Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17783 dokumen yang sesuai dengan query
cover
Geneva: World Health Organization, 1993
610.73 INT II
Buku Teks  Universitas Indonesia Library
cover
Geneva: World Health Organization, 2016
R 616.001 2 INT
Buku Referensi  Universitas Indonesia Library
cover
Geneva: World Health Organization, 2016
R 616.001 2 INT
Buku Referensi  Universitas Indonesia Library
cover
"Land cover information is vital for supporting decision concerning the management of the environment and for understanding the causes and trnds of human and natural processess on the earth surface...."
Artikel Jurnal  Universitas Indonesia Library
cover
Arsyian Rizki Pratama
"Telur ayam kampung atau telur ayam buras adalah telur ayam umum dikonsumsi masyarakat Indonesia sebagai makanan biasa atau juga sebagai obat. Pengklasifikasian kualitas telur ayam kampung. Dilakukan untuk dapat membedakan telur yang layak konsumsi dan tidak layak konsumsi. Beberapa penelitian serupa menggunakan Arduino dan sensor photodioda untuk melakukan klasifikasi, selain itu juga ada beberapa penelitian yang menggunakan machine learning untuk membedakan jenis telur. Dari penelitian yang telah di lakukan dilihat bahwa akurasi masih kecil, dan dirasa masih bisa di ditingkatkan. Dalam penelitian ini dibuat sistem klasifikasi kualitas telur ayam kampung dengan menggunakan algoritma you only look once (YOLO) versi 4. Data set yang digunakan pada penelitian ini berupa data set dari 4 kategori kondisi telur atau 4 class antara lain telur baik, busuk, fertil, dan telur retak. Data set diakuisisi dengan disinari dengan lampu led yang diberikan tegangan 12V pada kotak akuisisi, dan citra ditangkap dengan webcam Logitech c270. Dari pelatihan data set citra telur ayam kampung dihasilkan akurasi sebesar 96.76% di pengujian pada validation set dan sebesar 95.26% pada test set. Dari kasus pendeteksian kualitas telur ayam kampung dengan deep learning berbasis algoritma YOLOv4 ini memungkinkan adanya pengembangan lebih lanjut.

Local breed chicken eggs or local breed chicken eggs are chicken eggs that are commonly consumed by Indonesian people as ordinary food or also as medicine. Classification of local breed chicken egg quality. This is done to be able to distinguish eggs that are suitable for consumption and not suitable for consumption. Several similar studies used Arduino and photodiode sensors to carry out classification, besides that there were also several studies using machine learning to distinguish types of eggs. From the research that has been done, the accuracy is still small, and it is felt that it can still be improved. In this research, local breed chicken egg quality classification system was created using you only look once (YOLO) version 4 algorithm. The dataset used in this study was a data set of 4 categories of egg conditions or 4 classes including good eggs, rotten, fertile, and cracked eggs. The dataset was acquired by irradiating it with a led lamp supplied with a 12V voltage on the acquisition box, and the image was captured with a Logitech c270 webcam. From the local breed chicken egg image dataset training, an accuracy of 96.76% was obtained in the validation set test and 95.26% in the test set. From the case of detecting local breed chicken egg quality with deep learning based on the YOLOv4 algorithm, it allows for further development.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Geneva: World Health Organization, 1978
025.466 176 WOR a
Buku Teks  Universitas Indonesia Library
cover
Geneva: World Health Organization, 1978
610.12 WOR i II
Buku Teks SO  Universitas Indonesia Library
cover
cover
Hunter, Eric J.
Burlington : Ashgate , 2002
025.42 HUN c
Buku Teks SO  Universitas Indonesia Library
cover
Ricki Hendriyana
"The NTIS classification system has simpler notation than DDC. It does not recognize supporting table so that it can determine the notation faster. The number of the main class in NTIS classification system is 39 while DDC is 10. NTIS is most suitable for special libraries in the field of technology such as the Agency for the Assesment and Application of Technology (BPPT) since the system has a more specific technology subject. DDC is also effective for collection data exchange since 2010, referring that generally libraries in Indonesia has not recognized NTIS. Both systems actually have its advantages and disadvantages. In determining notations, both NTIS and DDC use the same initial step that is to determine the collection subject. NTIS is faster especially in handling technology subject. It is also more specific in referring technology subject. The number of the main class in NTIS is 39 while DDC is 10. Both systems have index. NTIS does not have supporting table while DDC has. NTIS uses a simpler notation because it uses only 2 digits. According to a key informant, the NTIS classification system does not recognize supporting table. In terms of notation search, NTIS's scheme is faster because it uses limited classification numbers. Index is mostly used for determining classification notation. Index in both systems is a clue represented in a systematically arranged letters. In NTIS, it can be figured out that subjects on technology is more specific yet in some certain categories is not as detail as DDC."
Jakarta: Perpustakaan Nasional RI, 2012
020 VIS 14:3 (2012)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>