Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 137102 dokumen yang sesuai dengan query
cover
Rochmah
Depok: Fakultas Teknik Universitas Indonesia, 2000
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
cover
Pasmurov, Alexander Ya
"Increasing information content is an important scientific problem in modern observation systems development. Radar imaging can be used for this purpose. This new book focuses on holography and tomography for quasimonochromatic and broadband signals, and provides a detailed coverage of the basic physical methods, inverse problems and mathematical principles."
London: Institution of Engineering and Technology, 2009
e20452639
eBooks  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S38424
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tait, Peter
"This book provides an overview of the whole radar target recognition process, and covers the key techniques being developed for operational systems. The book is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems. Mathematics is kept to a minimum and the complex techniques and issues are discussed in a clear and physical way in order to make it accessible both to specialists and non specialists alike."
London: Institution of Engineering and Technology, 2009
e20452635
eBooks  Universitas Indonesia Library
cover
Muhammad Fariza Ibrahim
"Infrastruktur kabel bawah laut yang terletak pada permukaan dasar laut dapat terekspos oleh bencana geologis, tercatat beberapa kejadian gempa bumi menyebabkan putus atau rusaknya jaringan kabel bawah laut. Penelitian ini memfokuskan pada identifikasi zona lemah geologis dengan mengidentifikasi keberadaan struktur patahan dan zona kemiringan lereng yang curam. Anomali gravitasi didapat dari data gravitasi satelit TOPEX kemudian dilakukan analisis derivatif seperti First Horizontal Derivative (FHD) dan Second Horizontal Derivative (SVD) sehingga letak dan jenis struktur patahan dapat teridentifikasi. Data Batimetri GEBCO digunakan dalam memetakan kemiringan lereng yang curam yang diketahui sebagai parameter control terjadinya longsor bawah laut. Integrasi terpadu dari peta turunan anomali gravitasi yang mengidentifikasi keberadaan struktur patahan, peta kecuraman lereng, ditambah dengan data penunjang peta sebaran gempa bumi BMKG dapat memetakan zona lemah geologis yang berpotensi menjadi letak terjadinya bencana geologis bawah laut. Peta integrasi terpadu dapat dijadikan referensi dalam perencanaan pemasangan lintasan kabel bawah laut dalam upaya mitigasi.

Submarine cable infrastructure located on the surface of the seabed can be exposed to geological disasters, it is recorded that several earthquakes caused the break or damage of the submarine cable network. This study focuses on identifying geological weak zones by identifying the presence of fault structures and zones of steep slopes. Gravitational anomalies are obtained from the TOPEX satellite gravity data and then analyzed with First Horizontal Derivative (FHD) and Second Horizontal Derivative (SVD) method, so that the location and type of fault structure can be identified. GEBCO bathymetry data is used to map the steepness of the slopes, which are known as control parameters for the occurrence of submarine landslides. An integration of anomaly gravity derivative map that identifies the presence of fault structures, slope steepness maps, and supported with BMKG earthquake distribution map can be identified a geological weak zones that had the potential to be the location of submarine geological disasters. The integrated map can be used as a mitigation efforts reference for submarine cable lines installation plan."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reynaldo Wijaya Hendry
"Citra bawah air tergolong ke dalam citra yang sulit diproses secara digital. Hal ini dise- babkan citra bawah air mengalami degradasi gabungan berupa scattering dan absorption. Sedangkan permasalahan estimasi kedalaman relatif adalah salah satu permasalahan yang masih menjadi riset dalam bidang computer vision saat ini. Permasalahan ini digolongkan sebagai permasalahan image-to-image translation. Salah satu model yang sering digunakan untuk menyelesaikan permasalahan image-to-image translation adalah dengan menggunakan conditional generative adversarial network (cGAN) yang merupakan salah satu varian dari generative adversarial network (GAN). Komponen penting dari cGAN terdiri dari generator dan discriminator yang berpengaruh terhadap keefektifan model. Pada penelitian ini akan diuji kombinasi generator yang terdiri dari U-net, Resnet-6, dan Resnet-9 dan discriminator yang terdiri dari PatchGAN serta ImageGAN dalam menyelesaikan permasalahan estimasi kedalaman relatif dari citra bawah air. Keoptimalan model diuji dengan menggunakan metrik structural index similarity (SSIM) dan root mean square error (RMSE). Didapatkan hasil bahwa model dengan generator U-net dan discriminator PatchGAN memberikan hasil terbaik pada metrik SSIM dan RMSE.

Underwater images are classified as images that are difficult to be processed digitally. This happens due to the combined degradation of the underwater image in the form of scattering and absorption. Meanwhile, relative depth estimation is one of the problems that is still being actively researched in computer vision. This problem is classified as image-to-image translation problem. One of the model that is often used to solve image-to-image translation is the conditional generative adversarial network (cGAN) which is a variant of generative adversarial network (GAN). The important component of cGAN consists of generator and discriminator which affects the model’s effectiveness. In this research, a combination of generator consisting of U-net, Resnet-6, and Resnet-9 and discriminator consisting of PatchGAN and ImageGAN will be tested in solving relative depth estimation problem for underwater image. Optimization of the model is tested using the metrics structural similarity index (SSIM) and root mean square error (RMSE). The results show that models with generator U-net and discriminator PatchGAN give the best result on SSIM and RMSE metrics."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Mardianto
"Citra gelap (low light images) merupakan citra yang diambil pada kondisi pencahayaan yang rendah, sehingga menimbulkan noise secara acak dan distorsi warna. Noise dan distorsi ini membuat informasi pada citra berkurang yang menjadi kendala bagi sistem berbasis computer vision selanjutnya. Oleh karena itu, dapat dilakukan peningkatan kualitas citra gelap untuk meningkatkan kualitas informasi yang terkandung di dalamnya. Zero-DCE merupakan suatu model deep learning yang dikembangkan untuk melakukan peningkatan kualitas citra gelap dengan memanfaatkan struktur U-net dan perumusan loss function tanpa membutuhkan data citra berpasangan pada proses pembelajaran model. Pada penelitian ini, dilakukan berbagai eksperimen untuk mengoptimisasi performa model Zero-DCE meliputi percobaan trainable parameter weight loss, modifikasi color constancy loss, pemanfaatan bilateral filter dan proses hyperparameter tuning. Pengujian performa model optimisasi Zero-DCE dilakukan terhadap beberapa dataset, yaitu dataset LOL, SICE Part 1 dan Dark Face. Analisis dilakukan secara kuantitatif dan kualitatif pada citra hasil model optimisasi Zero-DCE dibandingkan dengan citra hasil model Zero-DCE. Pada experimen pada model Zero-DCE dengan trainable parameter weight loss, terlihat bahwa nilai optimal loss pada proses training model Zero-DCE tidak menghasilkan peningkatan kualitas citra gelap yang lebih baik. Pada eksperimen pada model dengan modifikasi color constancy loss dan hyperparameter tuning terlihat bahwa hasil model optimisasi zero-DCE lebih baik dibandingkan model Zero-DCE dalam analisis kuantitatif pada beberapa metrik. Namun jika dilakukan analisis secara kualitatif, tidak terdapat perbedaan hasil yang besar jika model dimanfaatkan dalam berbagai tugas seperti face detection dikarenakan perbedaan hanya terdapat pada adanya noise serta warna citra. Eksperimen juga berusaha meningkatkan performa lebih jauh menggunakan bilateral filter pada tahap terakhir. Pemanfaatan bilateral filter dapat disesuaikan terhadap karakteristik masukan citra. Jika citra memiliki banyak noise dan detail citra yang rendah akan lebih baik memanfaatkan post processing bilateral filter dibandingkan citra masukan yang memiliki banyak detail penting.

A low-light image is an image that was taken in an environment that lacks sufficient lighting, resulting in random noise and color distortion. This noise and distortion results in the lack of information in the image that becomes a hindrance for later computer vision models or systems. Thus, low light image enhancement is necessary to try to recover the missing information in the image. Zero-DCE is a deep learning model designed to improve the quality of low light image by utilizing the U-net structure and loss function formulation without requiring paired image data in the model learning process. In this research, various experiments were conducted to optimize the performance of the Zero-DCE model, including adjusting the trainable parameter weight loss, modifying color constancy loss, utilizing bilateral filter, and tuning hyperparameters. The performance of the optimized Zero-DCE model was tested on several datasets, namely the LOL, SICE Part 1, and Darkface datasets. The analysis is done quantitatively and qualitatively and the image of the optimized Zero-DCE model is compared to the image of the Zero-DCE model. The experimental results show that the trainable parameter weight loss, the evaluation results showed that the optimal loss value in the training process of the Zero-DCE model does not guarantee better low-light image enhancement results. Modifying the calculation of color constancy loss calculation and tuning hyperparameter experiments show that the results of the optimized Zero-DCE model are better than the Zero-DCE model in terms of certain quantitative metrics. However, when analyzed qualitatively, there is no big difference in results particularly in tasks like face detection because the difference only exists in terms of noise presence and image color. To further enhance the image, this experiment also employed the bilateral filter at the last step. The utilization of bilateral filters can be adjusted according to the characteristics of the input image. If the image contains a lot of noise and low image detail, utilizing bilateral filter would be more beneficial compared to images with important details."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadya Lailyshofa
"ABSTRACT
MVCT merupakan modalitas pencitraan yang diintegrasikan dengan pesawat Tomoterapi menggunakan energi 3.5 MV yang memiliki andil cukup besar untuk memberikan tindakan terapi yang optimal pada Tomoterapi. Tujuan dari penelitian ini adalah mengevaluasi kualitas citra, estimasi dosis, serta verifikasi posisi pada pencitraan MVCT. Dalam penelitian ini, evaluasi MVCT dilakukan dengan tiga variasi mode slice thickness yaitu fine, normal, dan coarse. Pengujian kualitas citra dilakukan menggunakan phantom Cathpan 600. Estimasi dosis dan verifikasi posisi dilakukan menggunakan phantom Rando pada tiga area yang ditentukan, yaitu head neck, thorax, dan pelvic. Verifikasi posisi dilakukan dengan memberikan beberapa marker eksternal di beberapa titik pada setiap area dan dihitung dengan bantuan dua perangkat lunak, yaitu software Tomoterapi dan 3D Slicer. Hasil evaluasi kualitas citra yang diperoleh menunjukkan bahwa seluruh variasi mode slice thickness pada MVCT masih berada dalam batas toleransi sesuai dengan AAPM TG 148. Estimasi dosis yang diperoleh menunjukkan bahwa dosis terbesar diperoleh pada mode fine. Secara umum, nilai estimasi dosis yang diperoleh berada pada rentang 1-4 cGy untuk semua area pada setiap titik OAR yang diukur. Pergerakan posisi yang diperoleh untuk seluruh variasi mode slice thickness menunjukkan perbedaan yang tidak signifikan, dengan besar le; 0.5 mm. Perbedaan hasil pergerakan posisi yang diperoleh antara dua software yang digunakan tidak lebih dari 0.5 mm.

ABSTRACT
MVCT is an imaging modality which is integrated by Tomotherapy using 3.5 MV energy that has a large enough contribution to provide an optimal therapeutic in Tomotherapy. The purpose of this study is to evaluate the image quality, dose estimation, and verification of the position on MVCT imaging. In this study, MVCT evaluation was performed with three variations of the slice thickness mode that is fine, normal, and coarse. Image quality testing was performed using Catphan 600 phantom. Dose estimation and position verification were performed using Rando phantom in three areas, there were head neck, thorax, and pelvic. Verification of the position was performed by providing several external markers at several points in each area and calculated with the help of two software, namely Tomotherapy software and 3D Slicer. The result of image quality evaluation obtained shows that all variations of slice thickness mode in MVCT are still within tolerable limits in accordance with AAPM TG 148. Estimated dose obtained shows that the largest dose was obtained in fine mode. In general, the estimated dose value which was obtained is in the range of 1 4 cGy for all areas at each measured OAR point which was measured. Movement of position obtained for all variations of slice thickness mode shows insignificant difference, with value le 0.5 mm. The difference of result obtained between the two software used is no more than 0.5 mm."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>