Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 129781 dokumen yang sesuai dengan query
cover
Ahmad Indra Siswantara
"Sistem loft Hovercraft proto X-3 yang dirancang terpisah dengan sistem propulsinya, memerlukan sebuah engine mounting agar dapat beropaerasi pada kondisi yang diinginkan. Dengan memperhatikan konstruksi ruang engine mounting yang ada, serta kebutuhan akan sistem lift yang cukup ringan, dimana berat total sistem lift tidak melebihi 50 kg, maka agar dapat berfungsi dengan baik dan dapat dipergunakan dengan batas waktu pengoperasian yang dikehendaki, sistem engine mounting ini menyalurkan gaya-gaya yang timbul. Penulis memutuskan untuk merancang engine mounting dengan 4 reaksi tumpuan pada 4 titik sudut dari ruang engine mounting. Dengan 4 reaksi pada 4 titik tumpuan diasumsikan distribusi bebabn pada ruang engine mounting lebih merata. Pada tahap pengembangan konsep terdapat 2 alternatif desain, yaitu tipe horisontal dan tipe miring. Dengan memperhatikan kriteria yang ada, tipe horizontal dipilih dengan asumsi momen yang terjadi akibat gaya berat dari mesin pada ruang engine mounting dapat diminimalkan. Analisa perhitungan terhadap kekuatan struktur dilakukan dengan menggunakan metode elemen hingga (finite elemen analysis) dengan menggunakan software ANSYS 5.4. Tegangan actual yang terjadi pada rangka engine mounting ternayat lebih rendah dari tegangan maksimumyang dimiliki oleh bahannya (tegangan tarik dan geser sebesar 170 ×〖10〗^6 N/m^2, tegangan kompresi sebesar 550^6 N/m^2). Dan dengan keuntungan berat sebesar 7 kg, maka engine mounting tersebut dapat digunakan pada Hovercraft proto X-3 dengan safety faktor sebesar 50."
Depok: Universitas Indonesia, 2002
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
"Sistem lift hovercraft proto X-3 yang dirancang terpisah dengan sistem
propulsinya, memerlukan sebuah engine mounting agar dapat beroperasi pada
kondisi yang diinginkan. Dengan memperhatikan konstruksi ruang engine
mounting yang ada, serta kebutuhan akan sistem 1ift yang cukup ringan, dimana
total berat sistem lift tidak melebihi 50 kg, maka agar dapat berfungsi dengan baik
dan dapat dipergunakan sesuai dengan batas waktu pengoperasian yang
dikehendaki, sistem engine mounting ini harus dirancang seringan mungkin tanpa
mengabaikan kekuatannya dalam menerima dan menyalurkan gaya-gaya yang
timbul. Penulis memutuskan untuk merancang engine mounting dengan 4 reaksi
tumpuan pada 4 titik sudut dari ruang engine mounting. Dengan 4 reaksi pada 4
titik tumpuan diasumsikan distribusi beban pada ruang engine mounting lebih
merata. Pada tahap pengembangan konsep terdapat 2 alternaiif desain, yaitu tipe
honsontal dan tipe miring. Dengan memperhatikan kriteria yang ada, tipe
horisonral dipilih dengan asumsi momen yang terjadi akibat gaya berat dari mesin
pada ruang engine mounting dapat diminimalkan. Analisa perhitungan terhadap
kekuatan struktur dilakukan dengan menggunakan metode elemen hingga (Finite
Elemen AnaLvsis) dengan menggunakan software ANSYS 5.4. Setelah melakukan
analisa pada disain rangka engine mounting hovercraft proto X-3 maka
didapatkan hasil berikut ini :
- Defleksi maksimum yang terjadi akibat pembebanan mesin adalah 0,011381 cm.
- Tegangan normal maksimum dalam arah sumbu X sebesar 1,38 x 10 6 N/m2
- Tegangan normal maksimum dalam arah sumbu Y sebesar 2,54 x 10 6 N/m2
- Tegangan normal maksimum dalam arah sumbu Z scbesar 1,62 x 10 6 N/m2
- Tegangan geser maksimum pada bidang XY sebesar 1,09 x 10 6 N/m2
- Tegangan geser maksimum pada bidang XZ sebesar 1,23 x 10 6 N/m2
- Tegangan geser maksimum pada bidang YZ scbesar 1,41 x 10 N/m2 '
- Tegangan utama pertama sebesar 3,88 x 10 6 N/m2
- Tegangan utama kedua sebesar 1,05 x 10 6 N/m2
- Tegangan utama ketiga sebesar 447.383 N/m2
- Beban total sistem lift sebesar 43 kg
tegangan yang terjadi pada rangka engine mounting ternyata lebih rendah dari
tegangan maksimum yang dimiliki oleh bahannya (tegangan tarik dan geser sebesar
170 x 10 6 N/m2, tegangan kompresi sebesar 550 x 10 6 N/m2). Dan dengan
keuntungan berat sebesar 7 kg, maka engine mounting tersebut dapat digunakan
pada hovercraft proto X-3 dengan safety faktor sebesar 50."
Fakultas Teknik Universitas Indonesia, 2002
S37701
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aminuddin Day
Depok: Fakultas Teknik Universitas Indonesia, 1994
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Eko Nugroho
"Hovercraft adalah kendaraan yang menggunakan bantalan udara sebagai planform. Disini bobot kendaraan sangat mempengaruhi efisiensi dari kemampuan mesin untuk mendapatkan performa yang maksimum. Hovercraft Proto X-3 adalah hovercraft dengan tipe separated yaitu mesin yang digunakan ada dua macam, mesin untuk mengangkat Serta mesin untuk mendorong, dengan dimensi panjang 320 cm, lebar 160 cm, tinggi rangka 37 cm. Analisa perhitungan terhadap struktur perancangan dilakukan pada dua disain rangka yang ada, yaitu rangka-1 dan rangka-2, dengan memperhitungkan beban pada mesin bagian depan (lift engine) sebesar 50 kg serta pada saat penumpang (asumsi massa penumpang sebesar 55 kg) menaiki kabin serta didalam kabin. Analisa perhitungan menggunakan metode elemen bingga (Finire Elemen Analysis) terhadap angka dengan kondisi pembebanan yang ada. Permasalahan yang ada adalah bagaimana mendapatkan bobot kendaraan seringan mungkin, salah satunya adalah pada mengurangi berat dari struktur rangka dengan menggunakan material yang ringan tetapi mudah didapat serta mampu untuk menahan beban yang terjadi pada struktur tersebut. Untuk itu perlu ditinjau kekuatan struktur dari perancangan rangka utama pada hovercraft proto x-3, agar diperoleh struktur yang ringan dan kuat Selelah dilakukan analisa terhadap rancangan maka didapatkan hasil untuk rangka-1 dengan nilai defleksi akibat pembebanan mesin pada bagian depan sebesar 4,834 cm, sedangkan pada rangka 2 nilai defleksinya.

Hovercraft is a vehicle using air cushion as a planform. In order to get maximum performance, the weight of the vehicle so much afecting the efficiency of the ability of the engine. Hovercraft Proto X-3 is a separated type hovercraft where there are two kinds of engines use in such a type. They are: engine to lift and engine to thrust. The length of Hovecraft Proto X-3 is 320 cm. The calculation analysis of the designed frame is made for two frame design, they are: frame-I and frame-2.By calculating the load of the front engine is 50 kg, the load of the rear engine is 50 kg, and when passanger (assuming passanger load is 55 kg) on the cabin and inside the cabin.. The calculation analysis using Finite Elemen Analysis (FEA) for the frame in such a load condition, The problem is how to get the weight of the vehicle as light as possible, one alternative answer of this problem is by using an easy to find light material able to resist the load on the structure. Therefore the structure strength of the mainframe design of hovercraft proto x-3 for the frame-]. After conducted an analysis on design, the result for the first frame is having deflection, due to engine loading, on the front section about 4,834 cm, compare to the second frame, having deflection about"
Depok: Fakultas Teknik Universitas Indonesia, 2002
S37694
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fransiskus Adian
"

Tesis ini membahas optimasi kinerja motor bakar empat langkah menggunakan bahan bakar campuran bensin dan bioethanol. Bensin yang digunakan memiliki nilai oktan 88, 92, dan 98, sedangkan komposisi bioethanol divariasikan mulai E0 sampai dengan E40 dengan kelipatan 10% volume. Optimasi kinerja dilakukan menggunakan Engine Control Module (ECM) dengan pengaturan waktu penyalaan sebesar 2o CA lebih awal dan durasi injeksi bahan bakar dengan pengurangan sebesar 10% dan penambahan sebesar 10% dari kondisi standar. Untuk mendapatkan data kinerja pada kondisi standar dan kondisi setelah optimasi dilakukan dengan pengujian engine dynamometer pada kecepatan 1000, 1500, 2000, dan 2500 rpm pada kondisi wide open throttle. Dari hasil penelitian diketahui bahwa kinerja optimal (peningkatan daya dan torsi, serta penurunan specific fuel consumption) dicapai dengan pengaturan waktu penyalaan 2o CA lebih awal disertai dengan pengurangan durasi injeksi bahan bakar sebesar 10%.  

 


This thesis discusses the optimization of the performance of a four-stroke internal combustion engine using a mixture of gasoline and bioethanol. The gasoline used in this research has octane number 88, 92, and 98, while the bioethanol composition is varied from E0 to E40 with increment of 10% volume. The performance optimization is done using the Engine Control Module (ECM) by advancing the ignition time of 2o CA and the setting the fuel injection duration with a reduction of 10% and an addition of 10% of the standard conditions. To obtain the performance data of before and after the optimization, the engine dynamometer is tested at speeds of 1000, 1500, 2000, and 2500 rpm at wide open throttle conditions. The results of the study show that the optimum performance (higher power and torque, and lower specific fuel consumption) is achieved by setting the ignition time of 2o CA earlier (advanced) accompanied by a reduction in fuel injection duration by 10%.

 

"
2019
T52934
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S36484
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Awwaluddin
"Rangka atau chassis adalah bagian penting dari semua kendaraan yang berfungsi sebagai penyangga berat kendaraan, mesin serta penumpang, maupun aksesoris lainnya sehingga kekuataan rangka harus diperhatikan dalam pembuatan suatu kendaraan. Dalam analisis ini diambil rangka pada monorail UTM-125. yaitu sebuah kendaraan transportasi massal yang digunakan untuk lintasan tunggal dengan medan yang tidak berat atau rata. Dikarenakan beban terbesar terjadi pada struktur bodi akibat beban penumpang, mesin serta aksesoris maka akan dilakukan analisis pada bagian tersebut dengan memberikan beban statis maupun dinamis.
Proses analisis dilakukan menggunakan bantuan sofware ANSYS 14 dengan berbagai variasi pembebanan. Dalam tesis ini telah dilakukan simulasi untuk mengetahui respon struktur bodi monorail UTM-125 dengan melihat hasil dari Equivalent Von-Misses Stres, deformasi, daerah kritis, Frekuensi pribadi, Fatigue life, serta Safety faktor dari Struktur setelah dilakukan pembebanan statis maupun dinamis. Dari analisis ini diharapkan dapat dijadikan masukkan terhadap struktur monorail yang sudah dibuat maupun yang akan dikembangkan.

Frame or chassis is an important part of any vehicle that serves as a buffer weight of the vehicle, engine and passenger, as well as other accessories so that the strength of the framework should be considered in making a vehicle. In the framework of this analysis is taken on the monorail UTM-125. is a mass transportation vehicle used for single track with heavy terrain or flat. Because the greatest burden on the body structure due to passenger loads, machines and accessories that will be analyzed in the section by providing a static and dynamic loads.
The process of analysis is performed using ANSYS software 14 with the help of a variety of loading. In this thesis has been carried out simulations to study the response of the body structure monorail UTM-125 by looking at the results of Equivalent Von-Misses stress, deformation, critical areas, personal frequency, Fatigue life, as well as the safety factor of the structure after the static and dynamic loading. Of this analysis are expected to be used as fill on the monorail structure that has been made or will be developed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35519
UI - Tesis Membership  Universitas Indonesia Library
cover
Hardi Krisnanto
"

Penelitian ini berfokus pada analisa dari optimasi unjuk kerja mesin satu silinder 150cc menggunakan bahan bakar bensin oktan 88 dengan variasi bioetanol. Optimasi dilakukan dengan mengubah ignition timing dan durasi injeksi pada injector mesin menggunakan programmable engine control module (ECM). Unjuk kerja mesin yang diukur dalam penelitian ini adalah Daya, Torsi dan Spesific fuel consumption menggunakan dynamometer. Penelitian ini menggunakan metode beban 100% atau WOT (Wide Open Throttle) dengan perbedaan putaran shaft dynamometer, yaitu pada putaran shaft dynamometer 1000 RPM, 1500 RPM, 2000 RPM, dan 2500 RPM. Untuk variasi bahan bakar, penulis menggunakan lima variasi, yaitu E0, E10, E20, E30, dan E40. Optimasi dilakukan dengan mengubah ignition timing bertambah dua derajat dari kondisi standar dan mengubah durasi injeksi. Nilai RON (Research Octane Number) akan meningkat sebanding dengan peningkatan persentase nilai bioetanol yang dicampurkan. Nilai Torsi dan Daya akan meningkat sebanding dengan peningkatan persentase nilai bioetanol. Dengan meningkatnya nilai RON maka perubahan ignition timing ke arah advance dan perubahan Injection Duration mendekati kondisi AFR lean akan meningkatan Torsi hingga 2.36 Nm dan Daya sebesar 0.61 kW.. Dengan meningkatnya Daya dan Torsi maka hasil emisi CO2 akan meningkat hingga 1.4% serta emisi CO menurun hingga 2.7%.


This research focus on analysis of performance optimation on 4-stroke 150cc one cylinder internal combustion engine using octane 88 gasoline fuel mixed with several number variations of bioethanol. Optimation done by changing ignition timing and injection duration from engines injector using programmable engine control module (ECM). Engine performance measured in this research are Torque, Power and Spesific Fuel Consumption using dynamometer. The methods of this research is using 100% load or can be mentioned as Wide Open Throttle (WOT) with different shaft speed variations in 1000, 1500, 2000 and 2500 RPM. Variations of mixed bioethanol varying in E0, E10, E20, E30 and E40 with the number as the percentage of bioethanol mixed. Optimation do with the change of ignition timing plus 2 degree CA and the change of injection duration from the normal condition. Research Octane Number (RON) increased with the higher bioethanol percentage. Torque and Power produced by engine will increased too. With a higher RON value, so the change of ignition timing with advance direction and the change of Injection Duration when approaching lean AFR conditions will increase Torque up to 2.36 Nm and Power up to 0.61 kW. With the increase of Torque and Power, the amount of CO2 will increase up to 1.4% and CO will decrease up to 2.7%.

"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Randy Rahmandar
"Motor pembakaran dalam sekarang ini telah berkembang dengan sangat pesat. Teknologi yang mendukung perkembangan tersebut tidak terlepas dari sistem kontrol yang berada dibelakangnya.Keinginan pengguna untuk mengembangkan tenaga yang dihasilkan oleh mesin dari kendaraanya atau bahkan menginginkan konsumsi bahan bakar yang irit menjadi sebuah alasan pengembangan sistem kontrol yang sudah ada dan bersifat mekanis digantikan oleh sistem kontrol elektronis yang dapat mengatur dengan lebih presisi. Dengan menggunakan sistem kontrol elektronik, semua variabel dan kondisi mesin pada saat waktu nyata dapat diketahui dari berbagai jenis sensor yang dipasang, sehingga nilai yang dikeluarkan unit kontrol adalah nilai dengan segala faktor yang ada pada mesin tersebut. Laboratorium Teknologi Manufaktur dan Otomasi pada tahun 2013 telah berhasil mengembangkan mesin otto 1 silinder 65 cc yang dirancang dan dimanufaktur sendiri. Mesin ini merupakan mesin yang diperuntukkan pada ajang lomba mobil irit tingkat Asia. Pada awal pengembangan, mesin ini telah berhasil dijalankan namun dengan sistem mekanis, yaitu dengan menggunakan karburator dan pengapian di atur oleh CDI. Untuk menaikkan efisiensi, maka dikembangkanlah sistem kontrol berbasis elektronik. Pengembangan sistem kontrol ini menggunakan CompactRIO dari NI (National Instrument) dan dikonfigurasi menggunakan FPGA (Field Programmable Gate Array) sehingga memudahkan dalam melakukan perubahan dan pengembangan sistem. Sistem kontrol yang dikembangkan berhasil menjalankan mesin otto 1 silinder 65 cc. Untuk menguji algoritma sistem kontrol ini, maka dilakukan pengukuran terhadap gas buang dengan merubah SA (Spark Advance) dan IPW (Injector pulse width).

Nowadays, an Internal Combustion Engine has rapidly developed. The technology which is behind of the development could not be separated from the control system which lies behind. The desires of user who want to have their engine more powerful or even has low consumption of fuel has become one of many reason to replace the initial control system which is based on mechanical to electronic control system where every parameters could be more precisely controlled. With using electronic control system, all of variabel and conditions of the engine in real-time could be monitored from various sensors which stick to the engine, thus a value that came from control unit is a value which has been corrected by all of the factor in the engine. Laboratory of Manufacturing and Automation Technology has built a 1 cylinder Otto engine with 65 cc swept volume. This engine was purely designed and manufactured by our hand in 2013. The aim of building the engine is to be applied in a competition of low fuel consumption car in Asia. At the beginning of design, researcher has made to run the engine but stil use carburetor as fuel and air supply and CDI to control the ignition. To level up the efficiency of this engine, this research (ECU) has been pulled up to the surface, so we develop a control system which based on electronics. This research and development of electronic controil system for 1 cylinder LFCE engine is using Compact RIO from National Instrument and configured with Field Programmable Gate Array, so it allows researcher to do some changes and development. As a final result, this ECU has made the engine to run. To test the algorithm and codes, then we do a measurement based on emission test with make a changes towards ESA and IPW.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56849
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Saar
"Hovercraft Proto X-2 adalah pengembangan iebih Ianiut daripada Hovercraft Proto X-1 yang teiah ada. Dimana maksud diproduksinya Hovercraft Proto X-2 ini adalah untuk menjadi saiah satu kendaraan altematif daiam mengatasi masalah transportasi di negara kita ini.
Kelebihan Hovercratt ini dibandingkan pendahuiunya, selain memiliki kapasitas angkut yang Iebih juga membutuhkan daya guna yang Iebih tinggi. Sehingga membutuhkan daya mesin yang Iebih besar. Pemanfaatan daya mesin yang lebih besar otomatis membutuhkan dudukan penyangga mesin yang Iebih kuat.
Untuk mengetahui kekuatan penyangga mesin Hovercraft Proto X-2 ini maka periu diiakukan suatu analisa terhadap kekuatan struktur dan dampak dari getaran mekanis yang timbul.
Analisa kekuatan struktur engine mounting Hovercraft Proto X-2 ini dilakukan pada sambungan-sambungan yang terdapat pada struktur, yaitu sambungan las dan mur-baut, akibat dari reaksi pembebanan dari mesin itu Sendiri. Reaksi pembebanan mesin pada struktur dihitung dengan bantuan komputer mempergunakan program SAP'90.
Analisa terhadap dampak getaran mekanis yang timbul didasari untuk mencari nilai konstanta kekakuan pegas dinamis, untuk mendapatkan frekuensi pribadi yang berbeda dengan frekuensi pribadi sistem. Sehingga dapat menghindari resonansi.
Hasil analisa yang dilakukan secara umum membuktikan bahwa struktur engine mounting Hovercraft Proto X-2 sekarang cukup kuat dan memadai, sebagai salah satu faktor penentu kelayakan Hovercraft proto X-2 menjadi kendaraan alternatif."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36788
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>