Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5595 dokumen yang sesuai dengan query
cover
Martolis
"Dalam bahasan ini, penulis melakukan studi kelayakan untuk pembangkit tenaga angin di daerah Nusa Tenggara Timur secara umum dan kupang. Data-data yang diperoleh di analisa dalam suatu distribusi weibull, kemudian di hitung secara teoritis berapa besar potensi angin yang ada untuk dikonversikan menjadi energi, dan berapa luasan bilah turbin yang cocok dengan potensi angin yang dimiliki daerah tersebut.

In this discussion, the author conduct a feasibility study for wind power plants in East Nusa Tenggara region in general and to be specified at kupang. The data obtained and analyzed in a weibull distribution, then the theoretically calculated how much wind potential to be converted into energy, and how much area of the turbine blades that match the potential of the wind which owned the area."
Depok: Fakultas Teknik Universitas Indonesia, 2012
T23493
UI - Tesis Open  Universitas Indonesia Library
cover
Ade Irawan
"Konsumsi energi akan meningkat bersamaan dengan meningkatnya aktivitas manusia. Hingga kini, sumber energi terbesar masih diperoleh dari bahan bakar fosil, namun berdasarkan LAPAN (Indonesia) diperkirakan pada abad 22 akan ada kelangkaan bahan bakar fosil. Dampak lingkungan pun menjadi alasan untuk mencari sumber energi alternatif seperti energi dari angin. Berdasarkan kebijakan energi nasional, Pemerintah Indonesia akan menambah kapasitas terpasang mesin pembangkit energi dari angin (PLTB) sebesar 0,79 GW pada tahun 2025. Dalam rangka mengoptimalkan mesin pembangkit energi, besar kecepatan angin harus ditentukan secara akurat, dan distribusi probabilitas adalah salah satu cara untuk menjelaskan bagaimana penyebaran besar kecepatan angin tersebut. Beberapa tahun yang lalu, ilmuan menggunakan distribusi Weibull untuk memodelkan penyebaran besar kecepatan angin, namun terjadi masalah pada daerah asal dari distribusi Weibull. Tidak adanya besar kecepatan angin sekitar 0 m/s menyebabkan banyak peneliti untuk memikirkan alternatif atau modifikasi dari distribusi weibull. Pada 2013, Ramadan telah memodifikasi distribusi weibull dengan menambahkan parameter shape dan menghasilkan distribusi weighted weibull. Pada skripsi ini akan dijelaskan bagaimana membangun distribusi weighted Weibull dan karakteristik-karakteristiknya. Untuk melengkapi skripsi ini, data kecepatan angin di Bali (Indonesia) akan dianalisis untuk menjelaskan bagaimana distribusi weighted weibull dan distribusi weibull menggambarkan karakteristik kecepatan angin di Bali.
Energy consumption will increase simultaneously with increasing human activity. The most common source of energy used is still derived from fossil fuels, and based on LAPAN(Indonesia) is estimated in the 22nd century there will be scarcity of fossil fuels. Environmental impact becomes a reason to seek alternative energy sources such as wind energy. The Ministry of Energy and Mineral Resources and the Agency for the Assessment and Application of Technology (BPPT, Indonesia) tries to take advantage of wind for electrical power and refers to the national energy policy, the Government of Indonesia will add installed capacity of the power generating machine (PLTB) station of 0.79 GW in 2025. In order to optimize machine used to generate energy, the characteristics of wind speed should be specified accurately, and the probability distribution is one way to describe the characteristics. Many years ago, the scientist used weibull distribution to modelling wind speed but there is problem with the support area of weibull distribution. There is no wind speed around 0 m/s led researchers to think of alternatives or modifications of weibull distribution. In 2013, Ramadan has modifed weibull distribution by adding a shape parameter to generate weighted weibull distribution. In this project will decribes how to construct weighted weibull distribution and characteristics of weighted Weibull distribution. To complete this project, wind speed data from Bali (Indonesia) will be analyzed to explain how weighted weibull distribution and weibull distribution describes about characteristics of the wind speed in Bali."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61733
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raden Muhammad Alif Bryan Riztama
"Indonesia adalah negara kepulauan yang luas, dimana fitur topografinya dapat membatasi suatu area dengan area lainnya. Hal ini menyebabkan distribusi listrik menjadi sangat bervariasi. Oleh Karena itu, dibutuhkan pembangkit listrik yang dapat ditempatkan di daerah sulit terjangkau, yang dapat memenuhi kebutuhan listrik masyarakat setempat. Energi bayu/angin adalah salah satu energi terbarukan yang mempunyai potensi yang bagus. Energi ini cukup melimpah di daerah pesisir khususnya Kampung Bungin, Muara Gembong, dan total 3 kincir angin telah terpasang di daerah ini.
Saat ini, pengambilan data-data terkait kincir angin tersebut menjadi poin penting, terutama setelah pemasangan bilah blade baru. Data yang diambil berupa kecepatan angin, serta data penghasilan listrik, menggunakan Data Logger yang tersedia di lokasi. Pengolahan data tersebut menggunakan software MagdeTech 4 serta Microsoft Excel. Aproksimasi kecepatan angin menggunakan Distribusi Weibull 2-parameter. Hasil perhitungan kecepatan angin untuk menemukan potensi kincir angin akan dibandingkan dengan hasil aktual di lapangan.

Indonesia is a vast country in which the topographical features can separate areas from one another. This causes electricity distribution to be uneven. Therefore, a standalone power plant placed in remote areas that can fulfill the demand for electricity locally is needed. Wind energy, as one of the renewable energy resource, has a great potential to solve this problem. Wind energy is readily available in Bungin Village, Muara Gembong, and three micro wind turbines have been installed in the village.
Today, it is important to obtain the data related to the wind turbines, especially with the new blades installed, which consists of gathering wind speed and power generation data from the data loggers present on the site. Data processing is done by using MadgeTech 4 and Microsoft Excel. A Two parameter Weibull Distribution is used to approximate wind speed in the future. Also, the result from processing the wind speed data to obtain power generation, will be compared with actual power generation data in forms of voltage and current, and an analysis can be made.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67252
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Kautsar Khalifatullah
"Kebutuhan energi listrik dari segi ketersediaan, kapasitas, dan energi meningkat sangat tinggi seiring dengan rencana perkembangan dari sebuah negara. Energi panas bumi merupakan salah satu sumber energi bersih dan rendah karbon yang dapat dimanfaatkan menjadi energi listrik dengan menggunakan teknologi konversi energi (PLTP). Namun, penelitian yang membahas tentang PLTP sendiri masih belum banyak terkhusus yang membahas penilaiain keandalan (reliability assessment). Penilaian Keandalan menjadi hal sangat penting untuk menjamin operasi yang optimal dan pemeliharaan yang efektif. Sehingga, penelitian ini bertujuan untuk mendapatkan hasil dari nilai keandalan aktual yang mengacu pada data kegagalan sebuah PLTP dengan menggunakan beberapa metodologi yang berguna untuk menjadi sebuah acuan dalam mengoptimalkan kinerja dari operasi dan pemeliharaan PLTP.Penelitian mengkombinasikan beberapa metodologi (Weibull Distribution, FMEA, FTA, dan RBD) dalam prosesnya. Dari setiap metodologi akan mempengaruhi metodologi selanjutnya sehingga dapat dijadikan menjadi satu kesatuan metodologi dalam mendapatkan nilai keandalan dari PLTP.Metode Weibull Distribution menghasilkan nilai reliabilitas sebesar 0,315 atau setara dengan 31,5%. Metode FMEA menunjukkan bahwa hasil perhitungan yang perlu dijadikan acuan pada proses operasi dan pemeliharaan terdapat pada sistem Turbin dan Perangkat Lainnya. Sedangkan pada metode FTA-RBD menghasilkan nilai keandalan sebesar 0,435 atau setara dengan 43,5%. Perbedaan hasil nilai dikarenakan pada metode Weibull berfokus pada keseluruhan PLTP sedangkan pada metode FTA-RBD memiliki fokus kepada sistem yang terdapat pada PLTP.Setiap metode memberikan hasil yang berbeda - beda menyesuaikan dengan data kegagalan yang telah didapatkan dan pengolahan data yang dilakukan. Sehingga, setiap metode dapat dikembangkan agar menjadi sebuah metodologi yang baru atau dapat mengkombinasikan setiap metode untuk mendapatkan nilai yang aktual.

The need for electrical energy in terms of availability, capacity, and energy increases very high along with the development plan of a country. Geothermal energy is one of the clean and low-carbon energy sources that can be utilized for electricity using energy conversion technology (PLTP). However, there are still not many studies that discuss PLTP itself, especially those that discuss reliability assessment. Reliability assessment is very important to ensure optimal operation and effective maintenance. So, this research aims to get the results of the actual reliability value that refers to the failure data of a GPP by using several methodologies that are useful to be a reference in optimizing the performance of PLTP operations and maintenance. The research combines several methodologies (Weibull Distribution, FMEA, FTA, and RBD) in the process. Each methodology will affect the next methodology so that it can be used as a unified methodology in obtaining the reliability value of GPP. Weibull Distribution method produces a reliability value of 0.315 or equivalent to 31.5%. The FMEA method shows that the calculation results that need to be used as a reference in the operation and maintenance process are in the Turbine and Other Devices system. While the FTA-RBD method produces a reliability value of 0.435 or equivalent to 43.5%. The difference in value results is because the Weibull method focuses on the entire GPP while the FTA-RBD method focuses on the system contained in the PLTP. Each method provides different results according to the failure data that has been obtained and the data processing performed. So, each method can be developed into a new methodology or can combine each method to get the actual value."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Firly Tamara
"Pada sistem tenaga listrik memiliki bagian yang saling berkaitan antara satu dengan yang lainnya yaitu sistem pembangkitan, sistem transmisi dan sistem distribusi. Untuk menyalurkan listrik ke konsumen dari sistem distribusi digunakan transformator. Apabila transformator terkena gangguan, maka konsumen dapat langsung merasakan dampaknya. Gangguan-gangguan ini dapat merusak transformator. Sehingga memprediksikan waktu kegagalan transformator sangat penting untuk dilakukan. Terdapat beberapa cara untuk memprediksikan waktu kegagalan transformator yaitu dengan menggunakan distribusi weibull dan distribusi eksponensial. Dengan membuat program aplikasi berbasis Microsoft Excel untuk kedua distribusi ini, dapat langsung memprediksikan waktu kegagalan transformator. Hasil dari program ini adalah kapan transformator akan mengalami waktu kegagalan. Apabila kedua distribusi ini dapat digunakan, program ini dapat menentukan distribusi yang paling akurat untuk digunakan. Sehingga waktu kegagalan yang didapat akan lebih akurat.

On an electric power system there are three parts interconnected between one and another and that is generation system, transmission system and distribution system. To distribute electricity to consumer from distribution system used transformer. When a transformer affected by disruption, the consumers can feel the impact. This disruption can damage the transformer. So, predicting the time of the failure of a transformer is very important to do. There are several ways to predict the time of the failure of a transformer is to use and distribution of the exponential and weibull distribution. By making an application program based on Microsoft excel for this distribution, a transformer failure can be directly predicted time. The result of this program will have the time when the transformer is going to failure. If both the distribution can be used, this program can determine the most accurate distribution to use. Therefore the time failure which were found would be more accurate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Detasya Avri Magfira
"

Pada sistem reliabilitas atau sistem ketahanan suatu objek penelitian dikenal prinsip sistem seri dimana dari sekumpulan kejadian yang mungkin merupakan penyebab kegagalan pada akhirnya hanya akan ada satu kejadian yang secara nyata berhasil menyebabkan kegagalan pada sebuah sistem. Dalam kehidupan nyata, pada sistem seri, antar kejadian seolah saling berkompetisi untuk dapat menyebabkan kegagalan sistem. Aplikasi sistem seri banyak diimplementasikan pada kasus di bidang medis dan bidang teknik. Oleh karena itu, sebelumnya telah dibangun beberapa distribusi hasil compounding distribusi lifetime yang dapat memodelkan data pada sebuah sistem seri. Namun kelemahannya adalah distribusi-distribusi tersebut tidak dapat memodelkan data dengan fungsi hazard bathtub. Bentuk hazard bathtub sering ditemukan dalam berbagai permasalahan di kehidupan nyata khususnya masalah mortalitas pada manusia. Oleh karena itu dibutuhkan distribusi yang dapat memodelkan data pada sebuah sistem seri dan dapat menganalisis data dengan fungsi hazard bathtub. Distribusi Weibull Lindley merupakan distribusi hasil compounding antara distribusi Weibull dan distribusi Lindley yang dapat memodelkan kegagalan pada sebuah sistem seri dimana objek penelitian dapat mengalami kegagalan disebabkan oleh 2 kemungkinan kejadian dan dapat menganalisis data dengan bentuk hazard naik, turun dan bathtub. Penulisan skripsi ini membahas tentang proses pembentukan distribusi Weibull Lindley, karakteristik dari distribusi Weibull Lindley dan penaksiran parameter dengan metode maximum likelihood. Selain itu, dibahas pula aplikasi distribusi Weibull Lindley pada data masa fungsional mesin yang terdiri dari 2 komponen.

 


In reliability systems there are known two types of systems namely series systems and parallel systems. In the series system, failure will occur if any of the possible event happens. Applications of the series system analysis also varies from inspecting the durability of manufactured products to examining diseases in human. Therefore, several distributions have been introduced to model failure data in series system. However, these distributions cannot model data with bathtub shaped hazard function even though it is the one mostly found in real life situation. As a result, distribution which can model lifetime data in series system with bathtub-shaped hazard function has to be developed. Weibull Lindley distribution, which was introduced by Asgharzadeh et al. (2016), is developed to solve the problem. Weibull Lindley distribution describes lifetime data of an object that can experience failure caused by 2 possible events. It can model data with increasing, decreasing and bathtub shaped hazard function. This paper discusses the process of forming the Weibull Lindley distribution, its properties and parameter estimation using the maximum likelihood method. In addition, the application of Weibull Lindley distribution in lifetime data of machine consists of two independent component paired in series also be discussed.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marko Chindranata
"Data waktu tunggu merupakan data waktu hingga suatu kejadian (event) terjadi. Salah satu distribusi yang sering digunakan dalam memodelkan waktu tunggu adalah distribusi Weibull. Namun dalam pengaplikasiannya, distribusi Weibull memiliki sebuah kekurangan, yaitu bentuk fungsi hazard yang terbatas pada bentuk monoton. Oleh karena itu, diperlukan suatu metode untuk menggeneralisasi distribusi Weibull sehingga dapat memperluas variasi data yang dapat dimodelkannya. Salah satu perluasan tersebut adalah distribusi Weibull-Frechet (WFr). Distribusi Weibull-Frechet memiliki kelebihan dibanding distribusi Weibull, yaitu kemampuannya memodelkan data dengan fungsi hazard berbentuk unimodal. Metode yang digunakan dalam membentuk distribusi Weibull-Frechet adalah Weibull-G (WG). Metode Weibull-G menggunakan suatu fungsi W[G(x)] untuk menggabungkan distribusi Weibull dengan suatu distribusi sembarang yang memiliki fungsi distribusi kumulatif G(x). Oleh karena itu, penelitian ini membahas proses pembentukan distribusi Weibull-Frechet. Selain itu, dibahas juga karakteristik dari distribusi Weibull-Frechet beserta penaksiran parameter distribusi Weibull-Frechet dengan menggunakan metode penaksiran maksimum likelihood. Pada bagian akhir diberikan sebuah ilustrasi data menggunakan data waktu tunggu hingga pasien kanker lambung meninggal. Data tersebut dimodelkan menggunakan distribusi Weibull-Frechet, dengan distribusi Weibull dan distribusi Frechet sebagai pembanding. Hasil pemodelan menunjukkan bahwa distribusi Weibull-Frechet merupakan distribusi terbaik dalam memodelkan data waktu tunggu hingga pasien kanker lambung meninggal.

Lifetime data is a type of data that consists of waiting time until an event occurs. The distribution usually used for modeling lifetime data is the Weibull distribution. However, Weibull distribution has a limitation in its application : it can only model data with a monotonic hazard function. Therefore, a method for generalizing The Weibull distribution is needed so it can model a greater variety of data. One of those generalizations is the Weibull-Frechet distribution (WFr). The Weibull-Frechet distribution has an advantage over the Weibull distribution, due to its capability in modeling data with unimodal hazard function. The method used in generating the Weibull-Frechet distribution is the Weibull-G (WG). The Weibull-G method combines the distribution of a Weibull distribution with an arbitrary distribution with a cumulative distribution function G(x) using a function W[G(x)]. Hence, this thesis studies how to generate a Weibull-Frechet distribution. Furthermore, it also studies the characteristics of the Weibull-Frechet distribution and how to estimate the distribution’s parameters using the maximum likelihood estimation method. At the end of this thesis, lifetime data of gastric cancer patients is given for illustration purposes. The data is modeled using the Weibull-Frechet distribution, and both the Weibull and Frechet distribution for comparison. The model result shows that the Weibull-Frechet distribution is the best distribution for modeling the lifetime data of gastric cancer patients."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sadika Nuraini Hamid
"Skripsi ini bertujuan untuk mendeskripsikan perkembangan pemanfaatan tenaga angin sebagai pembangkit listrik di Francis. Metode yang dipakai dalam penyusunan skripsi ini adalah metode penulisan sejarah, yaitu merekonstruksi peristiwa-peristiwa sejarah dan situasi yang melatarbelakanginya. Penelitian dalam skripsi ini diawali dengan dengan uraian mengenai sejarah perkembangan bentuk dan pemanfaatan mesin pengolah angin di dunia dan di Francis. Melalui uraian ini dapat diketahui sumbangan Prancis bagi pengembangan mesin pembangkit listrik tenaga angin di dunia. Untuk memperoleh gambaran mengenai perkembangan pemanfaatan energi angin sebagai pembangkit listrik di Prancis secara menyeluruh, selanjutnya dipaparkan pembangunan berbagai instalasi di berbagai daerah di Prancis, perkembangan peran dan kebijakan pemerintah Prancis dalam pengembangan energi angin serta berbagai masalah dalam pembangunan instalasi. Hasil penelitian menunjukan bahwa pemanfaatan energi angin sebagai pembangkit listrik di Prancis berkembang secara lambat. Kelambatan ini disebabkan oleh berbagai hambatan yang berasal antara lain dari pemerintah maupun dari masyarakat. Akan tetapi, instalasi pembangkit listrik tenaga angin mempunyai keunggulan teknis, potensi keuntungan ekonomis dan sifat ramah lingkungan sehingga menjadikannya sumber energi alternatif yang perkembangannya sangat diperhatikan pemerintah Prancis. Pembangunan instalasi pembangkit listrik tenaga angin pun tetap digalakkan dan secara perlahan terus dikembangkan."
Depok: Fakultas Ilmu Pengetahuan Budaya Universitas Indonesia, 2002
S14532
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rugun Ivana Monalisa Banjarnahor
"Distribusi Weibull-Poisson merupakan distribusi kontinu yang dapat memodelkan beberapa macam bentuk hazard yaitu monoton naik, monoton turun dan increasing upside-down bathtub shape yang mempunyai bentuk bathtub shape terbalik dan monoton naik. Distribusi ini merupakan suatu distribusi lifetime yang dapat memodelkan kegagalan dalam suatu sistem seri dan merupakan pengembangan dari distribusi EksponensialPoisson. Distribusi ini diperoleh dengan melakukan metode compounding terhadap distribusi Weibull dan distribusi ZT-Poisson. Untuk mendapatkan bentuk akhir dari distribusi tersebut digunakan beberapa sifat matematis seperti order statistik dan ekspansi deret taylor. Selain pembentukan distribusi Weibull-Poisson, skripsi ini menjelaskan fungsi kepadatan peluang, fungsi distribusi, momen ke-r, momen sentral ke-r, mean, dan variansi. Sebagai ilustrasi, dibahas pula aplikasi distribusi Weibull-Poisson pada data survival marmut setelah terinfeksi virus Turblece Bacilli.

The Weibull-Poisson distribution is a continuous distribution that can be modeled various forms of hazard namely monotone up, monotone down and upside-down down bathtub shape which is shaped up. This distribution is a lifetime-distribution that can model failures in a series system and is development of the Exponential-Poisson distribution. This distribution is obtained by perform the compounding method on the Weibull distribution and the ZT-Poisson distribution. To obtain the final form of the distribution, several mathematical properties are used such as statistical order and Taylor's number expansion. In addition to the formation of Weibull-Poisson distribution, this thesis includes the probability density function, distribution function, moment rth, rth central moment, mean, and variance. As an illustration, Weibull-Poisson distribution is applied on guinea pig survival data after being infected with Turblece virus Bacilli."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tania Marsa Karina
"ABSTRAK
Count data biasanya merupakan hasil dari suatu count process pada waktu yang kontinu. Salah satu distribusi yang sering digunakan untuk memodelkan count data adalah Poisson count model yang interarival times-nya berdistribusi eksponensial. Namun demikian, Poisson hanya valid untuk data yang memilliki sifat equidispersion. Menerapkan Poisson count model terhadap data yang tidak memenuhi asumsi equidispersion data yang overdispersed maupun underdispersed dapat mengakibatkan kesalahan spesifikasi distribusi dari data. Sebuah count model dikembangkan pada penelitian ini dengan memperluas interarrival times yang digunakan, yaitu Weibull sebagai generalisasi dari eksponensial. Weibull interarrival times dapat mengatasi overdispersion dengan parameter shape 0.

ABSTRACT
Count data are usually the outcomes of an underlying count process in continuous time. One of the distributions often used to fit count data is Poisson count model. However, Poisson count model is only valid if the data satisfy equidispersion assumption. Applying Poisson count model to the significantly non equidispersed data overdispersed or underdispersed could lead to misspesification of the distribution of the data. A count model would be derived in this thesis by expanding the interarrival times used, that is Weibull interarrival times as the generalization of exponential. Weibull interarrival times could handle overdispersed data with shape parameter 0."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>