Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 69578 dokumen yang sesuai dengan query
cover
Indra Setiawan
"Alat penukar kalor (heat exchanger) mempunyai peran yang sangat penting dalam dunia industri, khususnya pada industri minyak dan gas bumi. Alat penukar panas ini berfungsi untuk menaikkan suhu fluida yang lebih rendah dan atau mendinginkan suhu fluida yang lebih tinggi. Di Santan Terminal, salah satu gathering station milik Chevron Indonesia Company, alat penukar kalor unit HE-7 digunakan untuk memberikan panas awal pada hydrocarbon C4+ dalam proses kondensat depropanizer, dengan mengambil panas dari hot oil system menggunakan Terminol 55 sebelum dilakukan pemprosesan lebih lanjut. Untuk mempertahankan kinerja alat penukar kalor unit HE-7, dilakukan penelitian dengan memodifikasi sistem kerja feeder pump yang ada pada proses proses kondensat depropanizer tersebut, sehingga tingkat kinerja alat penukar panas dapat dipertahankan pada nilai efesiensi yang diharapkan.

Heat exchanger has a very important role in the industrial world, especially in oil and gas industry. Heat exchanger serves to raise the fluid temperature which is lower and / or cool the fluid temperature wich is higher. At Santan Terminal, one of the gathering station owned by Chevron Indonesia Company, the unit heat exchangers HE-7 is used to provide initial heat to the hydrocarbon C4+ in the process condensate depropanizer, by taking heat from the hot oil system using Terminol 55 prior to further processing. To maintain the performance of the unit heat exchanger HE-7, research done by modifying the feeder system of pump work in the process of the condensate depropanizer, so the heat exchanger performance can be mantain at expected effeciency number. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
S369
UI - Skripsi Open  Universitas Indonesia Library
cover
Bagus Fadhlurrohman
"Sistem pendingin dan pemanas banyak digunakan khalayak umum. Ini membuat penggunaan energi yang tinggi disertai dengan efek pemanasn global.
Solusi dari permasalahan ini ialah menggabungkan kedua sistem tersebut dimana panas hasil pendinginan akan digunakan untuk memanaskan. Salah satunya untuk memanaskan air. Komponen yang berperan penting ialah heat exchanger, dalam penulisan ini dipilih Shell and Tube dikarenakan kapasitas besar dan perawatan yang mudah.
Didapatkan dari hasil analisa pada sistem ideal bahwa kapasitas pemanasan paling tinggi ialah ketika temperatur kerja AC 20oC dengan nilai 2,9 kW dengan waktu pemanasan 31 menit 18 detik dan untuk paling rendah pada temperatur kerja AC 25oC dengan nilai 2,8 kW dengan waktu pemanasan 32 menit 30 detik.

Cooling and heating systems are widely used by public. This makes high energy usage accompanied by a global heating effect.
The solution to this problem is to combine the two systems where the heat from the cooling will be used for heating. One of them is to heat water. The component that plays an important role in the heat exchanger. In this paper, Shell and Tube was chosen because of its large capacity and easy maintenance.
It is obtained from the analysis on the ideal system that the highest heating capacity is when the AC working temperature is 20oC with a value of 2,9 kW with a heating time of 31 minute 18 seconds and for the lowest in 25oC of AC working temperature with a value of 2,8 kW with a heating time of 32 minute 30 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Joko Purnomo
"Alat penukar kalor dikenal mempunyai banyak tipe yang dalam aplikasinya disesuaikan dengan kondisi operasi yang dlkehendaki. Dalam tulisan ini akan dlbahas kinerja dan karateristik alat penukar kalor dengan dua Fluida dingin jenis shell and tubes, aliran silang Iawan arah satu fluida (panas) bercampur (shell) sedang fluida lainnya (dingin) tidak (tubes), dengan banyak laluan (multipass cross flow one fluid is mixed and the other unmixed).
Kita akan mempelajari pengaruh empat konfigurasi aliran terhadap karateristik dan kinerja alat penukar kalor ini. Dipelajari pula pengaruh parameter aliran fluida panas dan fluida dingln, Serta Iuas permukaan perpindahan panas (simulasi) terhadap kinerja dan karateristik alat penukar kalor pada keempat kofiigurasl aliran tersebut serta mendapatkan nilai mass flow gas (Mg) transisi. Metoda yang dltempuh dalam penelitian ini adalah dengan simulasi melalui bahasa program Turbo Pascal dan uji eksperimental
Dari penelitian ini dikeetahui bahwa ada dua kondisi yang sangat berpengaruh terhadap kinerja dan karateristlk alat penukar jenis ini.
Jika temperatur kedua fluida dingin sama, konfigurasi aliran mempunyai kinerja terbaik, perubahan parameter aliran tidak berpengaruh terhadap karakteristik ini.
Jika temperatur dingin 1 dan dingin 2 berbeda, pada peningkatan mass flow gas, kontigurasi IV memiliki kinerja terbaik, namun jika mass flow terus dinaikkan akan menyebabkan terjadinya penurunan kinerja konfigurasi IV, mass flow gas pada kondisi ini disebut Mg transisi. Peningkatan temperatur gas menyebabkan Mg transisi bergeser turun. Sedangkan peningkatan temperatur dan mass flow fluida dingin sebaliknya.
Langkah terakhir dalam penelitian ini adalah membandingkan hasil eksperimental dengan hasil simulasi. Dari hasil penelitian ini menunjukkan signifikasi antara uji simulasi dengan eksperimental.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37647
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gerry Julian
"Heat exchanger merupakan bagian vital dalam sebuah perangkat elektronik yang dapat menjaga suhu optimum dari alat tersebut. Penelitian tentang microchannel heat exchanger telah sangat berkembang untuk aplikasi kearah pendingin elektronik pada satu dekade terakhir ini. Microchannel heat exchanger memiliki beberapa keunggulan yakni memiliki dimensi yang lebih kecil dan memiliki koefisien perpindahan kalor yang lebih baik daripada alat penukar kalor lainnya. Dalam pengujian ini, peneliti akan mencoba membuktikan performa dari koefisien perpindahan kalor dari microchannel heat exchanger tersebut beserta efek negatifnya. Peneliti akan mencoba menguji pengaruh pressure drop pada saluran microchannel heat exchanger. Kemudian dalam pengujian ini juga digunakan fluida kerja air,nano fluida Al2O3 1%, dan nano fluida SnO2 1% dengan fluida dasar air. Dari hasil pengujian ini didapatkan bahwa perpindahan kalor akan lebih baik jika menggunakan nano fluida sebagai fluida kerja pendingin.

Heat exchanger is a vital part in an electronic devices that can maintain the optimum operation temperature of that devices. Research on microchannel heat exchanger application has been highly developed on electronics cooling towards the last decade. Microchannel heat exchanger has several advantages which have smaller dimensions and heat transfer coefficient better than the other heat exchanger. The experiment also want to measure the pressure drop in microchannel. It used water, nanofluids Al2O3 1%,and nanofluids SnO2 1% as working fluids in cold side microchannel heat exchanger. Result from this research indicate that heat transfer would be better if we use nanofluids as cooling working fluids."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42955
UI - Skripsi Open  Universitas Indonesia Library
cover
Ary Maulana
"Kinerja perpindahan kalor pada alat penukar kalor dapat ditingkatkan dengan mengurangi ukuran diameter hidrolik atau dengan menggunakan fluida kerja yang memiliki konduktivitas termal lebih baik dibandingkan dengan fluida kerja konvensional. Salah satu contoh penggunaan diameter hidrolik yang kecil adalah microchannel heat exchanger (MCHE). Pada penelitian ini, perancangan alat dan pengujian kinerja perpindahan kalor pada MCHE berkonfigurasi counter-flow dengan menggunakan fluida kerja air dan nano fluida Al2O3-air dengan konsentrasi 1%, 3%, dan 5% sebagai fluida pendingin telah dilakukan. Dalam pengujian, temperatur masuk fluida pada sisi panas dan sisi dingin MCHE diatur tetap pada temperatur 50°C dan 25°C, sedangkan debit aliran pada saluran masuk divariasikan dari 100 ml/menit hingga 300 ml/menit.
Hasil pengujian menunjukkan bahwa peningkatan konsentrasi partikel nano pada fluida dasar dapat meningkatkan kinerja perpindahan kalor fluida dasar tersebut. Pada konsentrasi partikel nano tertinggi yang digunakan dalam pengujian, nano fluida Al2O3-air konsentrasi 5% dapat menyerap panas sebesar 9% lebih baik dibandingkan air biasa dan dapat meningkatkan koefisien perpindahan kalor keseluruhan MCHE sebesar 13% lebih besar dibandingkan dengan air.

The heat transfer performance in heat exchanger can be enhanced by decreasing its hydraulic diameter or using working fluid that has better thermal conductivity than the conventional one. One of the examples of small hydraulic diameter application is microchannel heat exchanger (MCHE). Designing the MCHE and doing experimental investigation of the heat transfer performance on counter-flow MCHE by using water and Al2O3-water nanofluid with nanoparticle concentration 1%, 3%, and 5% as coolant fluid has been done in this experiment. Inlet fluid temperatures in hot and cold side are set at 50°C and 25°C, meanwhile the inlet flow rate is set from 100 to 300 ml/minute.
The experimental results show that the increase of nanoparticle concentration in the base fluid can enhance its heat transfer performance. In highest concentration of nanoparticle used in this experiment, Al2O3-water 5% nanofluid can absorb heat 9% better than conventional water do and can enhance the overall heat transfer coefficient of MCHE 13% higher than water.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43033
UI - Skripsi Open  Universitas Indonesia Library
cover
Nandy Setiadi Djaya Putra
Depok: Departemen Teknik Mesin UI, 2012
621.402 NAN a
Buku Teks  Universitas Indonesia Library
cover
Universitas Indonesia, 1993
S27924
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Utomo
"Nanofluida adalah jenis fluida baru, yaitu pencampuran partikel nano dalam fluida dasar (air), dimana partikel nano ini tetap tersuspensi secara permanen dalam fluida dasarnya, akibat adanya gerakan Brownian dari partikel nano tersebut. Dalam menentukan karakteristik operasi dari alat penukar kalor dengan metoda grafik, penelitian dilakukan pada air-air dan menjelaskan hubungan kalor antara yang hilang dengan parameter - parameter lainnya, seperti aliran fluida dan sifat-sifat termal pada alat double pipe heat exchanger. Penelitian dilakukan pada nanofluida A1203, hasilnya menunjukkan peningkatan dalam koefisien perpindahan kalor konveksi dibandingkan dengan fluida dasarnya 2.1%-11.86% untuk konsentrasi partikel nano 1% dan 4.2% 17.38% untuk konsentrasi partikel nano 4%. Rasio peningkatan koefisien perpindahan kalor konveksi dari nanofluida juga meningkat, seiring dengan peningkatan temperatur (40°C - 60°C).

Nano fluids are a new kind of fluids; they are dispersion if nano particles in liquids that are permanently suspended by Brownian motion. To assign operation characteristic from heat exchanger with graphic method, Research shown at water to water assignment shows correlation between heat loss and other parameters, such as: fluids flow and thermal characteristic in double pipe heat exchanger. Research shown at nano fluid A1203 water 1% and 4%, the result shown the enhancement of heat transfer convective coefficient compared to the base fluids 2.1%- 11.86% for 1% particles concentration and 4.2% -17.38% for 4% particles concentration. The rate of increase of enhancement shows adrainatic increase with elevated temperature (40°C-60°C)."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T14739
UI - Tesis Membership  Universitas Indonesia Library
cover
Yanto Tanuwijaya
"Konversi energi (khususnya energi kalor) mempakan isu yang mengglobal pada saat ini karena di masa yang akan datang, kebutuhan energi akan bertambah sedangkan resource yang kita miliki akan tetap konstan bahkan berkurang. Konversi energi kalor dapat dilakukan dengan menggunakan alat perpindahan kalor yang biasanya merupakan alat perpindahan kalor konveksi. Plate Heal Exchanger merupakan salah satu alat penukar kalor yang dapat dikatakan sebagai alat penukar yang sangat efisien.
Plate Heat Exchanger yang digunakan pada penelitian ini adalah model Brazed Plate Heat Exchanger dengan tipe aliran counferflow. Namun untuk digunakan lebih lanjut maka perlu dilakukan karakterisasi dari Plate Heat Exchanger itu sendiri. Karakterisasi Plate Heat Exchanger dilakukan dengan menggunakan fluida air baik untuk fluida dingin maupun fluida panas. Hasilnya menunjukkan bahwa alat penukar kalor ini dapat digunakan secara efektif dan efisien pada rentang temperatur 25-70°C.
Dengan rentang niiai bilangan Reynold antara 685 hingga 1067 untuk fluida panas dan 726 hingga 1516 untuk fluida dingin, dapat dihasilkan nilai koefisien perpindahan kalor konveksi sebesar 2208 W/m2°C hingga 2650 W/m2°C untuk fluida panas dan 2656 W/m2°C hingga 4214 W/m3°C untuk fluida dingin. Sedangkan efektivitas Plate Heat Exchanger itu sendiri berada dalam rentang 64% hingga 85% dihitung dengan menggunakan metode effectiveness-NTU."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S37508
UI - Skripsi Membership  Universitas Indonesia Library
cover
Candra Damis Widiawaty
"Riset ini bertujuan melakukan analisis prosedur desain dan redesain alat penukar kalor tipe shell and tube dengan CFD pada reboiler turbin mikro bioenergi proto x-2 dan CO2 stripper reboiler PT Pupuk Iskandar Muda. Metode desain dimulai dari kalkulasi manual metode Kern dan konstrain desain pressuredrop di sisi tube harus di bawah 277 Pa. Kemudian dilakukan simulasi 1 fasa SolidWork 2010 dan 2 fasa dengan sofware CFDSof. Metode redesain diawali dari analisis kondisi terpasang dilanjutkan dengan redesain dengan 3 model. Fokus redesain adalah untuk menganalisis korosi pendidihan dengan CFD dan perubahan desain untuk mengurangi fraksi uap.
Eksperimen reboiler turbin dan hasil simulasi menunjukkan peningkatan temperatur pada titik ukur 1 lebih cepat dibandingkan dengan titik ukur 2, sehingga uap lebih dulu terbentuk pada titik ukur 1. Hasil simulasi menunjukkan pembentukan uap mulai terjadi pada jarak 85 mm dari tubesheet. Berdasarkan simulasi 2 fasa, model redesain 2 yaitu posisi outlet shell 880 mm dari tubesheet adalah yang terbaik karena proses pendidihan lebih sedikit yang direpresentasikan oleh pembentukan fraksi uap tertinggi hanya 0,0002. Dengan mengunakan simulasi CFD, desain reboiler CO2 stripper reboiler lebih baik dibandingkan desain reboiler turbin, karena pada reboiler CO2 stripper reboiler penguapan terjadi mendekati outlet sehingga uap lebih lebih mudah keluar.

The aimed of this researched is analized procedure of design and redesign shell and tube heat exchanger used CFD for micro bioenergy gas turbine proto x-2 and CO2 stripper reboiler?s PT Pupuk Iskandar Muda. The design method was started with manual calculation using Kern method and the constrain was pressuredrop exhaust gas must be under 277 Pa. The next step was simulated the model with SolidWork 2010 for one phase and CFDSof for two phase. The method of redesign was previously analized the existing condition and then continued with changed the original model with 3 redesign model which is produced less vapor fraction.
The experiment and simulation of turbine reboiler showed that the temperature of water increasing faster at measuring point 1 than measuring point 2 therefore water vapor started at 85 mm from inlet of exhaust gas. The redesign 2 which is the distance outlet 880 mm from tubesheet was the best design because it's produced the lowest vapor fraction 0,0002. On all the CFD could showed the pendidihan process for both of the reboiler, it showed that the CO2 stripper reboiler design was better than the turbine reboiler because the vaporation was started near the outlet.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31064
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>