Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 156076 dokumen yang sesuai dengan query
cover
Pahrin Wirnadian
"Misalkan 𝐺 adalah graf dengan himpunan simpul 𝑉=𝑉(𝐺) dan himpunan busur 𝐸=𝐸(𝐺). Suatu pemetaan 𝜆 dari 𝑉 ke 𝑍|𝐸| dimana 𝐸(𝐺) ≥ 𝑉(𝐺) disebut pelabelan harmonis jika 𝜆 merupakan pemetaan injektif sedemikian sehingga ketika setiap busur 𝑥𝑦 diberi label dengan 𝑤 𝑥𝑦 =𝜆 𝑥 +𝜆(𝑦) mod 𝐸(𝐺) menghasilkan label yang berbeda. Pada tesis ini, diberikan konstruksi pelabelan harmonis pada kombinasi gabungan graf caterpillar dan graf firecracker teratur. Pertama dibuktikan pelabelan harmonis untuk sembarang graf caterpillar dan gabungan beberapa graf caterpillar. Selanjutnya dibuktikan pelabelan harmonis untuk graf firecracker teratur dan gabungan beberapa graf firecracker teratur. Dengan menggunakan pelabelan yang telah diberikan, ditunjukkan bahwa untuk masing-masing graf caterpillar atau firecracker teratur boleh terdapat dua simpul (sepasang simpul) dengan label yang sama. Selanjutnya ditunjukkan konstruksi pelabelan harmonis pada kombinasi gabungan graf caterpillar dan graf firecracker teratur. Dengan menggunakan pelabelan yang telah diberikan, ditunjukkan boleh terdapat 𝑛 pasang label simpul yang sama untuk kombinasi gabungan dari n graf caterpillar teratur dan graf firecracker teratur.

Let G be a graph with component of vertice V = V (G) and edge E = E (G). A mapping of 𝜆 from the V to the 𝑍|𝐸|, where 𝐸(𝐺) ≥ 𝑉(𝐺) , is called a harmonious labeling if 𝜆 is an injection such that, when each edge 𝑥𝑦 is assigned the label 𝑤 𝑥𝑦 =𝜆 𝑥 +𝜆(𝑦) mod 𝐸(𝐺) , the resulting edges are distinct. In this research, we study how to construct a harmonious labeling to union combination of caterpillar graph and regular firecracker graph. First, construction ways of a harmonious labelling will be presented for caterpillar graphs and combination of some caterpillar graphs. A construction of harmonious labeling will also be presented for firecracker graphs and union of some firecracker graphs. By using the labelling that is assigned, it will be shown that for each caterpillar graph or firecraker can have two edges (a paired of edge) with a same labeling. And a construction ways of harmonious labeling of union combination of caterpillar graph and regular firecrcaker graph will be presented. By using the assigned label, it will be proved that for combination of caterpillar graphs and firecracker graph there are n edges that has the same labeling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T28833
UI - Tesis Open  Universitas Indonesia Library
cover
Rismayati
"ABSTRAK
Misalkan G-(p,q) adalah sebuah graf dengan p=│V(G)│ dan q=│E(G)│. Graf G disebut harmonis jika terdapat suatu pemetaan injektif f:V(G)→ Zq sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ Zq dengan f*( uv)=f(u)+f(v) (mod q). Fungsi disebut fungsi pelabelan harmonis dari graf . Graf disebut harmonis ganjil jika terdapat suatu pemetaan injektif f:V(G)→ {0, 1, 2, …, 2q-1} sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ {1, 3, 5, …, 2q-1} dengan f*(uv)=f(u)+f(v). Fungsi f disebut fungsi pelabelan harmonis ganjil dari graf G. Pada tesis ini diberikan konstruksi dan pelabelan harmonis ganjil pada graf korona, graf matahari, graf hairy cycle HC(n; ri), graf shadow lingkaran D2(Cn) dan graf generalisasi shadow lingkaran Dm(Cn) untuk n = 0 (mod 4) .

ABSTRACT
Let G-(p,q) is a graph with p=│V(G)│and q=│E(G)│ . A graph G is said to be harmonious if there exist an injection f:V(G)→ Zq , such that the induced function f*:E(G)→ Zq defined by f*( uv)=f(u)+f(v) (mod q) is an bijection. A function f is said to be the harmonious labeling of G. A graph G is said to be odd harmonious if there exist an injection f:V(G)→ {0, 1, 2, …, 2q-1} such that the induced function f*:E(G)→ {1, 3, 5, …, 2q-1} defined by f*(uv)=f(u)+f(v) is an bijection. A function is said odd harmonious labeling of . In this thesis is given the proof that corona, sun graph, hairy cycle HC(n; ri), cycle shadow D2(Cn) and generalized of cycle shadow Dm(Cn) for are odd harmonious graphs."
Universitas Indonesia, 2013
T32964
UI - Tesis Membership  Universitas Indonesia Library
cover
Zeveliano Zidane Barack
"Misalkan G = (V,E) adalah graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Pelabelan tak teratur dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} dari graf G sedemikian sehingga bobot dari seluruh simpul berbeda. Bobot dari simpul u ∈ V didefinisikan sebagai wtφ(u) = v∈N(u) φ(uv), dengan N(u) adalah himpunan simpul yang bertetangga dengan u. Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur dengan label paling besar k disebut sebagai kekuatan tak teratur dari graf G. Misalkan G adalah graf dengan order n, pelabelan tak teratur modular dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} sedemikian sehingga terdapat fungsi bobot yang bijektif wtφ : V → Zn , dengan Zn adalah grup bilangan bulat modulo n. Bobot modular didefinisikan dengan wtφ(u) = v∈N(u) φ(uv). Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur modular dengan label paling besar k disebut kekuatan tak teratur modular dari graf G. Graf friendship dibangun dari kumpulan graf lingkaran C3 dengan sebuah simpul pusat bersama. Pada penelitian ini, akan dikonstruksi pelabelan tak teratur modular untuk graf friendship dan ditentukan kekuatan tak teratur modular untuk graf friendship.

Let G = (V,E) be a graph with V is the vertex set and E is the edge set of G. Irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} of a graph G such that every weights of the vertices are all different. The weight of vertex u ∈ V is defined by wtφ(u) = v∈N(u) φ(uv), where N(u) denotes the set of all vertices that adjacent to u. The minimum number k such that a graph G has irregular labeling with largest label k is called irregularity strength of G. Let G be a graph with order n, modular irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} such that there exists a bijective weight function wtφ : V → Zn, where Zn is a group of modulo n. The modular weight is defined by wtφ(u) = v∈N(u) φ(uv). The minimum number k such that a graph G has modular irregular labeling with largest label k is called modular irregularity strength of G. The friendship graph is constructed by a set of cycle graphs C3 with a common central vertex. In this research, we construct the modular irregular labeling for friendship graph and determine its modular irregularity strength."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tri Harjuni
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27688
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
Gusti Ayu Saputri
"ABSTRAK
Misalkan G(p,q) adalah suatu graf dengan p dan q masing-masing adalah banyaknya simpul dan busur dari G. Pelabelan harmonis ganjil pada adalah suatu fungsi injektif f : V(G) → {0,1,2,…,2q-1} yang sedemikian sehingga menginduksi fungsi bijektif f*:E(G)→{1,3,5,…, 2q-1} yang didefinisikan oleh f *(uv) = f (u) + f (v). Graf yang memiliki pelabelan harmonis ganjil disebut graf harmonis ganjil. Pada tesis ini diberikan suatu konstruksi pelabelan harmonis ganjil pada kelas graf yang memuat lingkaran yaitu graf tangga, graf dumbbell, graf pohon palem, graf pot bunga, graf generalisasi prisma, dan graf matahari.

ABSTRACT
Let G(p,q) is a graph with p and q be respectively the number of vertices and the number of edges of G. The odd harmonious labeling of is an injection f : V(G) → {0,1,2,…,2q-1} such that the induced function f*:E(G)→{1,3,5,…, 2q-1} defined by f *(uv) = f (u) + f (v) is a bijection. A graph with odd harmonious labeling is called odd harmonious graph. In this thesis is given the construction of the odd harmonious labeling on classes of graphs containing cycle, that are ladder graphs, dumbbell graphs, palm graphs, generalized prism graphs, and sun graphs."
Universitas Indonesia, 2013
T32963
UI - Tesis Membership  Universitas Indonesia Library
cover
Tri Harjuni
"Misalkan G=(V,E) suatu graf berhingga tak kosong, dengan V dan E masing-masing menyatakan himpunan simpul dan himpunan busur dari G. Misalkan n dan e menyatakan banyak simpul dan busur di G. Suatu pelabelan total busur ajaib adalah suatu pemetaan bijektif B dari VUE ke suatu himpunan bilangan bulat positif {1,2,…,n+e}, dengan sifat untuk setiap busur D di E, B􁈺 􁈻+ B􁈺 D􁈻+ B􁈺D􁈻= 􀝇, untuk suatu konstanta k. Pelabelan total busur ajaib disebut pelabelan total a-simpul berurutan busur ajaib jika B􁈺􀜸􁈻= 􁈼a + 1, a + 2,…, a + t􁈽, 0 ≤ a ≤ 􀝁. Suatu graf dengan pelabelan total a-simpul berurutan busur ajaib adalah graf tak terhubung. Gabungan tak terhubung dari dua graf terhubung dapat memiliki pelabelan ini dengan menambahkan simpul terisolasi. Pada skripsi ini diberikan konstruksi pelabelan total a-simpul berurutan busur ajaib pada kombinasi gabungan dua graf caterpillar teratur dan graf firecracker teratur. Dengan menggunakan pelabelan yang telah diberikan, ditunjukkan bahwa batas atas banyaknya simpul terisolasi dari kombinasi gabungan dua graf caterpillar teratur dan graf firecracker teratur bergantung pada banyaknya simpul daun dan simpul pusat pada graf-graf tersebut."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pakpahan, Regina Natalia
"ABSTRACT
Pelabelan graf merupakan salah satu topik yang menarik dalam teori graf. Ada
beberapa cara untuk melabeli sebuah graf, dan salah satunya yaitu pelabelan graceful.
Misalkan G(V,E) adalah sebuah graf. Pemetaan injektif f : V → {0,1,...,|E|}
disebut graceful jika label dari busurnya w(uv) = | f(u) − f(v)| semuanya memiliki
nilai yang berbeda untuk setiap busur uv. Ada sebuah konjektur terkenal yang
belum terbukti dalam pelabelan graceful. Konjektur tersebut mengatakan bahwa
semua graf pohon adalah graceful. Untuk membuktikan konjektur ini, maka harus
ditunjukan bahwa setiap graf pohon adalah graceful. Terdapat banyak paper penelitian
yang membahas tentang pelabelan graceful untuk kelas-kelas graf pohon yang
berstruktur tinggi atau kelas-kelas graf pohon yang bersyarat. Banyak kelas graf pohon
pun telah dibuktikan adalah graceful dan salah satunya adalah graf Supercaterpillar.
Adapun penelitian sebelumnya telah membuktikan bahwa graf Supercaterpillar
yang memenuhi syarat tertentu adalah graceful. Dalam tesis ini, konsep dari
graf Supercaterpillar diperumum dan ditunjukkan sub-kelas dari graf Supercaterpillar
yang belum dibahas pada penelitian sebelumnya juga merupakan graceful.

ABSTRACT
Graph labeling is one of the interesting topic in graph theory. There are many
way to labeling a graph, and one of them is graceful labeling. Let G(V,E) is a
graph. The injective mapping f : V → {0,1,...,|E|} is called graceful if the weight
of edge w(uv) = | f(u) − f(v)| are all defferent for every edge uv. There is a famous
conjecture in graceful labeling. It said that all trees are graceful. To prove
this conjecture, then we must showing that every trees are graceful. There are numerous
research papers dealing with special cases of highly structured or otherwise
restricted classes. Many classes of trees have been proven are graceful, and one of
them is Supercaterpillar. Previous research had proved that supercaterpillar satisfying
certain conditions are also graceful. In this paper, we generalized the concept
of supercaterpillar and show subclass of supercaterpillar graph that has not been
discussed earlier is also graceful."
2017
T48921
UI - Tesis Membership  Universitas Indonesia Library
cover
Widiyani Suciati
"Misalkan G adalah graf dengan himpunan simpul tak-kosong V dan himpunan busur E, dimana [V(G)] dan [E(G)] masing-masing menyatakan banyak simpul dan busur pada G. Pelabelan harmonis dari graf adalah suatu pemetaan dengan menginduksi pelabelan pada himpunan busur didefinisikan sebagai pemetaan , untuk setiap busur . Jika adalah graf pohon maka tepat satu label simpul berulang atau label simpul dapat dilabelkan dengan menggunakan . Dalam skripsi ini diberikan algoritma untuk menghasilkan semua pelabelan harmonis yang tidak isomorfik pada graf lintasan Pn, graf lingkaran Cn dan graf lobster teratur Ln,r,1 untuk nilai n dan r (untuk graf lobster teratur) yang diberikan. Algoritma-algoritma ini kemudian diimplementasikan dalam program. Diberikan juga simulasi banyak pelabelan harmonis yang mungkin dan tidak isomorfik sampai nilai n tertentu."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27846
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Reza Vahlevi
"Penelitian ini mengukur hubungan antara tiga variabel yaitu autonomy support, strengths use, dan harmonious passion secara korelasional.Industri kreatif menunjukkan peranan penting dalam sebagai roda dalam perekomian Indonesia  (Sugiarto, 2018). Pada era industri kreatif, kreativitas menjadi sebuah modal penting bagi karyawan untuk dapat bersaing. Harmonious passion kemudian ditemukan sebagai faktor yang memengaruhi kreativitas seseorang  (Liu, Chen, dan Yao, 2011). Dengan demikian penelitian saat ini ditujukan untuk mengetahui faktor pembentuk harmonious passion sehingga dapat memengaruhi kreativitas. Peneliti berhipotesis bahwa strengths use dapat memediasi hubungan antara autonomy support dan harmonious passion. Penelitian ini melibatkan karyawan penuh waktu yang bekerja di bidang industri kreatif (N = 133). Alat ukur yang digunakan adalah Work Climate Questionnaire, Passion Scale, dan Strengths Use Scale. Hasil penelitian menunjukkan bahwa terdapat efek langsung antara autonomy support terhadap harmonious passion ( = 0,42,>p < 0,05), efek tidak langsung antara autonomy support terhadap harmonious passion melalui strengths use (>ab) sebesar 0,12, p < 0,05), dan total efek (c) autonomy support, strengths use, dan harmonious passion sebesar 0,54 , p < 0,05. Akhirnya, dapat disimpulkan bahwa strengths use dapat memediasi hubungan antara autonomy support dan harmonious passion secara parsial.

This study measures the relationship between three variables, namely autonomy support, strengths use, and harmonious passion in a correlational study. The creative industry shows an important role in Indonesias economy (Sugiarto, 2018). In the era of the creative industry, creativity is an important thing for employees to be able to compete. Harmonious passion is found as a factor that influences a persons creativity (Liu, Chen, and You, 2011). Thus the study aimed to find out the forming factors of the harmonious passion that influence creativity. The researcher hypothesizes that strengths use can mediate the relationship between autonomy support and harmonious passion. This study involves full-time employees working in the creative industry (N = 133). Measuring instruments used by the Work Climate Questionnaire, Passion Scale, and Use Scale Strengths. . The results showed that there was a direct effect between autonomy support for harmonious passion (c = 0.42, p <0.05), the indirect effect of autonomy support on harmonious passion through strengths use (ab) of 0.12, p < 0.05), and the total effect (c) of autonomy support, strengths use, and harmonious passion is 0.54, p <0.05. Finally, it can be concluded that strengths use can mediate the relationship between autonomy support and harmonious passion partially."
Depok: Fakultas Psikologi Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>