Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3311 dokumen yang sesuai dengan query
cover
Watkins, R. N.
London: Gulf Publishing Company, 1976
665.532 WAT p (1);665.532 WAT p (2);665.532 WAT p (2)
Buku Teks SO  Universitas Indonesia Library
cover
cover
Van Winkle, Matthew, 1910-
New York: McGraw-Hill, 1967
660.284 2 WIN d (1)
Buku Teks SO  Universitas Indonesia Library
cover
[Place of publication not identified]: [publisher not identified], [date of publication not identified]
660.284 2 DIS
Buku Teks SO  Universitas Indonesia Library
cover
Kister, Henry Z.
New York: McGraw-Hill, 1992
660.284 2 KIS d (2)
Buku Teks SO  Universitas Indonesia Library
cover
Holland, Charles D.
New York: McGraw-Hill, 1981
660.284 HOL f
Buku Teks SO  Universitas Indonesia Library
cover
Doherty, Michael F.
Boston: McGraw-Hill , 2001
660.284 2 DOH c (1)
Buku Teks SO  Universitas Indonesia Library
cover
Shinskey, F.G.
New York: McGraw-Hill, 1977
660.284 2 SHI d
Buku Teks SO  Universitas Indonesia Library
cover
Althaira Anjani
"Penyakit jerawat merupakan sebuah kondisi kulit yang umum yang ditandai dengan folikel rambut yang tersumbat, tidak hanya mempengaruhi penampilan fisik tetapi juga mempengaruhi kepercayaan diri individu. Metode diagnostik yang maju sangat penting untuk menentukan tingkat keparahan jerawat, yang dapat membimbing strategi pengobatan yang efektif. Penelitian ini memperkenalkan pendekatan inovatif untuk mengklasifikasikan tingkat keparahan jerawat pada citra wajah menggunakan Diagnostic Evidence Distillation yang memanfaatkan multi teacher knowledge distillation. Studi ini meningkatkan model single teacher konvensional dengan menggabungkan beberapa arsitektur teacher, memungkinkan transfer pengetahuan yang lebih kuat dan akurat ke student model. Penulis mengembangkan dan menguji model yang mengintegrasikan Convolutional Neural Network (CNN) dengan kerangka kerja multi teacher untuk meningkatkan akurasi prediktif. Pendekatan yang dilakukan menggabungkan secara unik diagnostic evidence dengan teknik deep learning untuk mengoptimalkan proses klasifikasi. Evaluasi dilakukan menggunakan dataset ACNE04, yang dianotasi menurut kriteria Hayashi, memastikan representasi komprehensif dari berbagai tingkat keparahan jerawat. Hasilnya menunjukkan bahwa model multi teacher knowledge distillation mencapai akurasi yang lebih unggul dibandingkan model single teacher sebelumnya, dengan peningkatan akurasi menjadi 90.00%, melampaui benchmark sebelumnya sebesar 86.06%. Ini menunjukkan kemajuan signifikan dalam klasifikasi otomatis tingkat keparahan jerawat. Studi penulis tidak hanya memberikan kemajuan metodologis dalam bidang pemrosesan gambar medis tetapi juga berkontribusi pada penilaian tingkat keparahan jerawat yang lebih akurat dan dapat diandalkan, berpotensi meningkatkan hasil pengobatan dan perawatan pasien.

Acne is a common skin condition characterized by clogged hair follicles, affecting not only physical appearance but also an individual's self-confidence. Advanced diagnostic methods are crucial for determining the severity of acne, which can guide effective treatment strategies. This research introduces an innovative approach to classifying the severity of acne in facial images using Diagnostic Evidence Distillation that utilizes multi teacher knowledge distillation. This study enhances the conventional single teacher model by integrating multiple teacher architectures, allowing for a more robust and accurate knowledge transfer to the student model. The authors developed and tested a model that integrates a Convolutional Neural Network (CNN) with a multi-teacher framework to improve predictive accuracy. The approach uniquely combines diagnostic evidence with deep learning techniques to optimize the classification process. The evaluation was conducted using the ACNE04 dataset, annotated according to the Hayashi criteria, ensuring a comprehensive representation of various acne severities. The results show that the multi-teacher knowledge distillation model achieves superior accuracy compared to the previous single-teacher model, with an improved accuracy of 90.00%, surpassing the previous benchmark of 86.06%. This indicates significant advancement in the automated classification of acne severity. The authors' study not only provides methodological advancement in the field of medical image processing but also contributes to more accurate and reliable assessments of acne severity, potentially enhancing treatment outcomes and patient care."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nattadon Pannucharoenwong
"ABSTRAK
The productivity of water treatment through distillation method was studied by varying the size of the zinc heat absorber in a solar-based distillation unit. An additional zinc heat absorber was proposed to improve the efficiency of the distillation unit. This research investigates the usage of zinc heat absorber with size 10 to 90% of water surface area. The temperature at various locations inside the distillation unit was monitored throughout the operation in order to obtain data necessary for the equation engineering solver method, which was conducted to calculate the efficie orber that is 10% of the water area produced 1.43 liters of condensed product per day providing efficiency of 25.99%. The efficiency reduced significantly to 15.02% when the size
of the heat absorber was increased to 90%. "
Pathum Thani: Thammasat University, 2019
670 STA 24:2 (2019)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>