Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1634 dokumen yang sesuai dengan query
cover
Koehn, Philipp
Cambridge, UK: Cambridge university press, 2010
418.020 285 KOE s
Buku Teks  Universitas Indonesia Library
cover
Tatag Aziz Prawiro
"Normalisasi teks merupakan task pada NLP yang dapat digunakan untuk meningkatkan performa dari aplikasi-aplikasi NLP lain. Penelitian tentang normalisasi teks pada bahasa Indonesia masih jarang dan kebanyakan masih hanya menormalisasi pada tingkat token. Penelitian ini bertujuan untuk mengevaluasi pembangunan model normalisasi dengan menggunakan algoritma statistical machine translation (SMT). Isu dari pendekatan machine translation dalam penyelesaian task normalisasi teks
adalah butuhnya data yang relative banyak. Penelitian ini juga melihat bagaimana pengaruh dari pemelajaran semi-supervised dengan cara menggunakan pseudo-data dalam pembangunan model normalisasi teks dengan algoritma statistical machine translation. Model SMT memiliki performa yang cukup baik pada data tanpa tanda baca, namun memiliki performa yang buruk pada data bertanda baca karena banyaknya noise. Pendekatan semi-supervised menurunkan performa SMT secara keseluruhan, namun, pada jenis data tidak bertanda baca penurunan relatif tidak signifikan.

Text normalization is a task in NLP which can be used to improve the performance of other NLP
applications. Research on text normalization in Indonesian language is still rare and most only
normalize at the token level. This study attempts to improve the development of the normalization
model by using the statistical machine translation (SMT) algorithm. The issue in building a good
performing text normalization model using the machine translation approach is the relatively large
data needs. This research also looks at how using semi-supervised learning by using pseudo-data as
training data in SMT approach affects text normalization performance. The SMT model has a fairly
good performance on data without punctuation, but has poor performance on data with a punctuation
due to the amount of noise. The semi-supervised approach reduces the overall performance of the
SMT model, but the reduction in performance is relatively insignificant on data without punctuation.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Massachusetts: MIT Press, 1965
410 MAC;410 MAC
Buku Teks SO  Universitas Indonesia Library
cover
"On application of natural language processor that has been widely developed is translation machine, a machine translating sentences from one natural language in to another natural language...."
Artikel Jurnal  Universitas Indonesia Library
cover
Andri Apriyana SA
"ABSTRAK
Sebagai proses alamiah dalam mencapai titik ekuilibrium, perkembangan ekonomi digital akan selalu diikuti oleh peningkatan risiko keamanan cyber. Penelitian ini membahas analisis big data percakapan media sosial Twitter dengan tipe data yang tidak terstruktur untuk memprediksi risiko cyber berupa keberhasilan serangan exploit terhadap kerentanan sistem informasi yang dipublikasikan pada situs kerentanan global cvedetails.com common vulnerabilities and exposures CVE . Penelitian ini mengeksplorasi aspek kualitatif dan kuantitatif atas data yang bersumber dari twitter dan CVE menggunakan metode pemodelan algoritmik statistical machine learning. Prediksi dilakukan dengan membandingkan beberapa model klasifikasi yang dipilih dari sepuluh algoritma yang paling banyak digunakan dalam data mining berdasarkan survey yang dilakukan oleh IEEE pada International Conference on Data Mining tahun 2006. Hasil prediksi terbaik dihasilkan melalui model algoritma Artificial Neural Networks dengan tingkat akurasi 96,73 . Model prediksi dapat dimanfaatkan oleh perusahaan asuransi dengan produk perlindungan risiko cyber untuk mengurangi potensi penyebaran klaim terjadinya risiko. Model juga dapat dimanfaatkan oleh perusahaan umum untuk melakukan mitigasi risiko cyber secara efektif dan efisien dengan menghindari situasi false-negatives error dalam pengelolaan risiko.

ABSTRACT
As a natural process in achieving equilibrium state, digital economic progress will always be followed by the increase of cyber security risk exposure. This research is focusing on unstructured Twitter social media big data analytics to predict cyber risks event in terms of successful attack on exploit based software vulnerability published in global vulnerability information websites cvedetails.com common vulnerabilities and exposures CVE . This research explores qualitative and quantitative aspect of data extracted from Twitter and CVE using statistical machine learning algorithmic modeling method. Prediction result obtained by comparing and selecting classification model from several statistical machine learning algorithm based on top ten algorithms in data mining survey produced by IEEE in 2006 International Conference on Data Mining. The best prediction results provided through Artificial Neural Networks algorithm with 96,73 accuracy rate. This prediction model offers advantages for insurance company with cyber liability product by reducing claim spread probability over cyber risk loss event. Prediction model can also be beneficial for company in general by providing an effective and efficient way to mitigate cyber risks through false negatives error avoidance in risk management."
2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Felicia Salim
"Perkembangan teknologi membawa banyak inovasi pada berbagai bidang, salah satunya dalam bidang penerjemahan sastra dan bahasa. Dengan munculnya mesin-mesin penerjemah berbasis Neural Machine Translate (NMT) membantu dan mempercepat penerjemahan kumpulan karya dan teks dalam berbagai bahasa, tetapi tidak diketahui apakah terjemahan mesin tersebut sudah tepat dan lebih unggul dibandingkan dengan terjemahan manusia. Penelitian ini mengkaji secara semantis dan sintaktis hasil terjemahan mesin berbasis NMT yaitu Baidu Translate, Youdao Translate dan Google Translate dibandingkan dengan terjemahan penerjemah pada buku Dizigui. Metode yang digunakan adalah metode penelitian kualitatif dengan melakukan penelusuran terhadap suku kata, frasa, klausa dan kalimat kemudian dikomparasikan hasil terjemahan tersebut dengan hasil terjemahan penerjemah dalam buku Dizigui. Hasil penelitian menemukan bahwa terjemahan manusia memiliki keunggulan dibandingkan dengan terjemahan mesin penerjemah. Hal membedakan terjemahan  mesin dan manusia terdapat pada cara mesin memaknai karakter, interpretasi mesin terhadap komposisi sintaktis dan pengetahuan konsep budaya pada setiap karakter kutipan teks.

Technology developments have brought many innovations in various fields, one of which is in the field of literary and language translation. With the advance of machine translation based on Neural Machine Translate (NMT) it helps and accelerates the translation of collections of works and texts in various languages, but it’s unknown whether machine translation is correct and superior to human translation. This study examines semantically and syntactically the results of NMT-based machine translations Baidu Translate, Youdao Translate and Google Translate compared to translator’s translations in Dizigui book. The method used is a qualitative research method by searching syllables, phrases, clauses and sentences then compared the results of the translation with the results of the translator's translation in Dizigui's book. The results of the study found that human translation has an advantage over machine translation. What distinguishes machine and human translation lies in the way the machine interprets the characters, the machine's interpretation of the syntactic composition and knowledge of the cultural concept in each character of the text quote."
Depok: Fakultas Ilmu Pengetahuan dan Budaya Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Sri Hartati Wijono
"Terjemahan mesin adalah program komputer yang menerjemahkan kata dari satu bahasa ke bahasa lain. Neural Machine Translation (NMT) merupakan salah satu jenis terjemahan mesin yang menggunakan hasil pelatihan corpus paralel untuk menerjemahkan kata. Proses NMT dengan pelatihan menggunakan corpus paralel dalam jumlah besar (high resource) dapat memberikan hasil terjemahan sangat baik. Tetapi proses NMT yang dilatih menggunakan corpus paralel dalam jumlah kecil (low-resource) tidak mampu memberikan penerjemahan kata dengan baik akibat adanya out-of-vocabulary (OOV). Salah satu cara mengurangi OOV pada low-resourse NMT adalah melatih NMT menggunakan subword dari hasil segmentasi kata. Canonical segmentation dipilih untuk mengsegmentasi kata bahasa Jawa dan bahasa Indonesia menjadi subword afiks dan subword root word yang mengalami alomorf. Hal ini dikarenakan kedua hasil subword tersebut memiliki makna linguistik yang dapat digunakan untuk mengurangi OOV. Proses canonical segmentation tersebut dilakukan menggunakan encoder-decoder Transformer dengan memanipulasi masukannya sebagai usulan dari penelitian. Penelitian ini juga mengembangkan algoritma untuk membuat dataset canonical segmentation bahasa Jawa yang digunakan untuk melatih Transformer. Manipulasi masukan Transformer tersebut berupa penggunaan tag fitur afiks dan root word atau tag fitur afiks dan urutan root word yang digabungkan ke setiap karakter masukan untuk membantu proses pembelajaran Transformer. Manipulasi usulan ini menghasilkan akurasi segmentasi sebesar 84,29% untuk semua kata, 69,82% untuk kata berimbuhan dan 56,09% untuk kata berimbuhan canonical. Nilai F1 yang dihasilkan 92,89% untuk semua kata, 98,69% untuk kata berimbuhan dan 96,81% untuk kata berimbuhan canonical. Subword hasil proses segmentasi ini selanjutnya digabung dengan tag fitur berupa afiks dan root word untuk menguji low-resource NMT. Metode ini dapat eningkatkan nilai BLEU sebesar +3,55 poin dibandingkan penggunaan kata tanpa segmentasi dan meningkat +2,57 poin dibandingkan penggunaan subword BPE yang banyak dipakai saat ini.

Machine translation is a machine that translates words from one language to another. Neural Machine Translation (NMT) is a type of machine translation that uses the results of parallel corpus training to translate words. The NMT process with training using a large number of the parallel corpus (high resource) can give excellent translation results. But the NMT process, which was trained using a parallel corpus in small numbers (low resources), could not provide good word translation due to out-of-vocabulary (OOV). One way to reduce OOV in low-resource NMT is to train NMT using subwords from word segmentation results. Canonical segmentation was chosen to segment Javanese and Indonesian words into affix and root word subwords that experience allomorphism. This segmentation method was chosen because the two subword results have linguistic meanings that can be used to reduce OOV. The canonical segmentation process is conducted using Transformer encoder-decoder by manipulating the input as a research proposal. This research also develops an algorithm to create a corpus parallel canonical segmentation in the Java language used to train Transformers. Manipulating the Transformer input uses affix and root word feature tags or affix and root word sequences concatenated with each input character to help the Transformer learning process. This proposed manipulation produces a segmentation accuracy of 84.29% for all words, 69.82% for affixed words and 56.09% for canonical affixed words. The resulting F1 value is 92.89% for all words, 98.69% for affixed words and 96.81% for canonical affixed words. The subwords resulting from the segmentation process are then combined with feature tags in the form of affixes and root words to test low-resource NMT. This method can increase the BLEU value by +3.55 points compared to using words without segmentation and +2.57 points compared to using BPE subwords which are widely used today."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ram Marcellino
"ABSTRAK
Penelitian ini mengkaji pola hasil terjemahan frasa nominal posesif Bahasa Inggris BI ke BJ pada GT. Penelitian ini menggunakan metode deskriptif-kualitatif. Data pada penelitian ini adalah frasa nominal posesif BJ yang merupakan hasil terjemahan dari BI pada GT. Langkah awal yang dilakukan adalah mengumpulkan bahan berupa nomina BI, kemudian membentuknya menjadi frasa nominal posesif BI, lalu dilakukan uji coba penerjemahan pada mesin. Frasa nominal BI tersebut merupakan hasil penggabungan dari penentu posesif BI deteriminer dan nomina inti head . Hasil terjemahan tersebut kemudian dianalisis berdasarkan perbandingan dengan kaidah baku BJ. Analisis difokuskan pada dua hal, yakni pola konstruksi dan hasil terjemahan pronomina posesif BI. Dilihat dari bentuk konstruksi, hasil terjemahan frasa nominal posesif BI ke BJ dapat berupa kata monomorfemis, kata polimorfemis dan frasa. Berdasarkan data, hasil terjemahan pronomina posesif BI ke BJ dalam GT yang tidak sesuai dengan kaidah BJ dapat berupa: a pronomina persona bahasa Indonesia, b pronomina demonstratif BJ, c kata sandang BJ, dan d bentuk lain.

ABSTRACT
This research aims to discuss the translation pattern of possessive nouns phrases from English EN into Javanese JV generated by Google Translate GT . This research employs qualitative descriptive method. The data used in the research are the phrases of Javanese possessive nouns that are translated from EN using GT. The research is initialized by gathering EN nouns, then converting the nouns into EN possessive nouns phrases, and then put the phrases on the machine to test the translation result. The EN noun phrases are constructed from the combination of an EN possessive determiner and a noun head. The result of the translation is analyzed by comparing it with the general linguistic rules of JV. The analysis focuses on two things the pattern construction and the translation of EN possessive pronouns. Identified from its forms of construction, the translation of possessive noun phrases from EN into JV can appear in the form of monomorpheme, polymorpheme, and phrase. Based on the data, the translation results of possessive pronouns from EN into JV using GT that do not comply the JV linguistic rules comprise the errors in the production of a Indonesian personal pronouns, b JV demonstrative pronouns, c JV article, and d other forms. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bassnett, Susan
London: Routledge, 1991
418.02 BAS t (1)
Buku Teks  Universitas Indonesia Library
cover
Rosetta, M.T.
Dordrecht : Kluwer, 1994
418.02 ROS c
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>