a key role for companies to minimize transportation costs, penalty fees for delays, and improve service quality on delivery. The problem of timeliness in the delivery process at this time. This research focuses on optimizing fuel costs and penalties. In this paper, the author will use the Vehicle Routing Problem with Time Windows (VRPTW). Where VRPTW itself is the problem of determining vehicle routes that are most widely discussed in the real world. Artificial Bee Colony Algorithm (ABC) and Camel Algorithm (CA) will be applied in this research. Furthermore, the two algorithms will determine which of the two algorithms is the most ideal for solving the problem of determining routes in VRPTW."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Herry Kartika Gandhi
"Vehicle Routing Problem with Time Windows menjadi suatu permasalahan bagi perusahaan saat ini dimana biaya logistik yang semakin tinggi. Penentuan rute yang tepat untuk distribusi barang sangat dibutuhkan untuk menekan biaya bahan bakar kendaraan. Penyelesaian VRPTW ini menggunakan algoritma metaheuristic: Tabu Search, Particle Swarm Optimization dan Simulated Annealing. Penelitian ini membandingkan karakter dari ketiga algoritma tersebut. Dimana hasil tabu search memberikan nilai yang mayoritas optimal dibandingkan ketiganya. Tetapi untuk iterasi pendek, PSO memberikan nilai yang cepat menuju optimal.

Vehicle Routing Problem with Time Windows become main problem to company when dealing with distribution cost that comes bigger. Determining best routing to distribute goods or service can help reduce distribution cost. This research using metaheuristic algorithm: Tabu Search, Particle Swarm Optimization dan Simulated Annealing to solve VRPTW. This research benchmark that three algorithm. The conclusion is tabu search bring best solution for long iteration. But for short iteration, PSO bring better solution."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35626
UI - Tesis Membership  Universitas Indonesia Library
cover
Risya Priwarnela
"Pickup and Delivery Vehicle Routing Problem with Time Windows (PDPTW) adalah suatu permasalahan dalam pencarian rute optimal untuk memenuhi permintaan sejumlah pelanggan dengan setiap permintaan terdiri dari permintaan jemput dan antar. Solusi yang ingin dicapai adalah solusi dengan banyaknya rute yang minimum dan total jarak yang minimum. Tugas akhir ini membahas aplikasi algoritma hibrida dua tahap pada PDPTW dan implementasinya pada data benchmark Li dan Lim dengan menggunakan perangkat lunak. Tahap pertama menggunakan algoritma simulated annealing untuk meminimumkan banyaknya rute dengan pembentukan solusi awal menggunakan metode insertion heuristic dan tahap kedua menggunakan algoritma large neighborhood search untuk meminimumkan total jarak.

Pickup and Delivery Vehicle Routing Problem with Time Windows (PDPTW) is a problem of finding optimal route to serve customer's demands where each demand consists of pickup and delivery service. The optimal solution is the solution with minimum number of routes and minimum total distance. This final project presents an application of two-stage hybrid algorithm for PDPTW and its implementation on Li and Lim benchmark data using software. The first stage uses simulated annealing algorithm to minimize the number of routes with insertion heuristic used in the construction of initial solution. Then, the second stage uses large neighborhood search algorithm to minimize the total distance. That algorithm is implemented for benchmark problem."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S43194
UI - Skripsi Open  Universitas Indonesia Library
cover
Paulus Bangun Martua
"Ant Colony Optimization (ACO) adalah salah satu algoritma approximate untuk penyelesaian permasalahan NP-hard dan salah satu metode state-of-the-art dalam penyelesaian masalah diskrit. Vehicle Routing Problem (VRP), salah satu permasalahan diskrit, dalam penelitian ini akan diselesaikan menggunakan algoritma ACO. Permasalahan VRP yang akan diselesaikan adalah 6 hasil penelitian mahasiswa Departemen Teknik Industri Universitas Indonesia. Hasil dari penyelesaian VRP menggunakan ACO menunjukkan bahwa fungsi tujuan jarak dari solusi dengan algoritma ACO lebih baik dari pendekatan yang digunakan pada penelitian sebelumnya.

Ant Colony Optimization (ACO) is one of approximate algorithm for solving NP-hard problem and state-of-the-art method for solving discrete problem. Vehicle Routing Problem (VRP), one of discrete problem, in this research will be solved using ACO algorithm. VRP problem that will be solved are the result of 6 student research that held by Industrial Engineering and Department, University of Indonesia. The result of solving VRP using ACO show that objective function of solution distance with ACO algorithm is better than previous approach in those research."
2011
S53
UI - Skripsi Open  Universitas Indonesia Library
cover
Vincencia Sydneyta
"Persaingan dunia industri yang semakin ketat, membuat para perusahaan berlomba-lomba untuk menghemat biaya perusahaan, termasuk logistik. Salah satu biaya yang menyumbang angka terbesar ialah biaya distribusi. Fakta bahwa indeks performa logistik Indonesia cenderung menurun dari tahun ke tahun membuktikan bahwa kondisi logistik di Indonesia masih belum optimal, terutama di daerah perkotaan yang volume permintaannya terpusat dan cukup besar. Oleh sebab itu, perancangan rute dan jadwal distribusi barang menjadi sebuah hal yang penting untuk dilakukan. Penelitian ini berfokus kepada perancangan Vehicle Routing Problem with Time Windows VRPTW , yaitu pencarian rute distribusi dengan jarak tempuh minimal yang tetap memenuhi permintaan seluruh pelanggan dan mempertimbangkan batasan kapasitas kendaraan serta waktu respons pelanggan. Dengan menggunakan metode heuristik yaitu algoritma local search dan Lin Kernighan Helsgaun, dihasilkan hasil rute dan jadwal distribusi paling optimal sebagai bahan pertimbangan dalam mengambil keputusan.

High competitiveness in industrial practice has encouraged companies to do cost saving, including logistic. One of the aspects that contribute the biggest amount is physical distribution cost. Besides, the fact that Indonesia rsquo s logistic performance index keep decreasing year by year has proven that Indonesia rsquo s logistic is not optimal yet, especially in urban areas which customer demand is centred and high. Hence, a better planning of distribution route and schedule become an important thing to execute. This research will be focused on planning Vehicle Routing Problem With Time Windows VRPTW , which is finding the most optimum distribution route with lowest total distance yet still manage to fulfill all demand and considering the constraints of vehicle capacity and customers rsquo time windows. By using heuristic methods which are local search and Lin Kernighan Helsgaun, the most optimum distribution route and schedule will be generated to be considered in company decision making."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67057
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>