Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 132992 dokumen yang sesuai dengan query
cover
Debie Ari Kesnawaty
"Kasus kebakaran sebagai penghasil gas karbon monoksida (CO) yang tinggi masih menjadi salah satu permasalahan yang harus diselesaikan, mengingat seringnya terjadi peristiwa kebakaran. Jika terjadi kebakaran, potensi kematian akibat keracunan gas CO akan semakin meningkat. Oleh karena itu, diperlukan suatu usaha untuk mengurangi kadar CO, salah satunya adalah dengan metode adsorpsi menggunakan oksida logam berupa TiO2, MgO, CuO, zeolit alam, zeolit sintesis, dan karbon aktif. Konsentrasi gas CO yang dapat terserap oleh berbagai adsorben dianalisis menggunakan Gas Cromatography. Dari hasil penelitian diketahui bahwa tiga adsorben dengan kapasitas adsorpsi terbesar yakni karbon aktif: 115,623 ml/g = 4,702 mmol/g; TiO2: 94,709 ml/g = 3,847 mmol/g; MgO: 80,116 ml/g = 3,252 mmol/g.

Case of fire has a high rate of gas carbon monoxide production which have to be solved because of the high frequency of this incident. If it happens, the potential death fom CO poisoning will increase. Therefore, it needed an effort to reduce levels of CO. One of them is the method of adsorption using metal oxides such as TiO2, MgO, CuO, natural zeolite, synthetic zeolite, and activated carbon. CO gas concentration that can be absorbed by the various adsorbents were analyzed using Gas Cromatography. The survey results revealed that three of the adsorbent with the largest adsorption capacity of activated carbon: 115.623 ml/g = 4.702 mmol/g; TiO2: 94.709 ml/g = 3.847 mmol/g; MgO: 80.116 ml/g = 3.252 mmol/g."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51679
UI - Skripsi Open  Universitas Indonesia Library
cover
Dunggio, Muhammad Yusuf Ramly
"Penelitian ini dilakukan untuk pengurangan kadar CO dan penjernihan asap kebakaran dengan pemanfaatan karbon aktif dari tempurung kelapa termodifikasi TiO2. Pada hasil uji XRF kandungan TiO2 didalam karbon aktif termodifikasi TiO2 sebesar 20,54 % wt. Pada hasil uji BET, luas permukaan terjadi peningkatan dari 760,30 m2/g menjadi 782,54 m2/g dari karbon aktif dan karbon aktif termodifikasi TiO2. Untuk uji kinerja, karbon aktif termodifikasi TiO2 ukuran 200 mesh dengan massa 3 gram memiliki kapasitas adsorpsi CO paling tinggi (12,59 %) dan nilai t10 untuk penjernihan asap paling baik yaitu dengan waktu 20 menit, 27 menit, 28 menit.

This research was conducted for the reduction of CO levels and purification by use of fire smoke from coconut shell activated carbon modified TiO2. In the XRF test results in the TiO2 content of activated carbon modified TiO2 of 20,54 % wt. The test results showed the BET surface area increased from 760,30 m2/g to 782,54 m2/g of activated carbon and activated carbon modified TiO2. To test performance, activated carbon modified TiO2 with a size 200 mesh and 3 gram have the highest CO adsorption capacity (12,59 %) and t10 values for the purification of smoke that is best with a time of 20 minutes, 27 minutes, 28 minutes.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43119
UI - Skripsi Open  Universitas Indonesia Library
cover
I Putu Putra Jaya Parwatha
"Gas karbon monoksida (CO) adalah hasil produksi dari pembakaran tidak sempurna senyawa-senyawa organik dan berbagai bentuk karbon yang paling banyak dihasilkan dibanding komponen lainya dalam asap. Simulasi proses adsorpsi digunakan untuk untuk mengetahui laju adsorpsi yang efektif, kemampuan adsorpsi dari tiap ukuran partikel, dan konsentrasi sisa pada ruang uji. Ruang uji yang digunakan berukuran 0,4 m x 0,4 m x 1,2 m.
Pada penelitian ini digunakan adsorben karbon aktif komesial yang memiliki nilai bilangan Iodin 1000 mg/g, luas permukaan (BET) 1050 m2/g, adsorpsi maksimum gas karbon monoksida (CO) (nmaks) 1,58827 mol/g, dan konstanta adsorpsi Langmuir untuk gas karbon monoksida (b) 0,00305. Massa adsorben yang digunakan adalah 3 gram. Ukuran partikel adsorben yang digunakan adalah 1,59.10-4 m, 7,95.10-5 m, 8.10-7 m, dan 4.10-7 m. Simulasi menggunakan aplikasi Comsol Multiphysics versi 4.3b.
Berdasarkan hasil simulasi, diperoleh unggun dengan ukuran partikel 8.10-7 m memiliki waktu jenuh yang paling lama dan konsentrasi sisa 35,4 mol. Konsentrasi sisa yang terbentuk setelah proses adsorpsi unggun dengan partikel berukuran 7,95.10-5 m, 8.10-7 m, dan 4.10-7 m nilainya berkisar antara 0,03545 mol - 0,0355 mol.

Carbon monoxide (CO) is the highest composition in combustion smoke. Carbon monoxide (CO) is produced by incomplete combustion of organic compounds and various forms of carbon. Simulation of adsorption process used to determine the effective adsorption rate, adsorption capacity of each particle size, and the residual concentration in the test chamber. Test chamber size is 0,4 m x 0,4 m x 1,2 m.
In this research, properties of activated carbon which is used for adsorbent 1000 mg/g Iodine number, surface area (BET) 1050 m2/g, maximum adsorption capacity of carbon monoxide (CO) (nmaks) 1.58827 mol/g, and Langmuir adsorption constants for carbon monoxide (b) 0.00305. Mass of activated carbon adsorbent is 3 grams. Variations of particle size used for this research are 1,59.10-4 m, 7,95.10-5 m, 8.10-7 m, and 4.10-7 m. Comsol Multiphysics simulation program version 4.3b used for process simulation.
Based on the simulation results, bed with particle size 8.10-7 m has the longest saturated time and residual gas carbon monoxide (CO) is 35,4 mol. Residue of gas carbon monoxide (CO) composition in the chamber for particle size 7,95.10-5 m, 8.10-7 m, and 4.10-7 m approximately 0,03545 mol - 0,0355 mol.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54856
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febriyan Nizfa Saputra
"Pada penelitian ini dilakukan pengujian kapasitas adsorpsi gas Formaldehida karbon aktif dari bambu. Dengan melakukan aktivasi secara kimia dengan larutan KOH dengan perbandingan KOH padat dan karbon sebanyak 3:1, serta diaktivasi pada suhu 800oC dapat menambah luas permukaan karbon yang semula hanya 0,1 m2/g menjadi karbon aktif dengan luas permukaan 386,3m2/g. Impregnasi logam Cu sebanyak 4% berat karbon mampu menambah luas permukaan menjadi 471,9m2/g dan meningkatkan kemampuan adsorpsi karbon aktif dari bambu. Pada konsentrasi kesetimbangan gas Formaldehida 14 ppm, karbon aktif dari bambu yang diimpregnasi dengan logam Cu mampu mengadsorpsi gas Formaldehida sebesar 0,00023 g/g karbon aktif. Sementara itu karbon aktif dari bambu tanpa impregnasi hanya mampu mengadsorpsi sebesar 0,00004 g/g karbon aktif dan karbon aktif komersial dari tempurung kelapa bahkan hanya mempunyai kemampuan adsorpsi sebesar 0,00002 g/g karbon aktif. Dari hasil penelitian juga didapat bahwa karbon aktif dari bambu dengan impregnasi logam Cu mampu mengadsorpsi hingga 97% gas Formaldehida yang diinjeksikan ke dalam sampling silinder.

In this research, Formaldehyde gas adsorption capacity of activated carbon from bamboo is evaluated. By doing a chemical activation with KOH solution with solid KOH and carbon ratio about 3:1, and activated at a temperature of 800oC can increase the surface area of ​​the carbon that was originally only 0.1 m2/g to activated carbon with a surface area of ​​386.3 m2/g. Cu metal impregnating as many as 4% by weight of carbon could increase the surface area to be 471.9 m2/g and increased activated carbon from bamboo's adsorption capacity. At Formaldehyde gas's equilibrium concentration 14 ppm, activated carbon from bamboo impregnated with Cu metal can adsorb Formaldehyde gas at 0.00023 g/g activated carbon. Meanwhile activated carbon from bamboo without impregnation only able to adsorb 0.00004 g/g activated carbon and commercial activated carbon from coconut shell even only have adsorption capacity at 0,00002 g/g activated carbon. From the result, also found that the activated carbon from bamboo impegnated Cu metal able to adsorb up to 97% Formaldehyde gas injected to sampling cylinder."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44489
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reza Suraputra
"Kebakaran merupakan salah satu penghasil gas karbon monoksida (CO) terbesar di udara. Menurut National Bureau of Standard USA, penyebab korban jiwa terbesar pada kebakaran adalah menghirup asap hasil kebakaran (smoke inhalation) sebesar 74%, tersengat panas sebesar 18%, dan penyebab lain sebesar 8%. Penelitian ini dilakukan untuk mengurangi kadar CO dan menjernihkan asap kebakaran menggunakan zeolit alam Lampung termodifikasi TiO2. Hasil uji XRF menunjukkan rasio Si/Al meningkat dari 5,02 menjadi 13,29 setelah aktivasi, sedangkan hasil uji BET menunjukkan luas permukaan meningkat dari 33,85 m2/g menjadi 37,75 m2/g untuk zeolit alam Lampung 400 mesh, 40,06 m2/g untuk zeolit alam Lampung 400 nm, dan 44,41 m2/g untuk zeolit alam Lampung termodifikasi TiO2. Zeolit alam Lampung termodifikasi TiO2 ukuran 400 nm dengan massa 3 gram memiliki kapasitas adsorpsi CO paling tinggi (3,67 %) dan rasio t10 penjernihan asap paling baik yaitu 0,45, 0,45, dan 0,48.

Fire is one of the biggest producer carbon monoxide (CO) gas in the air. According to the National Bureau of Standard USA, the largest cause of fatalities in fire is smoke inhalation 74 %, heat stock of 18 %, and other cause 8 %. The research was done to reduce CO levels and smoke clearing fire using Lampung natural zeolite modified TiO2. XRF test results showed the ratio of Si/Al increases from 5,02 to 13,29 after activation, while test results showed the BET surface area increased from 33,85 m2/g to 37,75 m2/g for Lampung natural zeolite 400 mesh, 40,06 m2/g for Lampung natural zeolite 400 nm, and 44,41 m2/g for Lampung natural zeolite modified TiO2. Lampung natural zeolite modified TiO2 400 nm size with a mass 3 grams having the highest CO adsorption capacity (3,67 %) and the best ratio t10 smoke purification that has a value of 0.45, 0.45, dan 0.48. "
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2011
S917
UI - Skripsi Open  Universitas Indonesia Library
cover
Taufiqurrokhman
"Asap dari pembakaran banyak mengandung senyawa-senyawa yang berbahaya. Gas CO merupakan salah satu senyawa berbahaya yang dapat mengganggu kesehatan. Perlu dilakukan penelitian untuk mereduksi gas CO pada asap pembakaran. Pada penelitian ini dilakukan reduksi gas CO menggunakan karbon aktif teraktivasi yang berasal dari tempurung kelapa.
Hasil penelitian menunjukkan bahwa karbon aktif teraktivasi dengan ukuran partikel 500-600 nm dapat menjerap gas CO sebesar 3,72% dari konsentrasi awal selama 30 menit dan karbon aktif teraktifasi dengan ukuran 800-1000 nm memiliki kemampuan penjernihan asap hingga 75% dari OD(Optical Density) maksimal asap selama 30 menit.

Smoke from burning contains many harmful compounds. CO gas is dangerous substance that can harm our health. Research needs to be done to reduce the CO in combustion. In this research, the reduction of CO gas using activated carbon based on oil palm shell.
The result showed that activated carbon with a particle size between 500-600 nano can adsorb CO gas by 3.72 % of the initial concentration for 30 minutes and activated carbon with a particle size between 800-1000 nano can clean smoke 75% of of maximum smoke OD(Optical Density)for 30 minutes.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54880
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Khairul Afdhol
"Gas Karbon monoksida dan metana banyak terdapat dalam off gas hasil kilang minyak bumi. Off gas potensial digunakan sebagai bahan baku industri petrokimia. Agar off gas ini bisa dimanfaatkan maka karbon monoksida dan metana harus dihilangkan dari off gas. Penelitian ini bertujuan untuk mengadsorpsi karbon monoksida dan metana menggunakan karbon aktif cangkang kelapa sawit dan karbon aktif komersial secara simultan dengan sistem tumpak dan kontinyu.
Penelitian ini dilakukan 2 tahap yaitu: 1 Pembuatan dan karakterisasi karbon aktif, 2 Uji adsorpsi karbon monoksida dan metana. Dari percobaan aktivasi menggunakan karbon dioksida pada laju alir 150 ml/menit menghasilkan luas permukaan sebesar 978.29 m2/g, Nitrogen pada laju alir 150 ml/menit menghasilkan luas permukaan 1241.48 m2/g, dan karbon dioksida dan nitrogen pada laju alir 200 ml/menit dengan luas permukaan 300.37 m2/g.
Adsorpsi karbon monoksida dan metana pada sistem tumpak karbon aktif cangkang kelapa sawit sebanyak 0.5485 mg/g dan 0.0649 mg/g, pada karbon aktif komersial adalah 0.5480 mg/g dan 0.0650 mg/g. Adsorpsi pada sistem kontinyu karbon aktif dari cangkang kelapa sawit menyerap karbon monoksida 305.23 mg/gr dan metana 12.06 mg/gr, dan karbon aktif komersial menyerap karbon monoksida dan metana sebanyak 204.87 mg/gr dan 5.95 mg/gr.

Carbon monoxide and methane gas are widely present in offshore oil refineries. Off potential gas is used as raw material for the petrochemical industry. In order for this off gas to be utilized, carbon monoxide and methane must be removed from off gas. This study aims to adsorb carbon monoxide and methane using activated carbon of oil palm shells and commercial activated carbon simultaneously with batch and continuous systems.
The research was conducted in 2 stages 1 Preparation and characterization of activated carbon, 2 Carbon monoxide and methane adsorption test. From the activation experiments using carbon dioxide at a flow rate of 150 ml min yielded a surface area of 978.29 m2 g, Nitrogen at a flow rate of 150 ml min yielded a surface area of 1241.48 m2 g, and carbon dioxide and nitrogen at a flow rate of 200 ml min with Surface area 300.37 m2 g.
Adsorption of carbon monoxide and methane on activated carbon activated oil palm shell systems of 0.5485 mg g and 0.0649 mg g, on commercial activated carbon is 0.5480 mg g and 0.0650 mg g. Adsorption of continuous activated carbon from oil palm shells absorbed carbon monoxide 305.23 mg g and methane 12.06 mg g, and commercial activated carbon absorbed carbon monoxide and methane by 204.87 mg g and 5.95 mg g.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48175
UI - Tesis Membership  Universitas Indonesia Library
cover
Rainudy Deswanto Atmoko
"Kebakaran menghasilkan asap dan gas beracun, diantaranya gas CO, CO2, dan senyawa organic lainnya. Gas CO yang dihasilkan dari kasus kebakaran yang cukup tinggi masih menjadi salah satu permasalahan yang harus diselesaikan, mengingat seringnya terjadi peristiwa kebakaran. Potensi kematian akibat keracunan gas, termasuk CO, semakin meningkat. Oleh karena itu perlu dilakukan suatu penelitian agar tingkat racun asap kebekaran dapat diminimalisasi. Penelitian ini dilakukan untuk mengurangi kadar CO dan menjernihkan asap kebakaran menggunakan karbon aktif batubara termodifikasi TiO2. Hasil uji BET menunjukan peningkatan luas pemukaan dari 932.04 m2/gram untuk karbon aktif menjadi 960.296 m2/gram setalah termodifikasi TiO2. Karbon aktif ? TiO2 dengan ukuran 200 mesh dan massa 3 gram memiliki penurunan konsentrasi CO sebesar 207 ppm, % adsorpsi CO yang paling tinggi ( 6.18 %) dan nilai t10 yang paling baik.

Fire produces smoke and toxic gases, including CO, CO2, and other organic compounds. CO gas that produced from the case of fire still become the one of the problems that should be completed, given the frequent occurrence of fire events. Death potential from gas poisoning, including CO, are increasing. Therefore it is necessary for a study that the toxicity of fire smoke can be minimized. The study was undertaken to reduce the levels of CO and smoke fire purification using coal activated carbon modified TiO2. The test results showed an increase in BET Surface area of activated carbon 932.04 m2/gram to be 960 296 m2/gram After modified TiO2. Activated carbon - TiO2 with 200 mesh size and mass of 3 grams have decreased concentrations of CO is 207 ppm, the highest % CO adsorption (6.18%) and the best value of t10.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43415
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahmawati Lestari
"Sebelum penggunaan bahan bakar hidrogen dan metana dapat diaplikasikan secara luas, metode penyimpanan yang efektif untuk gas-gas tersebut juga harus dikembangkan. Penyimpanan dalam bentuk compressed gas dan gas cair kriogenik masih mengalami berbagai kendala baik dari segi ekonomis maupun segi teknis. Penggunaan karbon aktif untuk menyimpan hidrogen dan metana teradsorpsi memungkinkan diperolehnya performa storage yang kompetitif dengan CNG pada tekanan rendah. Hal tersebut dapat mengurangi tekanan dan masalah dalam hal logistik.
Pada penelitian ini digunakan karbon aktif untuk mengadsorpsi gas metana dan hidrogen. Karbon aktif yang digunakan berasal dari bahan baku tempurung kelapa dan batubara dengan variasi perbandingan activating reagent KOH terhadap bahan baku yang digunakan dan suhu aktivasi. Uji adsorpsi dilakukan pada karbon aktif yang dibuat di Departemen Teknik Kimia UI yang terdiri dari empat macam adsorben, yaitu karbon aktif dari batubara dengan perbandingan KOH/bahan baku = 4/1 yang diaktivasi pada suhu 900°C (BB, 4:1, 900), karbon aktif dari tempurung kelapa dengan perbandingan KOH/bahan baku = 4/1 yang diaktivasi pada suhu 700°C (ATK, 4:1, 700), karbon aktif dari tempurung kelapa dengan perbandingan KOH/bahan baku = 3/1 yang diaktivasi pada suhu 700°C (ATK, 3:1, 700), dan karbon aktif dari batubara dengan perbandingan KOH/bahan baku = 3/1 yang diaktivasi pada suhu 700°C (BB, 3:1, 700). Uji kapasitas adsorpsi karbon aktif dilakukan terhadap adsorbat gas hidrogen dan metana pada tekanan yang bervariasi pada kisaran 0 - 900 Psia dalam kondisi isotermal (25°C).
Hasil yang diperoleh adalah daya adsorpsi karbon aktif terhadap metana lebih tinggi dibandingkan daya adsorpsinya terhadap hidrogen. Pada tekanan sekitar 900 psia, karbon aktif ATK, 4:1, 700 memiliki kapasitas adsorpsi yang paling tinggi dibandingkan tiga adsorben lainnya yang digunakan, yaitu dapat mengadsorp sebanyak 2.8 mmol gas metana per gram karbon aktif dan sekitar 0.6 mmol gas hidrogen per gram karbon aktif.

Before hydrogen and methane can widely used as fuels, an effective storaging method for these gases have to be developed. Compressed gas and criogenic liquid gas method were still have difficulties, technically and economically. The used of activated carbon as hydrogen and methane storage by adsorption method can performs a competitive method than CNG at lower pressure.
In this experiment, activated carbon from coal and coconut shell with varied comparison between KOH and raw materials and activation temperature was used to adsorp methane and hydrogen. Activated carbons used were locally made in Laboratory of Chemical Engineering Department, University of Indonesia. Adsorbent used are activated carbon from coal with KOH/raw material = 4/1 and activation temperature 900°C (BB, 4:1, 900), activated carbon from coconut shell with KOH/raw material = 4/1 and activation temperature 700°C (ATK, 4:1, 700), activated carbon from coconut shell with KOH/raw material = 3/1 and activation temperature 700°C (ATK, 3:1, 700), and activated carbon from coal with KOH/raw material = 3/1 and activation temperature 700°C (BB, 3:1, 700). Methane and hydrogen adsorption capacity of activated carbon measured at varied pressure with range 0 ' 900 Psia and isothermal condition (25° C).
Obtained result from this experiment, methane adsorption capacity of activated carbon is higher than its hydrogen adsorption capacity. At pressure about 900 psia, activated carbon from coconut shell, with KOH/shell 4:1 and activation temperature 700o C (ATK, 4:1, 700) was having higher methane and hydrogen adsorption capacity than others, it can adsorp 2.8 mmol methane per gram activated carbon used and 0.6 mmol hydrogen per gram activated carbon.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51945
UI - Skripsi Open  Universitas Indonesia Library
cover
Ferriansyah Hasan
"Salah satu cara yang sangat menjanjikan dalam teknologi penyimpanan gas adalah metoda-adsorptive storage - , dimana gas tersebut disimpan dalam keadaan teradsorpsi pada suatu-adsorben - tertentu. Nanotube carbon (NTC) merupakan jenis adsorben sintesis yang memiliki kapasitas adsorpsi hidrogen sehingga dapat menjadi alternatif yang menjanjikan sebagai storage hidrogen. Penelitian ini mengembangkan storage hidrogen, yang terdiri dari beberapa tahap yaitu persiapan storage hidrogen, preparasi adsorben dan alat adsorpsi, pengukuran helium void volume, uji adsorpsi dan desorpsi hidrogen pada tekanan tinggi, serta permodelan sederhana adsorpsi Langmuir. Adsorben yang digunakan adalah NTC komersial dan lokal dalam bentuk curah dan compacted yang dilakukan pada kondisi isotermal yaitu 25_C. Uji adsorpsi tekanan tinggi dilakukan untuk setiap kondisi nanotube karbon (curah dan compacted) sampai diperoleh kurva adsorpsi isotermal dengan kenaikan tekanan 1 Mpa sampai 6 Mpa.
Hasil yang ditunjukkan oleh uji adsorpsi gas hidrogen tekanan tinggi pada kondisi isotermal (25_C), yaitu adsorpsi hidrogen dengan menggunakan variasi tiga adsorben akan meningkat kapasitas adsorpsinya seiring dengan meningkatnya tekanan. NTC lokal curah mempunyai kapasitas adsorpsi yang lebih rendah dibandingkan dengan kapasitas adsorpsi NTC komersial. Pada tekanan 600 psia, kapasitas adsorpsi NTC lokal sekitar 0,38 %, sedangkan NTC komersil curah pada tekanan yang sama daya adsorpsinya sekitar 0,6 %. Secara umum, data adsorpsi hidrogen dengan menggunakan variasi tiga adsorben dapat direpresentasikan dengan baik oleh permodelan Langmuir, dengan % deviasi NTC lokal curah sebesar 5- 6 %, dan % deviasi pada NTC komersial curah sebesar 0,004- 5. Sedangkan untuk % deviasi NTC komersial compacted sekitar 9- 13 %.

One of the most promising way in the gas storage technology is a method of "adsorptive storage", where the gas is stored in an "adsorbent". Carbon nanotubes (NTC) is a type of synthesis adsorbent which has hydrogen adsorption capacity, so that would be a promising alternative for hydrogen storage. This research consists of several stages; preparation of hydrogen storage, preparation adsorbent and adsorption equipment, measurement of Helium void volume, and also hydrogen adsorption and desorption at high pressure, as well as simple modeling Langmuir adsorption. This research using a commercial and local NTC in bulk and compacted form, which treated in an isothermal conditions of 25_C. High pressure adsorption analysis is performed for each condition of carbon nanotubes (bulk and compacted) to obtain the isothermal adsorption curve with increasing of pressure from 1 to 6 Mpa.
The results shown by high pressure adsorption of hydrogen gas at isothermal conditions (25_C) is the adsorption of hydrogen by using variations of three adsorbent, will increase the adsorption capacity with the increase of pressure. Local NTC bulk adsorption capacity is lower than the adsorption capacity of commercial NTC. At pressure of 600 psia, local NTC adsorption capacity is around 0.38%, while the bulk of commercial NTC at the same pressure is around 0.6%. In general, the hydrogen adsorption data using variations of three adsorbent could be well represented by Langmuir models, the deviation of the local NTC is about 5 to 6%, the deviation in the bulk of commercial NTC is about 0.004 to 5%, and the deviation of NTC commercial compacted is about 9 to 13%."
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51824
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>