Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 26294 dokumen yang sesuai dengan query
cover
Ziff, Paul
Ithaca: Cornell University Press , 1961
412 ZIF s
Buku Teks  Universitas Indonesia Library
cover
New York: Oxford University Press,, 2006
415.55 ADJ
Buku Teks SO  Universitas Indonesia Library
cover
Dini Mariska
"Skripsi ini membahas tema nalisis semantik adverbia gitaigo (kata tiruan bunyi yang menggambarkan keadaan atau perasaan)"
Depok: Fakultas Ilmu Pengetahuan dan Budaya Universitas Indonesia, 2008
S13719
UI - Skripsi Open  Universitas Indonesia Library
cover
Reza Bhaskoro Wibowo
"Dalam suatu ujian, terutama di tingkat universitas, terdapat berbagai macam bentuk soal yang harus dikerjakan oleh mahasiswa. Salah satu bentuk yang banyak digunakan adalah ujian berupa esai. Namun ketika jawaban sudah terkumpul, terdapat kendala yang dihadapi oleh dosen, yaitu melakukan penilaian esai yang banyak memakan waktu dan tenaga. Oleh karena itu, dikembangkanlah suatu sistem untuk membantu pekerjaan dosen tersebut.
Simple O merupakan sistem yang dikembangkan di Departemen Teknik Elektro Universitas Indonesia. Mulai dikembangkan pada tahun 2007, Simple O merupakan suatu sistem yang dapat melakukan penilaian terhadap perkerjaan mahasiswa yang bersifat esai. Tujuan dari diciptakannya sistem ini adalah untuk membantu dosen dalam melakukan penilaian terhadap ujian yang telah dilakukan mahasiswa.
Simple O menggunakan algoritma Latent Semantic Analysis (LSA) ketika pertama kali dikembangkan. Kemudian sistem tersebut dikembangkan hingga menjadi algoritma Generalized Latent Semantic Analysis (GLSA) dan pada akhirnya dikembangkan algoritma Hybrid.

On some tests, especially in university, there are lots of types of questions that must be done by the students. One of them is essay. But when the answers are collected, there is a problem that is faced by the lecturer, the amount of time and energy that need to use by them. Because of that, people developped a system that can help the lecturer.
Simple O is a system that is developped in Electrical Engineering Department, University of Indonesia. The development was started in 2007, and it is a system that can grade the work of the students, in the form of essay. The purpose of the invention of this system is to help the lecturer in giving grades to the tests that have been done by the students.
Simple O uses LSA algorithm when the first time of its development. Then the system has been developped into Generalized Latent Semantic Analysis (GLSA) and finally it becomes Hybrid algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S53112
UI - Skripsi Membership  Universitas Indonesia Library
cover
Brian Prama Krisnanda
"Sistem penilaian yang dilakukan oleh penilai manusia untuk menilai jawaban essay dalam jumlah besar dirasakan kurang efisien. Hal ini disebabkan karena penilai manusia memiliki keterbatasan fisik yang tidak dapat dihindari. Jika hanya menggunakan satu orang penilai, memang obyektifitas terjaga, namun waktu pemeriksaan menjadi lama. Jika menggunakan banyak orang penilai, waktu dalam memeriksa menjadi cepat, namun obyektifitas tidak terjaga. Oleh karena itu, untuk meningkatkan efisiensi periu dibuat suatu sistem penilaian yang pemeriksaannya cepat dan obyektifitias tetap terjaga.
Dalam skripsi ini dilakukan perancangan dan implementasi software penilaian essay otomatis dengan menggunakan salah satu metode penilaian essay otomatis yaitu Latent Semantic Analysis (LSA). Metode ini mengonversi kalimat ke dalam bentuk matriks untuk kemudian dilakukan perhitungan. Perhitungan dilakukan dengan menggunakan Singular Value Decomposition (SVD) dimana matriks didekomposisi menjadi tiga komponen matriks, yaitu dua matriks orthogonal dan satu matriks diagonal singular. Kemudian dilakukan reduksi terhadap matriks diagonal singular-nya sehingga menjadi berdimensi dua, dan transpose matriks untuk salah satu matriks orthogonalnya. Setelah itu dilakukan rekonstruksi matriks awal dengan cara mengalikan kembali tiga komponen matriks yang sudah diolah tersebut. Proses penilaian diambil dari perbandingan normalisasi Frobenius antara matriks jawaban dengan matriks referensi yang sudah direkonstruksi.
Pada perancangannya, sistem penilaian essay otomatis ini berupa algoritma yang terbagi menjadi beberapa bagian, diantaranya yaitu program utama, sub program, dan bagian program terperinci diantaranya program konversi jawaban ke matriks, dan program perhitungan SVD. Agar dapat dikembangkan sehingga dapat digunakan melalui jaringan internet, program ini didesain dengan menggunakan aplikasi web. Implementasi dari sistem dilakukan pada sebuah komputer sekaligus merupakan server dan client. Agar sistem dapat berjalan dengan baik, maka diinstal beberapa program diantaranya Apache Server, MySQL Server, PHP, dan Matlab.
Untuk menguji performa dari sistem aplikasi ini dilakukan beberapa pengujian. Pengujian dilakukan dengan tujuan untuk mengetahui bagaimana korelasi antara nilai jawaban mahasiswa yang dihasilkan dengan menggunakan metode LSA, dengan nilai jawaban mahasiswa yang dihasilkan oleh human rater. Dari pengujian didapatkan nilai korelasi antara penilaian otomatis yang menggunakan metode LSA dengan penilaian yang dilakukan oleh human rater ialah sebesar 0,86 - 0,96."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S39970
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nahar Adi Gunawan
"Pada togas akhir ini dilakukan perancangan dan implementasi software sistem penilaian essay otomatis. Program aplikasi sistem penilaian essay otomatis ini berfungsi untuk menilai essay secara otomatis dengan menggunakan metode Latent Semantic Analysis atau LSA. Metode Latent Semantic Analysis (LSA) adalah teori atau metoda untuk menyalin dan merepresentasikan arti kalimat dengan perhitungan matematis atau statistik. LSA mengkonversi essay ke dalam matriks. Setiap kata dalam paragraf kalimat direpresentasikan sebagai bans dan kolom matriks. Dengan menggunakan teknik matrik aljabar SVD (Singular Value Decomposition), matrik didekomposisi menjadi tiga komponen matrik, yaitu dua matriks orthogonal dan satu matriks diagonal singular.
Proses penilaian diambil dari perbandingan normalisasi Frobenius nilai singular positif atau tidak nol padakomponen diagonal matriks referensi dan matriks jawaban. Selanjutnya sistem penilaian essay otomatis metode LSA ini diaplikasikan pada software berbasis web dengan alasan bahwa perkembangan teknologi intemet telah membuat perbedaan jarak dan waktu menjadi seperti tidak berarti lagi, hal ini tentunya sangat efisien untuk program aplikasi seperti sistem penilaian essay otomatis ini karena yang diuji tidak harus ada di satu tempat dan waktu yang bersamaan, tetapi mereka bisa mengakses dari tempatnya masing-masing.
Pada perancangannya sistem penilaian essay otomatis ini berupa algoritma yang terbagi menjadi beberapa bagian, diantaranya yaitu program utama, sub program, dan bagian program terperinci. Dan sistem penilaian essay otomatis ini diimplementasikan pada software berbasis web yang berintegrasi dengan web server sebagai media koneksi, database server sebagai media penyimpanan, dan software matematis sebagai tempat pemprosesan aljabar Singular Value Decomposition yang merupakan metode dari Latent Semantic Analysis atau LSA."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S40167
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nida, Eugene A.
Paris: Mouton, 1979
419 NID c
Buku Teks  Universitas Indonesia Library
cover
Eliza Margaretha
"WordNet (Fellbaum, 1998) adalah suatu lexical resource yang kaya akan informas linguistik yang sangat bermanfaat bagi berbagai macam aplikasi, khususnya aplikasiaplikasi yang berhubungan dengan linguistik, pemrosesan bahasa alami, dan kecerdasan buatan. Dewasa ini, WordNet telah dibangun untuk lebih dari 40 bahasa, tetapi WordNet untuk bahasa Indonesia belum tersedia. Oleh karena pengembangan WordNet secara manual membutuhkan sumber daya yang tidak sedikit, penelitian yang dipaparkan dalam laporan tugas akhir ini bermaksud untuk membangun WordNet secara otomatis.
Penelitian ini mencoba untuk membuat synset (synonym set) untuk bahasa Indonesia dengan melakukan pemetaan konsep dwibahasa secara otomatis antara konsep bahasa Inggris yang diambil dari Princeton WordNet dan konsep bahasa Indonesia yang diambil dari Kamus Besar Bahasa Indonesia (KBBI). Tugas lain, yaitu pemetaan kata dwibahasa, diperkenalkan untuk memetakan kata-kata bahasa Inggris ke kata-kata bahasa Indonesia secara otomatis. Kedua pemetaan tersebut dilakukan dengan mengaplikasikan metode Latent Semantic Analysis (Landauer, Foltz, & Laham, 1998) pada korpora paralel berupa teks.
Awalnya, pemetaan kata dwibahasa dimaksudkan untuk melakukan verifikasi proses di balik pemetaan konsep dwibahasa. Namun, hasil pemetaan kata tidak memuaskan karena performa model kemiripan vektor lebih baik dari pada model LSA. Di sisi lain, hasil dari pemetaan konsep dwibahasa, menunjukkan kemampuan LSA untuk menangkap informasi semantik yang terkandung secara implisit dalam suatu korpus parallel. Walaupun LSA belum berhasil mencapai tingkat yang setara dengan pemetaan yang dilakukan manusia, secara umum LSA lebih baik dari pada random baseline.

WordNet (Fellbaum, 1998) is a lexical resource containing rich linguistic knowledge, which is very useful for a wide variety of applications, especially for applications related to linguistics, natural language processing, and artificial intelligence. Recently, WordNets have been built for more than 40 languages, but not yet in Indonesian. Since building a WordNet manually is complex and expensive, the work presented in this thesis considers building an Indonesian WordNet automatically.
This work attempts to construct Indonesian synsets (synonym set) by conducting automatic bilingual concept mapping between English concepts derived from Princeton WordNet and Indonesian concepts derived from Kamus Besar Bahasa Indonesia (KBBI). Another task, namely bilingual term mapping, is introduced to map English terms to their Indonesian analogues automatically. Both mappings are conducted by applying LatentSemantic Analysis (Landauer, Foltz, & Laham, 1998) on parallel corpora of text.
Bilingual term mapping was intended to verify the underlying process of bilingual concept mapping. However, the results are unsatisfactory suggesting that vector model similarity performs better than the LSA model. The results of bilingual concept mapping, on the other hand, show some capability of LSA to capture some semantic information implicit within a parallel corpus. Although LSA is not yet able to attain levels comparable to human judgements, it is generally better than random baseline."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhamad Rizky Fajar Ramadhan
"ABSTRAK
Memperoleh sebuah Academy Award telah menjadi indikator penting kesuksesan sebuah film di Hollywood. Acara ini juga berhasil menjadi acara penghargaan film terpopuler di ruang lingkup internasional. Makalah ini bertujuan untuk memahami signifikansi entailment dalam menyusun sebuah naskah yang efektif sesuai dengan standar Academy Award dengan menganalisis naskah pemenang Academic Award 2016, Moonlight. Makalah ini menggunakan model analisis Sa 39;adah 2014 , yang menyintesis empat tipe entailment dan dua urutan entailment, dam kemudian transkrip film digunakan untuk mendeteksi dan menganalisis tipe dan urutan entailment. Dalam enelitian ini, ditemukan bahwa naskah tersebut memperdayakan semua tipe entailment dengan frekuensi yang bervariasi. Di antara 58 utterance yang menggunakan entailment, One-way Entailment dan Background Entailment paling sering digunakan. Hasil penelitian mengindikasikan adanya konsistensi dalam penelitian-penelitian sebelumnya yang memperkuat hipotesis bahwa tipe dan urutan entailment jenis ini memiliki signifikansi tinggi dalam menyusun sebuah naskah film yang baik.

ABSTRACT
Receiving an Academy Award has become a significant indicator of a film 39 s success in Hollywood. The event also manages to become the most popular film awards internationally. This paper aims to understand the significance of entailments in constructing an effective screenplay based on the Academy Award standard by analyzing the script of the 2016 39 s Academy Award winner, Moonlight. This paper uses an analysis model by Sa 39 adah 2014 , which synthesized four types of entailment and two orders of entailment, and then the transcript of the film is used to detect and analyze the types and orders of entailment. This research found that the script utilizes all types of entailment in a varying degree. Among 58 utterances which are found using entailment, One way Entailment and Background Entailment are used the most. The result indicates a consistency in previous research which strengthen the hypothesis that these particular type and order of entailment has high significance in constructing a well developed film script. "
Fakultas Ilmu Pengetahuan dan Budaya Universitas Indonesia, 2018
MK-Pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>