Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 153345 dokumen yang sesuai dengan query
cover
Ichwan Nurhalim
"Krisis ekonomi dan keuangan pada akhir tahun 2008 membuat konsumsi energi global merosot pada tahun 2009. Perekonomian yang pulih kembali menyadarkan bahwa dunia kembali menghadapi masalah mendasar mengenai kebutuhan akan energi dimasa yang akan datang. Krisis membuat permintaan energi merosot 2 persen per tahun selama tahun 2007-2010. Namun, kebutuhan energi naik lagi 2,5 persen per tahun selama tahun 2010-2015 seiring pulihnya ekonomi.
Lebih dari tiga per empat kebutuhan energi dunia masih dipenuhi bahan bakar fosil.Penggunaan energi fosil pada industri-industri besar akan menghasilkan banyak gas buang yang menjadikan pemanasan global semakin bertambah buruk. Konsumsi paling banyak akan bakar fosil adalah penggunaan listrik. Mengingat iklim di Indonesia cukup panas, hampir setiap apartemen menggunakan AC untuk menciptakan temperatur yang nyaman untuk manusia yang tinggal di dalamnya. Selain itu tuntutan lain untuk apartemen adalah pemanas air.
Dengan memanfaatkan panas buang dari AC untuk memanaskan air, kita dapat menghemat konsumsi listrik yang digunakan oleh water heater. Sistem ini dikenal dengan Split Air Conditioner Water Heater (S-ACWH). Sistem ACWH terdahulu mengalami masalah akan desain yang rumit dan air panas yang dihasilkan tidak terlalu tinggi.
Tujuan dari penelitian ini adalah merancang tipe alat penukar kalor tipe serpentine untuk digunakan pada sistem S-ACWH dan kemudian dilakukan pengujian unjuk kerja S-ACWH tersebut. Alat penukar kalor tipe serpentine dibuat dari pipa tembaga 1/4 inch dengan panjang 8 m. Dengan menggunakan pipa serpentine dan tangki penyimpanan didapatkan air panas dengan temperatur sebesar 60°C untuk waktu pemanasan selama 2 jam pada beban pendinginan 2600 W untuk 50l air.

Economic and financial crisis in late 2008 make the global energy consumption declined in the year 2009. The recovered economy realize that the world faces a fundamental problem regarding the need for energy in the future. Crisis makes energy demand declined 2 percent per year during 2007-2010. However, energy demand rose again 2.5 percent per annum during the years 2010-2015 as the economic recovery.
More than three-quarters of the world's energy needs are still filled with fossil fuel energy. Utilization on large industries will generate a lot of exhaust gases that make global warming getting worse. The main consumption of fossil fuels goes to electricity. Considering the hot climate in Indonesia, people choose to use Air Conditioning in order to create a comfortable temperature for them. On the other hand, the demands of water heater in apartment is high.
By utilizing waste heat from air conditioning to produce hot water, we can hold down the electricity consumption. This system is known as Split-Air Conditioner Water Heater (ACWH). The problems of previous ACWH are not having compact desaign and low temperature of hot water.
The purpose of this study is designing serpentine tube heat exchanger that will be used in S-ACWH system and doing performance test for S-ACWH system. Serpentine tube heat exchanger made from a 1/4 inch diameter and 8 meters length of copper pipe. With the serpentine tube and the water storage, we can achieve hot water with a temperature of 60 ° C for 2 hours warm-up time at 2600 W cooling load for 50 litre of water.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1109
UI - Skripsi Open  Universitas Indonesia Library
cover
Samuel Agustinus Adam
"Setiap mesin membutuhkan sistem pendingin untuk mempertahankan kinerja mesin. Dalam hal ini sistem pendingin yang diterapkan di kapal laut dengan pertukaran air tawar dan air laut. Karena air laut mengandung fouling biologis maka itu biofouling akan menumpuk dalam alat penukar panas sehingga kinerja penukar panas menurun dari waktu ke waktu. Hal ini membuat laju perpindahan panas dalam pendingin kurang efisien sehingga untuk menjaga BHP mesin yang dibutuhkan mesin mengkonsumsi lebih banyak bahan bakar. Hasilnya menunjukkan bahwa efeknya bisa mengalami kerugian sekitar 644 24 jam x 24 jam x 30 hari = $ 463,852.8 Kondisi ini membuat pentingnya pemeliharaan sistem pendingin untuk menjaga suhu mesin kapal laut dan untuk meminimalkan biaya bahan bakar tambahan. Untuk sistem itu sendiri untuk menjaga dingin dalam kondisi baik pendinginan perlu nyamembersihkan pendingin untuk setiap 720 jam atau per 1 bulan.

Every engine needs a cooling system in order to maintain the perfomance of engine. In this case the cooling system is applied in naval ship with the exchange of freshwater and seawater. Since the seawater contains biological fouling, then it is scaled in the heat exchanger so that the perfomance of heat exchanger is decreasing from time to time. This makes the heat transfer rate in cooler is less efficient so that to maintain the brake horse power of the engine it needs to consume more fuel. The result shows that the effect could incur a loss of about $ 644.24/hour x 24 hour x 30 days = $ 463,852.8. This condition makes the importance of cooling system maintenance in order to keep the temperature of the naval ship engine and to minimize the additional fuel cost. For cooling system itself, to keep the cooler in a good condition, it needs to clean the cooler for every 720 hours or per 1 month.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56344
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taufik Ramuli
"Heat exchanger merupakan alat yang berfungsi memindahkan kalor antara dua fluida yang mempunyai perbedaan temperatur dan menjaga agar kedua fluida tersebut tidak bercampur (Cengel, 2003:569). Pada perkembangan saat ini telah dikembangkan berbagai jenis heat exchanger. Perpindahan panas secara konveksi sangat dipengaruhi oleh bentuk geometri heat exchanger dan tiga bilangan tak berdimensi, yaitu bilangan Reynold, bilangan Nusselt dan bilangan Prandtl. Pengaruh debit dan temperatur pada CNG dan air sangat berpengaruh kepada jumlah pipa yang digunakan karena hal itu secara langsung mengubah laju perpindahan kalor. Tujuan yang ingin dicapai dalam penelitian ini adalah untuk mengetahui pengaruh debit dan temperatur CNG dan air terhadap jumlah pipa dan vibrasi yang terjadi pada alat penukar kalor.
Dalam penelitian ini digunakan 4 (empat) macam variasi debit CNG, yaitu 500m3/hr, 630 m3/hr, 1000 m3/hr, dan 1200 m3/hr. dan laju aliran air panas di bagian pipa luar konstan 22 m3/hr. Data hasil pengujian dari masing-masing variasi dibandingkan data tanpa turbulator, secara keseluruhan mengalami peningkatan jumlah pipa yang digunakan. Dengan peningkatan debit yang maksimum 1200m/hr didapat jumlah pipa maksimum yaitu 4 pipa menggunakan 9 pass.

Heat exchanger is a tool that serves to transfer heat between two fluids have different temperatures and keep the two fluids do not mix ( Cengel, 2003:569 ). At the current developments have developed various types of heat exchangers. Heat transfer by convection is strongly influenced by the geometry of the heat exchanger and three dimensionless number, the Reynolds number, Nusselt number and Prandtl numbers. Effect of discharge and water temperature on CNG and are very influential to the number of pipes used because it directly alters the rate of heat transfer. the purpose of the to be achieved in this study was to determine the effect of discharge and water temperature and the amount of CNG pipe and vibration that occurs in a heat exchanger.
This study used four (4 ) discharge variations CNG , which is 500m3/hr, 630 m3/hr , 1000 m3/hr , and 1200 m3/hr . and the hot water flow rate constant at the outer pipe 22 m3/hr . Data the test results of each variation compared to the data without turbulator , overall has increased the amount of pipe used . With the increase in discharge 1200m3/hr maximum obtained the maximum number of pipe that is 4 pipes using 9 pass.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56336
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andi Sofrany Ekariansyah
"Teknologi pembuangan panas peluruhan secara pasif pada reaktor daya nuklir masih bergantung pada penggunaan penukar kalor yang memindahkan energi kalor ke dalam tangki atau kolam air dengan volume tertentu sebagai heat sink pamungkas dengan memanfaatkan konveksi alam atau gravitasi. Teknologi ini memiliki keterbatasan kapasitas dalam jangka waktu tertentu sehingga tetap mengandalkan sistem pendinginan secara aktif. Salah satu teknologi pendukung pengambil kalor peluruhan yang dapat digunakan adalah teknologi two-phased closed termosyphon (TPCT) yang telah digunakan sebagai objek penelitian dalam bentuk pemodelan maupun kegiatan eksperimen. Di sisi lain, sistem reaktor daya memiliki ukuran besar yang lebih praktis untuk dimodelkan dan disimulasikan. Salah satu program pemodelan adalah RELAP5/Mod3.4/SCDAP yang didesain untuk mensimulasikan proses pembangkitan dan pemindahan kalor pada reaktor daya nuklir berpendingin air saat kondisi operasi normal dan abnormal. Tujuan penelitian ini adalah melakukan simulasi kinerja termal TPCT yang telah dimodifikasi dengan menambahkan tangki air pendingin di sekeliling evaporator sebagai sumber kalor. Pemodelan RELAP5 yang diperoleh perlu divalidasi dengan hasil pemodelan lain seperti FLUENT dan hasil eksperimen yang telah dilakukan. Hasil validasi dengan memberikan beban kalor berbeda pada bagian evaporator menunjukkan tidak adanya fenomena dryout pada RELAP5 yang berbeda dengan hasil simulasi FLUENT. Hal ini disebabkan oleh perbedaan konsep pemodelan antara FLUENT dan RELAP5, namun demikian nilai tahanan termal TPCT memiliki kesamaan karakteristik di antara kedua metoda. Validasi simulasi dengan hasil eksperimen pada filling ratio (FR) 30 %, 45 %, 60 % menunjukkan karakterisasi perubahan temperatur dinding TPCT yang sama pada variabel FR 60 %. Pada FR lebih rendah, terdapat variasi perbedaan hasil simulasi dengan eksperimen terutama pada pencapaian temperatur pendidihan air tangki dan pola pengambilan kalor kondenser. Simulasi tambahan dengan FR 70 % dan 100 % menunjukkan kinerja termal TPCT yang lebih optimum pada FR 70 % dan menurun pada FR 100 %. Pemodelan TPCT dengan 2 volume radial menghasilkan simulasi yang lebih baik, namun demikian dibutuhkan pemahaman yang lebih tepat mengenai peranan parameter gas non-kondensibel pada nodalisasi model dengan kondisi vakum. Berdasarkan hasil validasi, simulasi TPCT dengan RELAP5 lebih tepat digunakan untuk tujuan prediksi kinerja termal TPCT berdasarkan FR yang optimum.

The current technology in removing residual heat in passive way in nuclear power reactor still depends on the use of heat exchanger to transfer heat energy into a water tank or pool with certain volume as the ultimate heat sink utilizing natural circulation or gravitation. This technology still requires active cooling supply system in certain time period due to the limited capability. On of the proposed support technology to remove residual heat is two-phased closed thermosyphon (TPCT), which has been used as research object in form of modelling or experimental activity. In other side, power reactor system has big dimension, which is more practical to be modelled to simulate its performance and safety level. On of the modelling code is RELAP5/Mod3.4/SCDAP, designed to simulate the heat generation and removal process inside the water-cooled nuclear power reactor in normal and abnormal operation. Therefore, the research purposes are to model and simulate the TPCT, which has been modified by adding the external water tank around the evaporator. The generated model of TPCT using RELAP5 has to be validated using other modelling tool such as FLUENT and experimental results. The generated model of TPCT using RELAP5 has to be validated using other modelling tool such as FLUENT and experimental results. One of validation results by giving different heat load into the evaporator shows no indication of dry-out in the RELAP5 simulation as obtained otherwise in the FLUENT simulation. This is because the different modelling concept between FLUENT and RELAP5. However, the calculated thermal resistances had similar characteristics from both calculation tools. Simulation validation with experimental results using filling ratio (FR) of 30 %, 45 %, and 60 % shows a much more similar characteristics of the evaporator, adiabatic, and condenser wall temperature with higher FR of 60 %. In lower FR, there are several output variations in achieving the water tank boiling temperature and condenser heat transfer. Additional simulations with FR 70 % and 100 % indicated more optimum thermal performances of TPCT, especially in FR 70 %, which decreased in FR 100 %. TPCT modelling with 2 radial volumes results in a better simulation, however it requires a better understanding regarding the role of non-condensable gas in the model in the vacuum condition. Based on the validation results, TPCT simulation using RELAP5 is better conducted based on the optimum condition in term of filling ratio to predict the thermal performances of TPCT."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1993
S38665
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stepanus Wisnu Driyaskoro
"Gas heater adalah alat penukar kalor yang digunakan untuk memanaskan gas alam menggunakan air yang telah dipanaskan pada waste heat water heater. Gas alam ini akan digunakan sebagai bahan bakar Gas Turbin Generator. Dalam merancang gas heater digunakan metode beda suhu rata-rata logaritmik (LMTD) untuk mencari luas area perpindahan panas.
Hasil yang diperoleh berdasarkan perhitungan didapatkan bahwa luas perpindahan panas adalah sebesar 1.062,94 m2. Spesifikasi konstruksi dari alat penukar kalor yaitu pipa carbon steel sch 80 dengan ukuran pipa nominal 1 inch dengan panjang 4 m dan jumlah pipa sebanyak 2.532 buah.

Gas heater is a heat exchanger that used to heat natural gas using water that has been heated in the waste heat water heater. Natural gas will be used as fuel Gas Turbine Generator. In designing a gas heater use methods of log mean temperature different (LMTD) to determine the range of area of the heat transfer.
The result according to the calculation show that the heat transfer area is about 1.062,94m2. The construction specification of a heat exchanger is carbon steel sch 80 tube with nominal pipe size 1 inch and length 4 m with total 2.532 tube.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47610
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Nyoman Ari Bhaskara Wiraputra
"Dalam proses pendinginan alat elektronik, heatsink adalah alat yang digunakan untuk melepas kalor yang dihasilkan oleh alat elektronik tersebut, dengan cara memperluas permukaan yang dapat memindahkan kalor dari alat elektronik ke lingkungan. Heatsink ini dibuat dengan proses manufaktur additive manufacturing, desain yang dibuat bisa tidak terbatas dibandingkan dengan metode manufaktur konvensional. Desain yang dibuat dalam penulisan ini adalah heatsink motif Batik Parang Kusumo, dengan tujuan mencari efek kelebihan dan estetika dari batik dengan bentuk batik Parang Kusumo. Dengan metode AM pula, heatsink bisa di desain agar memiliki ruang untuk diisi PCM. Pengujian dilaksanakan menggunakan wind tunnel sepanjang 2 meter yang dibagi menjadi 4 bagian, di mana heatsink ditempatkan 35 cm dari outlet wind tunnel, dengan tujuan agar udara yang melewati bagian tersebut diyakini telah fully developed. Variasi dari eksperimen ini adalah variasi kecepatan udara, variasi daya yang digunakan, dan variasi penggunaan PCM. Dengan variasi kecepatan angin 1 m/s, 1,5 m/s, dan 2 m/s, sedangkan daya digunakan adalah 30 W, 40 W, dan 50 W. Data diambil menggunakan perangkat lunak National Instruments Labview 2018, dengan menempatkan thermocouple pada fin-finnya. Setelah melakukan eksperimen diketahui bahwa didapatkan adalah heat transfer coefficient sebesar 48,2 W/m2K.

In the cooling process of electronic devices, a heatsink is a device used to release the heat generated by the electronic device, by enlarging the surface being used to dissipate heat from said electronic device. The heatsink is made through metal 3D printing, through this the design is limitless. The heatsink takes inspiration from the Parang Kusumo Batik design to achieve estethics and functional goals. With the manufacturing method, the heatsink is designed to have a cavity to be filled with PCM. The experiment uses a 2 meter long wind tunnel, the heatsink is placed 0,35 m from the outlet, with the aim that the air passing through the heatsink is fully developed. The variations of this experiment are variations in air speed, variations in the power used, and variations of the use of PCM. With variations in wind speed of 1 m/s, 1.5 m/s, and 2 m/s, while the variations of power is 30 W, 40 W, and 50 W. Data Acquisition was taken using the National Instruments Labview 2018 software, by placing a thermocouple on the fins. After conducting experiments, it is known that the heat transfer coefficient is 48.2 W/m2K."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
cover
Inkasandra Faranisa Kolang
"Indonesia merupakan negara dengan sumber batubara terbesar di dunia salah satunya di Tarahan, Sumatera. Banyak pembangkit listrik di Indonesia yang menggunakan batubara sebagai sumber utamanya, salah satunya di Suralaya. Batubara digunakan sebagai sumber utama pembangkit listrik dikarenakan ia memiliki nilai kalor dan daya yang cukup besar dibandingkan dengan sumber pembangkit lainnya. Selain itu, harganya yang relatif murah menjadi salah satu pertimbangan pemakaiannya. Proses pendistribusian batubara dari Tarahan menuju Suralaya menggunakan tongkang. Penggunaan tongkang masih banyak digunakan karena dapat membawa kapasitas yang cukup besar dan harga shipping yang murah dibanding dengan transportasi lainnya.
Selama proses pendsitribusian, batubara dalam tongkang ditumpuk dengan ketinggian tertentu dan terpapar langsung oleh lingkungan, baik dari suhu, cuaca, udara dan kelembaban sehingga menyebabkan terjadinya pembakaran spontan batubara. Pembakaran tersebut selain berbahaya bagi keselamatan namun juga memengaruh kualitas batubara. Salah satu cara alternatif untuk mencegah terjadinya pembakaran spontan batubara dalam tongkang adalah dengan menggunakan alat penukar kalor dengan bentuk U-tube yang dipasang pada sideboard tongkang. Tujuan penelitian ini adalah membuat desain awal sistem alat penukar kalor dan kapasitas pompa yang digunakan pada tongkang. Penentuan dimensi heat exchanger menggunakan rasio luas permukaan pipa heat exchanger terhadap luas permukaan batubara yang terpapar langsung oleh lingkungan. Fluida yang digunakan untuk heat exchanger yang dirancang mengunakan air laut. Untuk mengalirinya diperlukan pompa untuk memompa air laut. Untuk mendapatkan kapasitas pompa diperlukan jumlah debit air yang akan digunakan.
Hasil rasio dimensi dan rasio debit aliran kemudian di rancang dalam tongkang dengan ukuran muatan batubara 7000 ton. Pembuatan desain alat penukar kalor pada tongkang mengguanakan aplikasi AutoCad. Hasil pengujian menunjukan desain pipa alat penukar kalor yang diperlukan dan peletakannya pada kapal tongkang serta kapasitas pompa yang diperluka untuk mencegah terjadinya pembakaran spontan.

Indonesia is the country with the world's largest coal source in Tarahan, Sumatera. Many power plants in Indonesia use coal as its main source, one of them in Suralaya. Coal is used as the main source of power generation because it has a heat value and considerable power compared to other generating sources. In addition, the price is relatively cheap to be one consideration of usage. The process of distributing coal from Tarahan to Suralaya using barges. The use of barges is still widely used because it can bring considerable capacity and cheap shipping prices compared with other transportation.
During the distribution process, coal in barges is stacked with a certain height and is directly exposed to the environment, whether from temperature, weather, air and humidity causing spontaneous combustion of coal. The combustion is other than hazardous to safety but also memengaruh coal quality. One alternative way to avoid the spontaneous combustion of coal in barges is to use the U-tube heat exchanger that is installed on the barge sideboards. The purpose of this research is to make the initial design of the heat exchanger system and pump capacity used on barges. Determination of the heat exchanger dimensions using the surface area ratio of heat exchanger to the coal surface area directly exposed by the environment. Fluids used for heat exchanger are designed using seawater. To calculate it needed a pump to pump the sea water. To obtain the necessary pump capacity amount of discharge water to be used.
The result of dimensional ratio and flow rate ratio are then designed in barges with a coal load size of 7000 tonnes. The design of the heat exchanger tool on a barge using AutoCad application. The test results indicated the design of the necessary heat exchanger pipe and its printing on the barge and the capacity of the pump was injured to prevent spontaneous combustion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>