Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 30148 dokumen yang sesuai dengan query
cover
Amien Rahardjo
[Date of publication not identified]
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Harun Al Rasyid
"Teknologi fuel cell (selbahanbakar) merupakan salah satu teknologi yang menggunakan bahan bakar dari energi baru terbarukanya itu hidrogen. Teknologi ini dianggap bersih dan ramah lingkungan. Efisiensi konversi yang tinggi danemisi polutannya sangat rendah sehingga dampak lingkungan yang rendah juga membuatnya menjadi kandidat yang tepat untuk menggantikan teknologi konvensional ada. Aplikasidariteknologi fuel cell, antara lain untuk transportasi/ otomotif, pembangkitlistrikstasionerdan fuel cell portabel.Untuk teknologi fuel cell jenis proton exchange membrane (PEM) sebagai pembangkit listrik, khususnya di Indonesia masih belum berkembang. Oleh karena itu perlu dilakukan analisis tekno ekonomi dari pembangkit listrik fuel cell jenis PEM dengan melihat karakteristik kerja dan efisiensi sistem, khususnya peralatan disisi keluaran seperti konverter dan inverter terhadap beban rumah tangga(beban yang dipakai lampu) dari beberapa profil beban seperti profil beban statis dan fluktuatif. Hasil uji kinerja sistem pembangkit listrik fuel cell memperlihatkan karakteristik dari fuel cell, yang berupa kurva polarisasi perubahan tegangan terhadap perubahan arus beban.Dari Kurva polarisasi V-I didapatkan nilai polarisasi aktivasi (α) pada saat pembebanan fluktuatif lebih besar dibandingkan pada saat pembebanan statis, sedangkan nilai polarisasi ohmic (r) pada saat pembebanan fluktuatif lebih kecil dibandingkan pada saat pembebanan statis. Hal ini memperlihatkan proporsi energi listrik yang timbul saat perubahan laju reaksi pada pembebanan fluktuatif lebih besar dibandingkan pada pembebanan statis. Sehingga reaksi yang terjadi lebih cepat dan mengakibatkan tegangan akan lebih cepat turun. Dari segi keekonomian biaya energi pembangkit listrik fuel cell jenis PEM untuk kapasitas 500W dan 2 kW masih cukup besar yaitu Rp/kWh10.117,2 dan Rp/kWh 5.330,4. Tetapi untuk kapasitas 5kW ternyata jauh lebih rendah yaitu sebesar Rp/kWh3.048,7. Hal ini di karenakan selain biaya investasi yang menjadilebihkecil,biaya bahan bakar juga menjadi lebih kecil. Biaya bahan bakar bisa jauh lebih murah dikarenakan konsumsi gas hidrogen berdasarkan arus beban yang dipakai pada kapasitas 5kW hanya dua kali lipat jumlahnya dibandingkan kapasitas 500W, sedangkan produksi listrik yang dihasilkan sepuluh kali lipat.

Fuel cell technology utilizes fuels from renewable sources i.e. hydrogen. Therefore, this technology is considered clean and environmentally friendly. High conversion efficiency with very low pollutant emission makes this technology a favorable candidate to substitute the existing conventional energy conversion technology. Applications of fuel cell technology include power for transportation/automotive, stationary fuel cell, and portable fuel cell. PEM type fuel cell technology as a power generation has not been developed in Indonesia. Therefore, it is necessary to analyze techno-economic of the PEM fuel cell technology by examining its operation characteristics and system efficiency particularly conversion equipment at output side such as converter and inverter for household load (lighting) at various load profile i.e, static and fluctuated loads. Performance analysis that is presented in V-I polarization curve shows the fuel cells characteristics. From this curve, polarization activation value (α) at fluctuated loads is higher than that of static loads, whereas polarization ohm value (r) is lower at static loads than fluctuated loads. This result demonstrates electricity produced at fluctuated loads is higher compared to that at static load. Consequently, chemical reactions are faster that affect voltage to drop faster. Cost of energy for PEM fuel cell is still considerably high for 500 W and 2 kW that are Rp/kWh10.117,2 and Rp/kWh 5.330,4. While for 5 kW fuel cell system, COE is far lower that is Rp/kWh3.048,7. This is due to cost of investment and fuels decrease significantly. Cost of fuel can be reduced substantially because oxygen consumption at a 5 kW fuel cell system is only double than that of the 500 W system, whereas electicity production is 10 times higher.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42385
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Hafid Thoyibi
"Bahan bakar fosil telah memainkan peran penting dalam pembangunan masyarakat, tetapi dampak lingkungan yang ditimbulkan dan keterbatasan sumber dayanya menunjukan perlunya dilakukan transisi menuju energi berkelanjutan. Sel bahan bakar berbasis hidrogen menghadapi tantangan dalam hal penyimpanan dan transportasi. Amonia muncul sebagai alternatif yang menjanjikan dengan kepadatan energi yang tinggi dan efisiensi biaya. Penelitian ini mengeksplorasi sintesis nikel oksida berpori (p-NiO) melalui metode anodisasi untuk meningkatkan luas permukaan dan stabilitasnya sebagai anoda dalam Direct Ammonia Fuel Cell (DAFC). Berdasarkan hasil karakterisasi FTIR dan UV-DRS, dapat dilihat bahwa p-NiO telah berhasil disintesis di atas permukaan Ni foil melalui metode anodisasi. Proses anodisasi dilakukan pada beberapa variasi potensial yaitu 5 V, 15 V, 30 V, 45 V, dan 60 V, dimana berdasarkan hasil uji elektrokima voltametri siklik dalam pengujian luas permukaan elektro-aktif dan eletro-oksidasi amonia, NiO-45 menunjukkan hasil yang optimum. Selanjutnya, uji performa NiO-45V sebagai anoda pada DAFC menunjukkan densitas tertinggi sebesar 429,25 μW cm-2. Hasil ini menunjukkan potensi NiO-45 sebagai elektroda pada DAFC.

Fossil fuels have played a crucial role in societal development, but their environmental impacts and limited availability necessitate a transition to sustainable energy sources. Hydrogen-based fuel cells face challenges in storage and transportation. Ammonia emerges as a promising alternative due to its high energy density and cost efficiency. This study explores the synthesis of porous nickel oxide (p-NiO) via anodization to enhance its surface area and stability as an anode in Direct Ammonia Fuel Cells (DAFC). Based on FTIR and UV-DRS characterizations, the anodization process successfully formed p-NiO on the Ni foil surface. Anodization was carried out at various potentials (5 V, 15 V, 30 V, 45 V, and 60 V). From cyclic voltammetry electrochemical tests on surface area and ammonia electro-oxidation, NiO-45 exhibited optimal results. Furthermore, the performance test of NiO-45 as an anode in ammonia fuel cells demonstrated the highest power density of 429.25 μW cm⁻². These findings indicate that NiO-45 has potential as an electrode in ammonia fuel cells"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Argianto
"Industri semen merupakan proses produksi dengan intensitas energi yang tinggi karena membutuhkan banyak bahan bakar pada saat proses pembakaran di Kalsiner dan Kiln. Gas panas hasil pembakaran di kiln, dimanfaatkan hanya untuk pengeringan material bahan baku dan batu bara. Membuat kelayakan pemanfaatan pembangkit tenaga listrik dari gas panas hasil proses produksi clinker dari sisi teknis dan ekonomi. Perhitungan kapasitas pembangkit dilakukan dari temperatur, nilai kalor dari hasil proes produksi klinker dan kandungan air pada batubara dan bahan baku. Kelayakan keekonomian dalam penelitian ini meliputi biaya pokok pembangkitan serta kelayakan dari sisi teknis meliputi temperatur gas panas, nilai kalor dalam proses pembuatan klinker dan kandungan air di material bahan baku. Analisis yang digunakan pada penelitian ini adalah metode probabilistik dengan simulasi monte carlo dengan hasil NPV> nilai ekspetasi memiliki probabilitas 59,21% dan IRR > MARR memiliki probabilitas 87.22%. Penelitian ini berhasil membuktikan bahwa pemanfaatan gas panas menjadi listrik dapat diterapkan di industri semen.

Cement industries is production proses with high energy requiring much fuel during process burning at calsiner and kiln. Hot gas form burning in the kiln, used only for drying raw maetrials and coal. Make feasiblility for power plant from hot gas process production clinker from the technical and economic. Calculation generating capacity from temperature, heat value from the production proces clinker. Economies of feasibility in this research covered the cost of electricity and feasibility of the technical covering temperature of a hot gas, heat value in the process of making clinker and the mouister content in raw materials. In order to analyze each parameters this reasearch is using probabilistic methode by monte carlo simulation with result NPV> expectation value have probability 59,21% and IRR>MARR have probability 87.22%. This reasearch has proving that the utilization of hot gas into electricity in cement industri."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T44969
UI - Tesis Membership  Universitas Indonesia Library
cover
Mujammil Asdhiyoga Rahmanta
"Penelitian kajian optimasi & analisis ekonomi distribusi Liquified Natural Gas (LNG) terhadap penurunan biaya bahan bakar penyediaan tenaga listrik pada pembangkit listrik di Wilayah Nusa Tenggara bertujuan untuk menentukan alokasi & fasilitas yang harus dibangun dalam distribusi LNG, serta mendapatkan kajian analisis keekonomian berdasarkan parameter kelayakan finansial distribusi LNG ke pembangkit listrik di wilayah Nusa Tenggara. Penelitian dilakukan dengan optimasi rute distribusi LNG dengan fungsi tujuan meminimalkan biaya transportasi. Optimasi rute distribusi dilakukan dengan pendekatan greedy algorithm dan integer linear programming. Rute distribusi hasil optimasi digunakan untuk menghitung besarnya Capital Expenditure (Capex) & Operasional Expenditure (Opex) terminal distribusi LNG. Kajian ekonomi distribusi LNG dilakukan dengan menganalisis besarnya nilai internal rate of return (IRR), payback period (PP) dan Net Present Value (NPV). Pembangkit listrik yang dikaji adalah Pusat Listrik Mesin Gas (PLTMG) yang mana mampu menggunakan bahan bakar jenis high speed diesel (HSD) dan gas alam. Terdapat enam PLTMG di Wilayah Nusa Tenggara antara lain Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, & Kupang Peaker. Penelitian ini menggunakan basis data operasional tahun 2020 dimana harga rata-rata HSD di Wilayah Nusa Tenggara sebesar 5.620 Rp/liter dengan nilai kurs tengah Bank Indonesia sebesar 14.105 US$/Rp. Dari analisis dan pembahasan dihasilkan bahwa kebutuhan LNG per tahun untuk enam PLTMG dengan total kapasitas daya mampu netto 346 MW, capacity factor (CF) 44%, dan equivalent availability factor (EAF) 95% di Wilayah Nusa Tenggara adalah 449.497,43 m3/tahun. Optimasi distribusi LNG menghasilkan kombinasi rute Bontang, Bima, Sumbawa, Lombok Peaker, Bontang yang dilayani kapal ukuran 7.500 m3 dan Bontang, Rangko, Maumere, Kupang Peaker, Bontang yang dilayani kapal ukuran 2.500 m3 dengan total biaya transportasi 19.666.335 US$/tahun. Diperlukan 6 terminal LNG untuk memenuhi kebutuhan gas yaitu Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, dan Kupang Peaker dengan total biaya Capex 151.941.482,95 US$. Menggunakan skema modal disetor (equity) 40%, pinjaman (debt) Bank 60% dengan bunga 10% cicilan selama 20 tahun, nilai Capex sebesar 151.941.482,95 US$, Opex sebesar 27.263.408,67 US$, maka sekurang-kurangnya diperlukan margin harga penjualan sebesar 5,5 US$/MMBTU sehingga distribusi LNG tersebut layak secara finansial dengan payback period selama 10 tahun, IRR 8,35%, dan nilai NPV postif sebesar 244.712.335,64 US$ pada tahun ke-20. Berdasarkan data tahun 2020, nilai biaya pokok penyediaan (BPP) tenaga listrik PLTMG di Wilayah Nusa Tenggara dengan LNG margin harga 5,5 US$/MMBTU adalah 8,42 Cent US$/kWh, lebih rendah 13% dibandingkan dengan BPP dengan HSD sebesar 9,69 Cent US$/kWh.

Research on optimization studies & economic analysis of Liquified Natural Gas (LNG) distribution towards reducing fuel costs of energy at power plants in the Nusa Tenggara Region aims to determine the allocation & facilities that must be built in LNG distribution, as well as obtain an economic analysis study based on financial feasibility parameters distribution of LNG to power plants in the Nusa Tenggara region. The research was conducted by optimizing the LNG distribution route with the objective function of minimizing transportation costs. Distribution route optimization is done by using the greedy algorithm approach and integer linear programming. The distribution route of the optimization results is used to calculate the amount of Capital Expenditure (Capex) & Operational Expenditure (Opex) of the LNG distribution terminal. The study of the economics of LNG distribution was carried out by analyzing the internal rate of return (IRR), payback period (PP), and Net Present Value (NPV). The power plant studied is the Gas Engine Power Plants (GEPP) which is capable of using high-speed diesel (HSD) and natural gas fuels. There are six GEPPs in the Nusa Tenggara Region, including Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, & Kupang Peaker. This study uses an operational database in 2020 where the average price of HSD in the Nusa Tenggara Region is 5,620 Rp/liter with the Bank Indonesia middle rate of 14,105 US$/Rp. From the analysis and discussion, it is found that the LNG demand per year for six PLTMGs with a total net capacity of 346 MW, capacity factor (CF) 44%, and equivalent availability factor (EAF) 95% in the Nusa Tenggara Region is 449,497.43 m3/year. Optimization of LNG distribution resulted in a combination of routes Bontang, Bima, Sumbawa, Lombok Peaker, Bontang served by 7,500 m3 ships and Bontang, Rangko, Maumere, Kupang Peaker, Bontang served by 2,500 m3 ships with a total transportation cost of 19,666,335 US$/year. 6 LNG terminals are needed to meet gas needs, namely Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, and Kupang Peaker with a total Capex cost of 151,941,482.95 US$. Using a 40% paid-in capital (equity) scheme, 60% Bank loan (debt) with 10% interest in installments for 20 years, Capex value of 151,941,482.95 US$, Opex of 27,263,408.67 US$, then at least a minimum sales price margin of 5.5 US$/MMBTU is required so that the LNG distribution is financially feasible with a payback period of 10 years, an IRR of 8.35%, and a positive NPV value of 244,712,335.64 US$ in the 20th year. Based on 2020 data, the cost of energy (COE) of GEPPs in the Nusa Tenggara Region with an LNG price margin of 5.5 US$/MMBTU is 8.42 Cent US$/kWh, 13% lower than COE with an HSD of 9.69 Cents US$/kWh."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hendi Kurniawan
"Proporsi penggunaan bahan bakar fosil diperkirakan akan membahas sekitar 75% dari produksi energi pada tahun 2050. Pengembangan energi hidrogen merupakan salah satu upaya untuk mencari bahan bakar alternatif yang ramah lingkungan. Hidrogen dapat disimpan di dalam senyawa yang disebut chemical hydrogen storage. Katalis nanopartikel logam dengan dukungan yang sangat dibutuhkan untuk meningkatkan selektivitas dan reaksi reaksi dehidrogenasi. Santa barbara amorphous 15 atau SBA-15 berhasil disintesis yang dibuktikan dengan karakterisasi TEM yang membuat struktur mesopori yang teratur. Variasi komposisi logam dan volume 3-aminopropyltriethoxysilane atau APTES yang digunakan dalam penelitian ini berpengaruh terhadap performa katalitik dari nanopartikel NiPt. Penggabungan support dengan nanopartikel nikel dan platina dilakukan melalui metode impregnasi basah menggunakan NiCl2.6H2O dan K2PtCl6 yang kemudian direduksi menggunakan NaBH4. Uji katalis untuk reaksi hidrogenasi hidrazin hidrat menggunakan alat buret gas. Pada uji katalis yang telah dilakukan, diketahui bahwa Ni75Pt25/SiO2 merupakan variasi komposisi logam terbaik dengan silika sebagai support serta NiPt/SBA-15-NH2-6 merupakan variasi volume APTES paling optimal.

The focus of this research was evaluate the catalytic activity of NiPt nanoparticles with SBA-15 as a support for hydrogen production from dehydrogenation of hydrous hydrazine. The development of hydrogen energy is one of many idea to find alternative fuels that are environmentally friendly. Hydrogen can be stored in a compound called chemical hydrogen storage. Santa barbara amorphous 15 or SBA-15 was successfully synthesized in this research and has been characterized by TEM to show the ordered mesoporous structure. Variations in metal composition and volume of 3-aminopropyltriethoxysilane (APTES) used in this study had affect the catalytic performance of NiPt nanoparticles. Silica with nickel and platinum nanoparticles was combined using the wet impregnation method with NiCl2.6H2O and K2PtCl6. The reduction of metal ion is using NaBH4. Catalytic activity test for the hydrogenation reaction of hydrous hydrazine was using a gas burette. The result show that, Ni75Pt25/SiO2 is the best variation of metal composition with silica as support and NiPt/SBA-15-NH2-6 is the best variation of APTES volume."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusro Hakimah
"Biaya bahan bakar pada umumnya adalah biaya paling besar yaitu kira-kira 60 persen dari biaya operasi keseluruhan. Pengendalian biaya operasi ini merupakan hal yang pokok karena optimalisasi biaya bahan bakar dapat menghemat biaya operasi serta dapat menghasilkan keuntungan yang maksimal bagi perusahaan.Konfigurasi pembebanan atau penjadwalan pembangkit yang berbeda dapat mengakibatkan biaya operasi pembangkit yang berbeda pula, tergantung dari karakteristik masing-masing unit pembangkit yang dioperasikan. Penjadwalan pembangkit sangat penting bagi pengoperasian suatu pembangkit, terutama pembangkit termal, karena berkaitan langsung dengan biaya bahan bakar.Adapun kombinasi kerja unit pembangkit yang paling ekonomis adalah untuk keluaran daya dengan beban sebesar 40 MW, maka biaya bahan bakar paling ekonomis 801,76 dolar perjam.Untuk keluaran daya dengan beban sebesar 50 MW maka biaya bahan bakar paling ekonomis 1124,38 dolar perjam. Untuk keluaran daya sebesar 60 MW maka biaya bahan bakar paling ekonomis 1314,22 dolar perjam. Untuk keluaran daya sebear 80 MW maka biaya bahan bakar paling ekonomis 1617,5 dolar perjam."
Palembang: Fakultas teknik Universitas tridinanti palembang, 2016
600 JDTEK 4:1 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Arvianda Hymes Vinci Kurnia
"ABSTRAK
Microbial Fuel Cell MFC adalah suatu sistem konversi energi yang menggunakan bakteri untuk menghasilkan tenaga listrik dari senyawa organik Kurnianingsih, 2009 . Saat ini produksi listrik MFC masih kecil, sehingga perlu ditambahkan elektrolit. Penelitian sebelumnya menunjukkan penambahan kalium persulfat mampu meningkatkan tegangan listrik 10 kali lipat, namun elektrolit ini kurang ekonomis, sehingga diperlukan elektrolit alternatif. Natrium perkarbonat merupakan elektrolit murah yang memiliki kemampuan buffering. Untuk itu dilakukan penelitian performa single chamber MFC dalam produksi listrik dan pengolahan limbah cair tempe BOD dan COD menggunakan elektrolit natrium perkarbonat dengan dan tanpa buffer fosfat. Hasil yang didapatkan dibandingkan dengan hasil MFC dengan kalium persulfate dengan dan tanpa buffer pada prosedur yang sama. Pada MFC dengan natrium perkarbonat terjadi charge reversal, dengan produksi listrik rata-rata sebesar 0,04 mW/m2, hanya 1,25 densitas listrik rata-rata MFC berisi kalium persulfate. Hasil ini akan meningkat bila ditambahkan buffer. Hasil lain menunjukkan MFC berisi natrium perkarbonat mengalami penurunan COD lebih dari 40 , lebih besar dibandingkan dengan kalium persulfate, namun belum efisien karena Efisiensi Coloumbnya hanya berada di kisaran 10-6 . Meskipun belum efisien, sistem ini menghasilkan penurunan BOD5 sebesar 63 bila tidak ditambahkan buffer.

ABSTRAK
Microbial Fuel Cell MFC is an energy conversion system used by bacteria to generate electricity from organic wastes Kurnianingsih, 2009 . Currently MFC electricity is still small, so it complemented by electrolytes. Previous research shows the addition of potassium persulfate can increase electric voltage 10 fold, but this is less economical so it necessary to find alternative electrolyte. Sodium percarbonate is a cheap electrolyte which have buffering ability. Therefore, performance study of single chamber MFC using sodium percarbonate electrolyte and or without buffer was conducted by measuring electricity production and tempe wastewater treatment quality BOD and COD . This result was compared with the results of MFC with potassium persulfate with and without buffer in the same procedure. In MFC containing sodium percarbonate, charge reversal was occurred, with average power 0.04 mW m2, only 1.25 average power of MFC containing potassium persulfate. These results increased by buffer addition. Other results show that MFC containing sodium percarbonate will degrade more than 40 COD, greater than MFC with potassium persulfate, but still not efficient because Coloumb Efficiency are only in the range of 10 6 . Nevertheless, this system can produce 63 BOD5 reduction when buffer was not added."
2017
S67480
UI - Skripsi Membership  Universitas Indonesia Library
cover
Isnaini Rahmawati
"Sebagian besar penggunaan energi primer untuk pembangkit energi listrik berasal dari energi fosil (Sujatmiko,2009). Penggunaan energi fosil dapat menimbulkan permasalahan bagi lingkungan. Oleh karena itu, dibutuhkan suatu energi alternatif yang ramah lingkungan untuk mengatasi masalah tersebut. Microbial Fuel Cell (MFC) merupakan salah satu sumber energi alternatif yang prospektif untuk dikembangkan dan ramah lingkungan. Pada penelitian ini, urin digunakan sebagai bahan bakar dan khamir Candida fukuyamaensis digunakan sebagai biokatalis pada sistem MFC. Elektroda yang digunakan pada penelitian ini ialah elektroda BDD. Dilakukan variasi pH dari pH 5-8. Energi listrik optimum dengan densitas arus sebesar 970 mA/m2 dan densitas daya sebesar 109,61 mW/m2 diperoleh pada pH 7. Semakin banyak volume suspensi Candida fukuyamaensis sebanding dengan energi listrik yang dihasilkan terlihat dari densitas arus sebesar 940 mA/m2, 940 mA/m2, 970 mA/m2, dan 970 mA/m2 serta densitas daya 49,82 mW/m2, 72,38 mW/m2, 84,39 mW/m2, dan 109,61 mW/m2 untuk volume Candida fukuyamaensis dari 20 mL hingga 50 mL berturut-turut. Glukosa dan kreatinin merupakan salah satu senyawa dalam urin yang berpotensi menjadi sumber karbon bagi khamir, terlihat dari hasil energi listrik yang dihasilkan lebih besar dibanding menggunakan substrat urin saja. Sistem MFC berbasis urin ini dapat menghasilkan densitas daya yang cukup stabil hingga hari kedua.

The majority of primary energy use for electrical power generation is came from fossil energy (Sujatmiko, 2009).The use of fossil energy could pose problems for the environment. Therefore, it takes an environmentally friendly alternative energy to solve the problem. Microbial Fuel Cell (MFC) is one of the prospective alternative energy and eco-friendly. In this study, urine is used as fuel and Candida fukuyamaensis is used as a biocatalyst on the MFC system. Electrode used in this system is doron-doped diamond electrode. Different pH of anode compartemen (pH 5-8) was used to produce electricity optimally. The maximum power and current density 109,61 mW/m2 and 970 mA/m2 were obtained at pH 7. The increasing volume suspension of Candida fukuyamaensis is proportional to the electrical energy generated. This can be seen from the current density 940 mA/m2, 940 mA/m2, 970 mA/m2, and 970 mA/m2, as well as the power density 49.82 mW/m2, 72.38 mWm2, 84.39 mW/m2, and 109.61 mW/m2 for 20 mL to 50 mL volume of Candida fukuyamaensis respectively. Glucose and creatinine is one of the compounds in urine that potentially be source of carbon for Candida fukuyamanesis due the results from the electrical energy generated is greater than using urine only as substrate. This MFC that use urine as substrat can produce a stable power density until the second day.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63766
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luky
"Indonesia memiliki sumber daya dan potensi panas bumi terbesar kedua di dunia dengan total kapasitas sekitar 29.000 MW 40 potensi panas bumi dunia . Total kapasitas terpasang Pembangkit Listrik Tenaga Panas Bumi adalah sebesar 1.643,5 MW dan menempati peringkat ketiga terbesar di dunia hingga akhir tahun 2016. Namun, Indonesia belum memanfaatkan potensi sumber daya panas bumi secara optimal jika dibandingkan dengan besarnya potensi yang dimiliki.Potensi panas bumi yang besar belum dimanfaatkan secara maksimal karena terdapat hambatan terutama terkait dengan investasi awal, risiko sumber daya panas bumi, dan pendanaan proyek. Pihak pengembang memasukkan seluruh risiko awal proyek sebagai biaya investasi sehingga menyebabkan harga pembelian tenaga listrik PLTP menjadi tinggi dan negosiasi dengan PT PLN Persero menjadi berlarut-larut.
Dalam tesis ini disusun tiga skema berbeda yang diaplikasikan secara internasional dalam pengembangan PLTP yang melibatkan BUMN dan IPP. Untuk pengembangan PLTP oleh BUMN Model 1 diperoleh harga pembelian tenaga listrik PLTP berkisar 6,33 sen USD/kWh 110 MW s.d. 14,15 sen USD/kWh 10 MW , pengembangan PLTP oleh BUMN IPP Model 2 diperoleh harga pembelian tenaga listrik PLTP berkisar 6,99 sen USD/kWh 110 MW s.d. 15,63 sen USD/kWh 10 MW, pengembangan PLTP oleh IPP Model 3 diperoleh harga pembelian tenaga listrik PLTP berkisar 7,92 sen USD/kWh 110 MW s.d. 17,7 sen USD/kWh 10 MW , dan pengembangan PLTP oleh IPP dengan bantuan grant Model 3 Grant diperoleh harga pembelian tenaga listrik PLTP berkisar 7,05 sen USD/kWh 110 MW s.d. 15,76 sen USD/kWh 10 MW.
Pengembangan PLTP di Jawa Bali, Sumbar, Sumsel, Jambi, Bengkulu, Lampung, Sulselrabar hanya layak dikembangkan oleh pihak BUMN Model 1 melalui proses negosiasi B to B dengan PT PLN Persero dan untuk sistem-sistem kecil dapat dikembangkan oleh pihak IPP dengan bantuan grant dari Pemerintah mengingat kapasitas PLTP yang dapat dikembangkan hanya kelas kapasitas kecil 10 MW dan 20 MW yang kurang ekonomis secara unit cost dibandingkan dengan kelas kapasitas medium dan besar 55 MW dan 110 MW.

It is said that Indonesia has the world 2nd biggest class geothermal energy resources and its potential is about 29,000 MW which corresponds to about 40 of all potential of the world. The current total capacity of geothermal power generation in Indonesia is 1,438.5 MW and occupies the 3rd position in the world ranking as of 2015. However, Indonesia has not exploited the geothermal resource potential enough yet, when its huge potential is considered.The large potential of geothermal have not been maximally utilized because of the obstacles associated primarily with initial investment, geothermal resource risks, and project funding. The developer calculates all the initial risks of the project as an investment cost causing the purchase price of geothermal power to be high and become protracted negotiation with PT PLN Persero.
In this thesis, there are three different schemes that are applied internationally in the development of geothermal power plant involving BUMN and IPP. For the development by SOE Model 1 obtained the purchase price of 6.33 cents USD kWh 110 MW up to 14.15 cents USD kWh 10 MW , the development by SOE IPP Model 2 obtained the purchase price of 6.99 cents USD kWh 110 MW up to 15.63 cents USD kWh 10 MW , by IPP Model 3 obtained the purchase price 7.92 cents USD kWh 110 MW up to 17.7 cents USD kWh 10 MW , and the development by IPP with grant assistance Model 3 Grant obtained the purchase price of 7.05 cents USD kWh 110 MW up to 15.76 cents USD kWh 10 MW.
The development of geothermal power plant in Java Bali, West Sumatera, South Sumatera, Jambi, Bengkuliu, Lampung, Sulselrabar is only feasible to be developed by SoE Model 1 through B to B negotiation with PT PLN Persero and for small systems can be developed by IPP with grant assistance from the Government, consider geothermal power plant capacity that can be developed only small capacity classes 10 MW and 20 MW which is less cost effective in terms of unit cost compared to medium and large capacity classes 55 MW and 110 MW .
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47890
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>