Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 111506 dokumen yang sesuai dengan query
cover
Fahmi Alfa Muslimu
"Untuk meningkatkan performa dan efisiensi mikro gas turbin proto X1, telah dilakukan analisa tentang adanya presure drop pada elbow saluran masuk ruang bakar. Penelitian ini dilakukan untuk mengamati fenomena aliran fluida dan distribusi tekanan yang terjadi pada elbow 900 menggunakan SolidWorks 2011. Penelitian dilakukan dengan membandingkan besarnya pressure drop akibat penambahan guide vanes pada elbow 90°.
Hasil penelitian menunjukkan pressure drop berkurang dengan adanya penambahan guide vanes pada elbow bagian bawah sebesar 0,54 % pada kecepatan aliran 5,73 m/s, 10,42% pada kecepatan aliran 6,78 m/s, dan sebesar 11,29% pada kecepatan aliran 7,72 m/s. Dari hasil penelitian penulis menyarankan agar dilakukan analisa terhadap pressure drop yang terjadi pada ruang bakar sehingga performa dan efisiensi turbin dapat ditingkatkan lagi.

To improve performance and efficiency of micro gas turbine proto X1, has conducted an analysis of the presure drop in the combustion chamber inlet elbow. This study was conducted to observe the phenomenon of fluid flow and pressure distribution that occurs at elbow 900 using SolidWorks 2011. The study was conducted by comparing the magnitude of pressure drop due to the addition of guide vanes in the elbow 90°.
The results show pressure drop decreases with the addition of guide vanes in the elbow at the bottom of 0.54% at a flow rate of 5.73 m /s, 10.42% at a flow rate of 6.78 m/ s,and by 11.29% at a flow rate of 7.72 m /s. From the results of the study research suggested that the analysis performed on the pressure drop that occurs in the combustion chamber so that the performance and efficiency of the turbine can be increased again.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1795
UI - Skripsi Open  Universitas Indonesia Library
cover
Mohammad Ridho
"Siklon burner merupakan alat yang digunakan untuk mengubah bahan bakar padat menjadi gas yang kemudian energinya dimanfaatkan untuk berbagai tujuan, seperti pembangkitan listrik, boiler, dan sebagainya. Sehubungan semua katup siklon burner harus selalu tertutup selama pengujian untuk menjamin kinerja burner yang maksimal, pengamatan fenomena turbulensi dalam ruang bakar tidak dimungkinkan. Oleh karena itu, Computatuonal Fluid Dynamics digunakan untuk menyelesaikan permasalahan tersebut. Hasil simulasi menunjukkan bahwa nilai Energi Kinetik Turbulensi dan Kecepatan secara keseluruhan cenderung mengalami penurunan seiring dengan jarak yang ditempuh setelah memasuki ruang bakar. Hasil Validasi kecepatan pada bagian outlet menunjukkan bahwa kecepatan hasil simulasi dan pengukuran tidak jauh berbeda dan saling berdekatan.

Cyclone Burner is a burner used in the purpose of converting solid fuel into gas whose energy is used for various applications such as power generation, boiler, et cetera. Direct observation of turbulence phenomenon is not possible since the combustion chamber must always be closed to ensure possible maximum performance achieved by the burner. Therefore, Computational Fluid Dynamics is used to solve those problems. The simulation results show that both Turbulent Kinetic Energy and Velocity tend to decrease in value by distance travelled by the flow upon entering the combustion chamber. Velocity Validation results show that both velocity curve and velocity point measured during experiment are in good agreement that their marginal results are not greatly different."
Depok: Universitas Indonesia, 2015
S59741
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agustina Rachmawardani
"Telah berhasil dibuat sebuah alat pengukuran arah dan kecepatan angin (anemometer) untuk menghitung turbulensi dan analisa potensi angin. Dengan mengukur potensi angin bisa didapat informasi tentang angin yang nantinya informasi angin tersebut dapat digunakan untuk keperluan pemanfaatan angin. Dari pengukuran potensi angin didapat data-data sebagai berikut frekwensi kecepatan angin tertinggi adalah 1 m/s dengan arah angin pada timur laut-timur atau 45° - 90°. Semakin besar kecepatan angin semakin tinggi pula potensi angin.

This thesis have successfully created an instrument measuring wind speed and direction (anemometer) to calculate turbulence and analyze the potential of wind. By measuring the potential of wind can be obtained information about the wind that the wind information will be used for utilization of wind. From wind potential measurement data obtained following the highest frequency of wind speed is 1 m / s with the direction of the wind on the north-east or 45° - 90°. The greater the wind speed, the higher the potential for wind."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T31931
UI - Tesis Open  Universitas Indonesia Library
cover
Djukarna
Depok: Fakultas Teknik Universitas Indonesia, 2003
T37544
UI - Tesis Membership  Universitas Indonesia Library
cover
Dendy Adanta
"ABSTRAK
Seiring perkembangan teknologi, metode computational fluids dynamics CFD menjadi topik utama beberapa penelitian di bidang engineering, tidak terkecuali turbin piko hidro. Piko hidro merupakan kategori turbin air dengan daya di bawah 5 kW. Peningkatan keakurasian metode CFD, asumsi-asumsi yang dibangun harus mendekati kondisi sebenarnya.Pada studi turbin piko hidro, asumsi dasar yang banyak mempengaruhi keakuratan hasil simulasi adalah pemodelan turbulen. Namun, belum ada studi baku yang menjelaskan secara rinci karakteristik dan model turbulen yang dianggap cocok digunakan ditiap jenis turbin piko hidro. Studi ini bertujuan menjelaskan karakteristik aliran yang terjadi pada saluran turbin piko hidro, energi kinetik turbulen, laju disipasi dan spektrum energi turbulen serta model turbulen yang dianggap dapat merepresentasikan kondisi sebenarnya aliran yang terjadi ditiap jenis turbin piko hidro. Untuk mencapai tujuan studi, ada beberapa metode yang digunakan, yaitu: asymptotic invariance analisis bilangan Reynolds , local invariance karakterisasi aliran yang terjadi , analitikal dan studi literatur.Hasil analisis nondimensional bilangan Reynolds pada saluran turbin piko hidro dengan daya 1 kiloWatt didapatkan sebesar 420,972 yang terindikasi aliran yang terjadi adalah aliran turbulen. Karakteristik aliran pada saluran turbin piko hidro adalah steady stabil dan non-uniform tidak seragam , aliran yang memiliki karakter tidak seragam merupakan aliran turbulen. Selanjutnya, pembuktian aliran turbulen dilakukan dengan perhitungan secara teoritis dibantukan dengan software Matlab, nilai spektrum energi turbulen maksimum adalah sebesar 7.57 x 10-13 m3/s2. Hasil studi literatur, pertimbangan error hasil penelitian dan eksperimental, analisis berdasarkan keunggulan dan kekurangan tiap-tiap model turbulen dan kebutuhan daya komputasi serta analisis aliran yang terjadi, didapatkan ada empat model turbulen RANS yang cocok digunakan ditiap jenis turbin piko hidro, yaitu: model turbulen SST k-? cocok digunakan untuk analisis CFD pada turbin Propeller, Pelton, Turgo, dan Archimedes, model turbulen RNG k-? cocok digunakan pada turbin Cross-flow dan Undershot, model turbulen k-? cocok digunakan pada turbin Overshot dan Breastshot.Pembuktian kajian dilakukan dengan uji unjuk kerja turbin Pelton baik secara eksperimental maupun simulasi. Hasil eksperimental menunjukan untuk model turbulen RNG k-? didapatkan error terhadap eksperimen sebesar 10.7-19.24 , sedangkan untuk model turbulen SST k-? error hasil komputasi terhadap eksperimen adalah sebesar 4.8 jauh lebih kecil dibandingkan model RNG k-?.

ABSTRACT
Computational fluids dynamics CFD becomes one of the main topics of most researches in fluid engineering, not to mention the Pico hydro turbine. Pico Hydro Turbines are a hydro power plant with a maximum power output of 5 kilo Watts. To increase the accuracy of the CFD result, the assumptions built must be as close as possible to the actual conditions.In the study of pico hydro turbines, the underlying assumptions that influence the accuracy of the simulation results are turbulence modeling. However, there is no standard study that explains in detail the characteristics and of the turbulence models that are considered suitable for use in all types of pico hydro turbine. This study aims to explain the flow characteristics that occur in the pico hydro turbine channel, turbulent kinetic energy, dissipation rate and turbulent energy spectrum as well as turbulent models that are considered to represent the actual flow conditions that occur in each type of turbine hydro turbine. To achieve the objectives of the study, there are several methods used, namely asymptotic invariance Reynolds number analysis , local invariance, analytical and literature study.Result of non benchmark analysis of Reynolds number in channel pico hydro turbine with power of 1 kiloWatt obtained value of approximately 420,972 indicated that the flow that happened was a turbulent flow. The flow characteristics of the pico hydro turbine channel are a steady flow and non uniform, a flow which is non uniform in character is considered a turbulent flow. Furthermore, the proof of turbulent flow is calculated theoretically coupled with matlab software, the maximum turbulent energy spectrum value is 7.57 x 10 13 m3 s2. The results of literature study, the consideration of experimental and experimental error, analysis based on the advantages and disadvantages of each turbulent model and computing power requirements and flow analysis, there are four RANS turbulent models suitable for each type of turbine pico hydro turbine, namely turbulent model SST k is suitable for CFD analysis on turbine propellers, Pelton, Turgo, and Archimedes, k RNG turbulent models suitable for cross flow and undershot turbines, k turbulent models suitable for overshot and undershot turbines.The proof of the study was conducted by Pelton turbine performance test both experimentally and simulated. The experimental results show for the turbulent model RNG k obtained error to the experiment of 10.7 19.24 , while for turbulent model SST k error computation result to experiment is equal to 4.8 much smaller than k RNG model."
2017
T48490
UI - Tesis Membership  Universitas Indonesia Library
cover
Iwan Yudi Karyono
"Turunan formula Navier-Stokes dipakai untuk menghitung kerugian tekanan aliran dalam pipa. Panjang pipa, diameter pipa, kecepaan fluida, kekasaran permukaan dan koefisien gesek yang mempengaruhi nilai kerugian tekanan. Formula tersebut tidak berlaku pada belokan/cabang pipa, setelah katup, adanya perubahan diameter (unsteady flow), adanya getaran, dll. Tujuan penelitian adalah melihat pengaruh panjang aliran hidrodinamik pada pipa masuk (inlet) terhadap nilai kerugian tekanan aliran dalam pipa dan membuktikan keterbatasan penggunaan formula Navier-Stokes. Eksperimen ini menggunakan pipa acrylic berdiameter 12 mm. Variasi panjang pipa masuk terhadap titik pengukur tekanan (pressure tap) yaitu dengan menggeser pipa kecil masuk kedalam pipa uji hingga keadaan fluida mencapai kondisi berkembang penuh. Pada pipa uji dipasang 4 buah pressure tap dengan jarak masing-masing tap 250 mm. Air murni sebagai fluida uji. Debit yang keluar diukur dengan gelas ukur pada periode waktu untuk mendapatkan nilai bilangan Reynolds. Hasil menunjukkan bahwa karakteristik panjang aliran berkembang penuh untuk aliran laminer adalah rasio L/D = ± 0,05*Re dan pada aliran turbulen yaitu L/D = ± 4,4*Re1/6.

Differential Navier-stokes formula is used to calculate a pressure loss in a pipe. Pressure loss in pipe influenced by the pipe length, the pipe diameter, the fluid velocity, surface roughness of pipe and friction coefficient. This formula could not be applied to the turning or branch of the pipe, after the valve, pipe in which its diameter has changed (unsteady flow), shock or vibration occurs, etc. The goal of this study is to measure the influence of inlet pipe length to the value of pressure loss in pipe and to proved the limitation in order to use the Navier-Stokes formula. This experiment used acrylic pipe with 12 mm diameter. Variation of inlet pipe length to first pressure tap are 50D, 70D, 100D and 130D. Variation the length of inlet pipe is arranged by put the inlet pipe into the test pipe. On the test pipe are used four pressure taps with 25 cm distance. Displacement the inlet pipe into first pressure tap will be effected to the value of pressure in the manometer.Water as a test fluid. Debit or rate of the flow is measured in period of time to get Reynolds number. The results had showed that the characteristic of fully developed flow lenght for the laminar flow is shown by L/D ratio = 0.05*Re and in turbulent flow L/D ratio = 4.4*Re1/6"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S50745
UI - Skripsi Open  Universitas Indonesia Library
cover
Choky Jonathan
"Penelitian ini memperlihatkan fenomena aliran fluida campuran antara udara dan gas sintetik di dalam cyclone gas burner. Pengamatan berfokus pada fenomena intensitas turbulen, energi kinetik turbulen, dan kecepatan aliran percampuran udara dan gas sintetik akibat variasi posisi inlet cyclone gas burner dengan pemodelan menggunakan ANSYS Fluent. Pengamatan pemodelan fenomena percampuran ini digunakan untuk melihat desain yang paling optimum untuk cyclone gas burner dengan debit konstan aliran udara dan gas sintetik masing-masing 11,38 x 10-4 m3/s dan 8,06 x 10-4 m3/s. Gas sintetik merupakan produk gasifikasi biomassa sekam padi tipe fixed bed downdraft gasifier dengan komposisinya 50% N2, 3% CH4, 18% H2, 19% CO, dan 10% CO2.

This research showed the phenomena of fluid flow between the mixing flow between air and synthetic gas in cyclone gas burner. The observations focused on the phenomenon of turbulence intensity, turbulent kinetic energy, and the flow velocity of air and synthetic gas mixture as a result of variations in cyclone gas burner inlet position using ANSYS FLUENT modeling. Observating of mixing phenomena modeling is used to view the most optimum design for cyclone gas burner with constant air and synthetic gas each flow rates is 11,38 x 10-4 m3/s and 5,5 x 10-4 m3/s. Synthetic gas is rice husk biomass gasification product using fixed bed downdraft gasifier with 50% N2, 3% CH4, 18% H2, 19% CO, and 10% CO2 composition."
Depok: Universitas Indonesia, 2016
S63471
UI - Skripsi Membership  Universitas Indonesia Library
cover
David
"ABSTRAK
Pada penelitian ini disimulasikanperistiwa pembakaran pada burner berbahan bakar gas bumi dalam suatu furnace khusus untuk proses pemanasan udara. Burner yang digunakan adalah burner industri dengan campuran udara-gas partially premixed yang memiliki front disc dan rear disc untuk menciptakan aliran fluida tangensial pada proses pembakaran. Pada burner terdapat nozzle holder yang dapat mengatur konfigurasi masuknya bahan bakar ke dalam kontrol volume model. Diketahui bahwa konfigurasi masukan bahan bakar, rasio ekivalensi, serta kecepatan masukan udara yang dipanaskan mempengaruhi profil pembakaran yang dihasilkan. Oleh sebab itu penelitian dilakukan dengan variasi parameter-parameter tersebut untuk menganalisis fenomena pembakaran dalam segi distribusi temperatur, pola aliran, serta panas reaksi yang dihasilkan. Simulasi dilakukan dengan menggunakan model disipasi eddy serta didasarkan pada prinsip dinamika fluida komputasional yang mempertimbangkan neraca massa, neraca energi, serta neraca momentum aliran turbulen k-ε. Perpindahan panas radiasi diselesaikan dengan menggunakan metode Discrete Ordinate (DO).Simulasi dilakukan pada solverfinite volumemethod (FVM). Dari semua hasil simulasi ditemukan panas reaksi yang paling tinggi terdapat pada model variasi 3 dengan perubahan kecepatan masukan bahan bakar pada rasio ekivalensi 1,5; sedangkan panas reaksi yang paling rendah terdapat pada model variasi 3 pula dengan rasio ekivalensi 0,5.

ABSTRACT
In this thesis, combustion process was simulated in a special furnace for air heating process by using burner fueled with natural gas. Burner used was an industrial burner with partially premixed configuration of air-fuel that has front disc and rear disc to create tangential flow within combustion process. There are nozzle holder in burner that can configure how fuel enter the volume control of this model. It was known that configuration of entering fuel, equivalence ratio, and inlet speed of heated air will influence resulted combustion profile. So in this thesis, variation of variables included all parameter mentioned before to analyze combustion phenomenon in aspects of temperature distribution, flow pattern, and heat of reaction. Simulation was done by using eddy dissipation model that based on computational fluid dynamics concept that consider mass balance, energy balance, and momentum balance of turbulent k-ε. Heat transfer by radiation was computed by using Discrete Ordinates Method (DO). Simulation was done by using a solver based on finite volume method (FVM). From all simulation results, it is found that model of variance 3 with highest inlet velocity of fuel has the highest heat of reaction at equivalence ratio 1,5. On the contrary, model of variance 3 with lowest inlet velocity of fuel has the lowest heat of reaction at equivalence ratio 0,5."
2013
T35014
UI - Tesis Membership  Universitas Indonesia Library
cover
Hanifa Akrom
"Penelitian ini merupakan suatu penerapan kajian ilmu Mekanika Fluida dalam bidang rekayasa proses utamanya proses elektrokimia di bidang manufaktur. Penelitian ini mengkaji pemanfaatan aliran turbulensi yang ditimbulkan oleh aliran separasi bertaut kembali (separating-reattached flow) akibat gangguan terhadap aliran, untuk meningkatkan laju perpindahan massa antara dua sel elektrokimia pelat sejajar dalam suatu kanal aliran fluida elektrolit yang merupakan dasar dari proses electroplating pada berbagai peralatan yang digunakan di dunia industri. Plat tembaga dan larutan CuSO4 dipilih sebagai elektroda dan elektrolit dalam penelitian ini.
Dalam penelitian ini, laju perpindahan massa antar elektroda diukur dalam kondisi dimana turbulensi aliran dikendalikan secara pasif dengan memasang elemen pencetus turbulensi berupa kontur tangga dengan berbagai variasi kecepatan aliran utama cairan elektrolit tersebut. Pengukuran laju perpindahan massa ini menggunakan teknik limiting diffusion current yang merupakan representasi dari perpindahan elektron karena adanya arus listrik yang mengalir dari kedua plat tembaga dan elektrolit.
Hasil yang diperoleh menunjukkan perbandingan antara nilai koefisien perpindahan massa (Km) yang diperoleh dengan nilai Km yang terdapat pada referensi dan penelitian sebelumnya, serta dibandingkan pula dengan nilai diffusive flux yang didapat dari pendekatan komputasi menggunakan CFD yang dikerjakan oleh tim lain. Dalam penelitian ini, perpindahan massa berbanding lurus dengan kenaikan bilangan Reynolds. Dalam rentang Re=300-3000 diperoleh koefisien perpindahan massa sebesar Km=3,299 x 10-4 (m/s) ? 3,891 x 10-4 (m/s) yang merupakan peningkatan sebesar 25,52 % dari kondisi tanpa turbulensi aliran.

This research is an application of fluid mechanics study in the field of process engineering, especially electrochemistry process in manufacture area. This research investigates the use of turbulence generated by separating-reattached flow to increase the rate of mass transfer in a parallel plate electrochemical flow cell which is the basic of electroplating process in industries. Copper plate is selected as electrode and CuSO4 as electrolyte in this experiment.
In this research, mass transfer will be measured in some condition, where turbulence flow is controlled passively by installing turbulence promoter (step) in the cathode. Mass transfer between two electrode is measured by using limiting diffusion current as result of electron movement between cathode and anode occurred in this experiment.
The result of this experiment shows the comparison between mass transfer coefficient (Km), obtained from the experiment, with value of Km in the reference, and also compared with the value of diffusive flux obtained from Computational Fluid Dynamics works (done by separate team). Rate of mass transfer in this research increases linearly with Reynolds number. In the range of Re=300-3000, the maximum mass transfer coefficient range from Km=3,299 x 10-4 (m/s) ? 3,891 x 10-4 (m/s). This result shows 25,52 % improvement from the condition without turbulence.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S38229
UI - Skripsi Open  Universitas Indonesia Library
cover
Kolev, Nikolay Ivanov
"The present Volume 4 of the successful monograh package “Multiphase flow dynamics”is devoted to selected chapters of the multiphase fluid dynamics that are important for practical applications but did not find place in the previous volumes. The state of the art of the turbulence modeling in multiphase flows is presented. As introduction, some basics of the single phase boundary layer theory including some important scales and flow oscillation characteristics in pipes and rod bundles are presented. Then the scales characterizing the dispersed flow systems are presented. The description of the turbulence is provided at different level of complexity: simple algebraic models for eddy viscosity, simple algebraic models based on the Boussinesq hypothesis, modification of the boundary layer share due to modification of the bulk turbulence, modification of the boundary layer share due to nucleate boiling. The role of the following forces on the mathematical description of turbulent flows is discussed: the lift force, the lubrication force in the wall boundary layer, and the dispersion force. A pragmatic generalization of the k-eps models for continuous velocity field is proposed containing flows in large volumes and flows in porous structures. A Methods of how to derive source and sinks terms for multiphase k-eps models is presented. A set of 13 single- and two phase benchmarks for verification of k-eps models in system computer codes are provided and reproduced with the IVA computer code as an example of the application of the theory. This methodology is intended to help other engineers and scientists to introduce this technology step-by-step in their own engineering practice.
In many practical application gases are solved in liquids under given conditions, released under other conditions and therefore affecting technical processes for good of for bad. Useful information on the solubility of oxygen, nitrogen, hydrogen and carbon dioxide in water under large interval of pressures and temperatures is collected, and appropriate mathematical approximation functions are provided. In addition methods for the computation of the diffusion coefficients are described. With this information solution and dissolution dynamics in multiphase fluid flows can be analyzed. For this purpose the non-equilibrium absorption and release on bubble, droplet and film surfaces under different conditions is mathematically described. A systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature is provided.
"
Berlin : Springer, 2011
e20425859
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>