Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 45495 dokumen yang sesuai dengan query
cover
Herry Prasetyo Anggoro
"Reaktor terstruktur gauze digunakan sebagai solusi dari masalah yang ditemukan pada penggunaan reaktor fixed bed untuk reaksi dekomposisi katalitik metana. Reaktor terstruktur gauze memiliki beberapa kelebihan, yaitu memiliki pressure drop yang rendah dan konversi lebih tinggi.
Pada penelitian ini, dilakukan pemodelan dan simulasi reaktor terstruktur gauze menggunakan Computational Fluid Dynamics yang mengacu pada kinetika Snoeck, 1997. Pemodelan hanya mempertimbangkan neraca massa dan momentum, di mana reaktor diasumsikan bersifat isotermal.
Simulasi dilakukan dengan mengubah-ubah variabel proses seperti temperatur reaktor, komposisi masukkan, tekanan masukkan, dan kecepatan masuk. Melalui simulasi variasi proses, dapat diketahui pengaruh perubahan kondisi operasi terhadap kinerja reaktor, seperti pada kenaikan temperatur akan menyebabkan konversi reaktor semakin meningkat.

Gauze structured reactors are used as the solution of problems found in the use of fixed bed reactor for reaction of catalytic decompotition methane. Gauze structured reactor has several advantages, having a low pressure drop and higher conversion.
In this study, the modeling and simulation of structured gauze reactor using Computational Fluid Dynamics refers to the kinetic Snoeck, 1997. Modelling only consider the mass balance and momentum, where the reactor is assumed to be isothermal.
Simulations carried out by varying process variables such as reactor temperature, inlet composition, inlet pressure and inlet velocity. Through the simulation process variations, we can know the effect of changing operating conditions on reactor performance, such as the rise in temperature will cause the reactor conversion increases.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51793
UI - Skripsi Open  Universitas Indonesia Library
cover
Hendro
"Menentukan karakterisitik reaktor pelat sejajar dapat dilakukan dengan pemodelan dan simulasi dengan menggunakan pemrograman komputer, Computational Fluid Dynamics (CFD). COMSOL Multiphysics adalah salah satu program CFD. Fokus penelitian ini adalah mengenai pembuatan model yang dapat mengintegrasikan tiga persamaan (neraca massa, energi dan momentum). Sehingga dapat digunakan untuk memperoleh informasi mengenai hidrodinamik, pola aliran serta fenomena perpindahan dan mengetahui pengaruh kondisi operasi terhadap kinerja reaktor pelat sejajar. Kecepatan fluida dipengaruhi perbedaan tekanan, tekanan parsial hidrogen serta faktor friksi dengan dinding dan pelat. Konversi terbesar adalah 37.84% pada area pusat reaktor (y = -0.003). Temperatur dipengaruhi akibat adanya reaksi dan panas furnace.

Determining the characteristic of parallel-plate reactor can be done with modeling and simulation using computer programming, Computational Fluid Dynamics (CFD). COMSOL Multiphysics is one of CFD programs. The focus of this research is about creating a model that can integrate three equations (mass, energy and momentum balance). So it can be used to obtain information on the hydrodynamic, flow pattern, transport phenomenon and determine the influence of operating conditions on the performance of parallel-plate reactor. Fluid velocity is affected by pressure drop, the partial pressure of hydrogen and friction factor with the wall and the plate. The biggest conversion is 37.84% in the central area of the reactor (y = -0.003). Temperature is affected due to the reaction and heat from the furnace. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
S916
UI - Skripsi Open  Universitas Indonesia Library
cover
Francy
"Scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity menghasilkan laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter gauze 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm 2. Penelitian ini bertujuan untuk memproduksi nanokarbon dan hidrogen dengan katalis terstruktur gauze melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al. Pada reaktor katalis terstruktur gauze ini dilakukan uji aktifitas selama 20 menit dan uji stabilitas selama 17 jam pada suhu 700°C. Untuk uji stabilitas dengan 20 L/jam metana, konversi metana tertinggi adalah 96,77% dan kemurnian hidrogen tertinggi adalah 97,46%. Yield karbon yang dihasilkan oleh 1,83 gram katalis adalah 170,36 gram karbon. Untuk uji aktivitas dengan laju alir metana 6 L/jam diperoleh konversi metana tertinggi adalah 76,1% dan kemurnian hidrogen tertinggi adalah 79,3%. Yield karbon yang dihasilkan oleh 1,81 gram katalis adalah 57,34 gram karbon. Dari hasil percobaan diperoleh bahwa kapasitas reaktor ini adalah 393,19 gram/hari.

Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity results in 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm gauze diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to produce nanocarbon and hydrogen by gauze-type structural catalyst through catalytic decomposition of methane with Ni-Cu-Al catalyst. Two experiment that have already done are stability test for 17 hours and activity test for 20 minutes at 700°C. In stability test with 20 L/h methane flow, the highest conversion of methane is 96,77% and the highest hydrogen purity is 97,46%. Yield carbon that produced by 1,83 gram catalyst is 170,36 gram carbon. In activity test with 6 L/h methane flow, the highest conversion of methane is 76,1% and the highest hydrogen purity is 79,3%. Yield carbon that produced by 1,81 gram catalyst is 57,34 gram carbon. From the experiment, the production capacity of the reactor is 393,19 gram C/day."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52239
UI - Skripsi Open  Universitas Indonesia Library
cover
Siregar, Riyandi Chairul
"Evaluasi dan perbaikan desain scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity. Menggunakan basis data scale up laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter wire 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm2. Penelitian ini bertujuan untuk memperbaiki desain reaktor dan sistem produksi pada reaktor dengan katalis terstruktur wire melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al untuk memproduksi nanokarbon dan hidrogen. Pada reaktor katalis terstruktur wire ini dilakukan uji kinerja selama 860 menit pada suhu 700_C. Konversi metana tertinggi adalah 41,66% dan kemurnian hidrogen tertinggi adalah 30,45%. Yield karbon yang dihasilkan oleh 4,71 gram katalis adalah 179,15 gram karbon.

Evaluation and improvement design of Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity. Seize on scale up data, 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm wire diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to improve reactor design and production system by gauze-type structural catalyst reactor through catalytic decomposition of methane with Ni-Cu-Al catalyst. Performance experiment that have already done during 860 minutes at 700_C are stability test for 17 hours and activity test for 20 minutes of gauze structural catalyst at 700_C. The highest conversion of methane is 41,66% and the highest hydrogen purity is 30,45%. Yield carbon that produced by 4,71 gram catalyst is 179,15 gram carbon."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51701
UI - Skripsi Open  Universitas Indonesia Library
cover
Refani Iskandar
"Penelitian ini dilakukan untuk mendapatkan rancangan reaktor katalis terstruktur pelat sejajar yang digunakan untuk memproduksi nanokarbon dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis multimetal Ni-Cu-Al 3:2:1. Pada reaktor katalis terstruktur pelat sejajar ini dilakukan pengujian untuk 20 menit dan 355 menit reaksi. Pada 20 menit reaksi, konversi metana tertinggi yang didapat adalah 70,16% dengan kemurnian hidrogen 74,29% dan yield karbon 2,58 gram. Pada 355 menit reaksi, didapatkan bahwa konversi metana mengalami penurunan dari 76,15% hingga 46,06% dan naik kembali pada menit ke-235 sebesar 59,90% kemudian cenderung stabil setelah menit ke-235. Pada 6 jam reaksi uji stabilitas, yield karbon yang dihasilkan 17,25 gram.

The purpose of this research is to construct plate catalyst structured to produce nanocarbon and hydrogen with catalytic decomposition of methane. Catalyst which is used in this research is multimetal catalyst, Ni-Cu-Al 3:2:1. Two experiment that had already done were twenty minutes and 355 minutes reactions. The highest conversion of methane is 70,16% and 74,29% hydrogen purity for twenty minutes reaction and yield carbon was 2,58 gram. For 355 minutes reaction, the conversion of methane decreasing from 76,15% to 46,06% and increase to 59,90%. After that, methane conversion relative stabil. After 355 minutes reaction , yield carbon was 17,25 gram."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51732
UI - Skripsi Open  Universitas Indonesia Library
cover
Haris Fasanuyasirul
"Gas sintesis (syngas) dari gas bumi merupakan bahan baku masa depan untuk industri energi dan kimia dalam teknologi Gas to Liquid (GTL). Konsep produksi syngas melalui reformasi autotermal ditemukan oleh Lurgi and Haldor Topsoe (1996) untuk mengatasi masalah konsumsi energi dengan cara menggabungkan proses oksidasi dan reformasi kukus metana dalam satu reaktor. Dalam penelitian ini dilakukan pemodelan dan simulasi reaktor unggun tetap untuk reformasi autotermal dengan menggunakan kinetika Xu dan Froment (1989) untuk reformasi Metana dan Ma dkk (1996) untuk oksidasi Metana.
Penelitian ini dilakukan karena dalam melakukan desain, optimisasi dan scale-up reaktor perlu dilakukan prediksi dan estimasi untuk mengetahui berbagai parameter yang terlibat dalam sistem sehingga dapat merekayasa sistem pada kondisi yang seefisien mungkin. Validasi model dilakukan dengan data-data eksperimen skala laboratorium (Scognamiglio dkk., 2009) dan simulasi dilakukan dengan bantuan program COMSOL.
Hasil validasi pada temperatur 970 K, tekanan 2 atm dan rentang laju alir 2,5x10-4 - 1x10-4 Nm3/s menunjukkan deviasi rata-rata sebesar 0,74% pada konversi Metana dan kesesuaian yang bagus untuk selektivitas produk. Hasil simulasi menunjukkan kondisi optimum yaitu pada laju alir 1x10-4 Nm3/s, tekanan 400 kPa dan rasio S/C = 0 dengan perolehan konversi metana dan yield syngas masing-masing 0,96 dan 0,66.

Synthesis gas (syngas) from natural gas is a future energy and chemical industry feedstock in Gas To Liquid technology. Syngas production concept via autothermal reforming is found by Lurgi and Topsoe to overcome energy consumption by combining oxidation and steam reforming process in one reactor. In this research, packed bed reactor modeling and simulation conducted for autothermal reforming using kinetics model and parameter suggested by Xu and Froment (1989) for reforming reactions and Ma et al (1996) for oxidation reaction.
This research held because in reactor design, optimization and scale-up, it is necesarry to predict the reactor performance so that the design can be done efficienly. Model validation conducted using laboratory scale experimental data (Scognamiglio et al, 2009) and the simulation aimed by COMSOL Multiphysics software.
The validation result at 970 K, 2 atm, flow range 2,5x10-4 - 1x10-4 Nm3/s shows average deviation 0,74% on methane conversion and good agreement on the product selectivity. The simulation result shows that the optimum condition is at flow rate 1x10-4 Nm3/s, pressure 400 kPa and S/C ratio = 0 with methane conversion and syngas yield attained respectively 0,96 and 0,66.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S42375
UI - Skripsi Open  Universitas Indonesia Library
cover
Wihardi Setyo Wicaksono
"Carbon nanotube (CNT) adalah bentuk baru dari karbon murni yang memiliki banyak kegunaan. Perengkahan metana adalah salah satu proses untuk sintesis hidrogen dan CNT yang memiliki kelebihan tidak menghasilkan karbon monoksida dan karbon dioksida. Sebelum memproduksi CNT dan hidrogen berbasis reaksi dekomposisi katalitik metana dengan skala pabrik, diperlukan simulasi dan pemodelan dari hasil eksperimen reaktor lab.
Tujuan dari penelitian ini adalah untuk mendapatkan model matematika tak berdimensi reaktor unggun tetap yang valid dan menganalisis pengaruh dari variasi kondisi operasi terhadap konversi metana. Metode untuk penelitian adalah mengembangkan model persamaan-persamaan matematika berdasarkan neraca massa, momentum, dan energi. Persamaan-persamaan tersebut kemudian di-running pada perangkat lunak COMSOL Multiphysics® versi 4.4.
Konversi metana pada waktu reaksi 315 menit adalah 97,1% dan yield karbon yang didapatkan setelah 315 menit adalah 1,12 g karbon/g katalis. Kenaikan pada tekanan umpan, laju alir umpan, dan fraksi mol hidrogen akan memperkecil konversi metana. Kenaikan temperatur dinding reaktor dan panjang reaktor akan memperbesar konversi metana.

Carbon Nanotube (CNT) is a new form of pure carbon that have a lot of usefulness. Methane cracking is one of process for the synthesis of hydrogen and CNT which have advantage to not produce carbon monoxide and carbon dioxide. Before producing CNT and hydrogen base on the reaction of methane catalytic decomposition in plant scale, it is needed to done simulation and modelling from result of lab reactor experiment.
Purpose of this research is to get valid dimensionless model of fixed bed reactor and to analyze the variation effect of operation condition to methane conversion. Method for this research is develop model of mathematic equations based on mass, momentum, and energy balance. Software COMSOL Multiphysics® version 4.4 then used to running the equations.
Methane conversion at 315 minutes reaction time is 97.1% and carbon yield obtained after 315 minutes reaction time is 1.12 g carbon/g catalyst. Increasing feed pressure, velocity, and hydrogen mole fraction will decrease methane conversion. Increase of reactor wall temperature and reactor length will increase methane conversion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59617
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramaniya Anindita Wandawa
"Penelitian dilakukan untuk melakukan uji kinerja reaktor katalis terstruktur pelat untuk produksi carbon nanotube dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis Ni-Cu-Al dengan perbandingan molar 2:1:1. Reaksi dekomposisi katalitik metana dilakukan pada suhu 700oC selama 5 jam, dengan variasi space time 0,0006; 0,0032; 0,006 gr min/mL. Hasil uji kinerja tertinggi didapatkan pada space time 0,006 gr min/mL dengan konversi metana tertinggi 83,01% , kemurnian hidrogen tertinggi 70,23% , dan yield karbon 2,5 gr/gr katalis. Carbon nanotube yang dihasilkan memiliki diameter dalam 7,5-15 nm dan berbentuk Y-junction.

Abstract
The purpose of this research is to test the performance of plate structured catalyst to produce carbon nanotube and hydrogen via catalytic decomposition of methane. In this research, catalyst of Ni-Cu-Al with the molar ratio by 2:1:1 was used. The decomposition reaction took place at 700oC temperature for 5 hours, using 0,0006; 0,0032; and 0,006 gr min/mL space time variations. The maximum performance space-time was 0,006 gr min/mL with 83,01% for the highest number of methane conversion, 70,23% for the highest number of hydrogen purity, and 2,5 gr C/ gr catalyst carbon yield. The carbon nanotubes produced from the research were Y-junction-shaped and have 7,5-15 nm inner diameter.
;"
Fakultas Teknik Universitas Indonesia, 2012
S43475
UI - Skripsi Open  Universitas Indonesia Library
cover
Ira Yulianti
"Dekomposisi katalitik metana adalah salah satu alternatif untuk memproduksi hidrogen dan nanokarbon bermutu tinggi secara simultan. Nanokarbon banyak diaplikasikan dalam penyimpanan hidrogen, support katalis, alat penyimpan memory, penyimpanan emisi, dan industri polimer, sedangkan hidrogen dapat digunakan sebagai umpan pada sel bahan bakar (fuel cell) yang ramah lingkungan karena apabila dibakar tidak menghasilkan polutan. Masalah yang biasanya timbul dalam reaksi dekomposisi katalitik metana ini adalah terjadinya deaktivasi katalis akibat deposit karbon dan terjadinya pressure drop di dalam reaktor.
Penelitian ini bertujuan menguji kinerja reaktor dengan katalis terstruktur untuk mengatasi pressure drop di dalam reaktor. Katalis Ni-Cu-Al dipreparasi dengan menggunakan metode sol-gel dengan perbandingan atomik 2:1:1. Katalis ini dilapisi pada kawat stainless steel yang telah dibentuk dengan metode dip coating. Reaksi dilakukan dengan mengalirkan metana ke dalam reaktor pada temperatur 650°C dan 700°C serta tekanan atmosferik. Produk gas dianalisis dengan menggunakan gas chromatography yang terpasang secara online dengan aliran keluar reaktor. Penggunaan katalis terstruktur pada dua temperatur berbeda ini dapat menghasilkan konversi metana hingga 87.55 % dan 94.87%. Produk dari reaksi dekomposisi katalitik metana berupa hidrogen memiliki kemurnian hingga 87.53% dan 95.14%.
Karbon yang dihasilkan memiliki yield 28.45 dan 32.85 gr karbon/gr katalis untuk waktu reaksi 8.4 jam. Untuk reaksi selama 33 jam menghasilkan 201 gr karbon/gr katalis. Karakterisasi dengan menggunakan TEM menunjukkan karbon yang dihasilkan berbentuk nanotube dengan diameter 50-100. Pada reaktor dengan katalis terstruktur ini tidak terjadi pressure drop yang dapat mengakibatkan berakhirnya reaksi. Reaksi berakhir karena katalis sudah terdeaktivasi akibat tertutupnya permukaan katalis oleh deposit karbon. Lifetime katalis dapat mencapai 33 jam dan masih dapat berlanjut.

Methane decomposition is an alternative way to produce high quality carbon nanotubes (CNTs) and hydrogen simultaneously. CNTs can been used for various applications such as hydrogen storage, electronic device, composite materials, field emission source, and catalyst support. Hydrogen can be used as the future clean energy resource such as for fuel cells, which doesn't emit pollutants when combusted. The problem often found in methane catalytic decomposition is the presence of pressure drop. This problem is expected to be solved by designing a structured catalyst reactor.
In this experiment, Ni-Cu-Al catalyst is prepared by sol-gel method. Stainless steel wiremesh is coated with catalyst by dip coating method and put into a quartz tube reactor. The experiment was done at 650°C and 700°C with atmospheric pressure. Methane is fed into the reactor and decomposed by the catalyst. An online chromatograph is used to detect the gas products. The morphology of CNTs is characterized by TEM. The use of structured catalyst in these two different temperature gives conversion of methane up to 87.55 % and 94.87%. Hydrogen as the product has a purity of 87.53% dan 95.14% .
The carbon yields are 28.45 and 32.85 gr carbon / gr catalyst for 8.4 hours of reaction. For 33 hours of reaction, the yield becomes 201 gr carbon/ gr catalyst. TEM characterization shows that the diameter of CNTs are between 50-100 nm for both cases. Pressure drop isn't found in this structured catalyst reactor which could end the reaction. The reaction ends when the catalyst is deactivated due to carbon deposit on the catalyst. The lifetime of the catalyst can reach 33 hours and can still continue.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49673
UI - Skripsi Open  Universitas Indonesia Library
cover
Anisa Afianty
"Dekomposisi katalitik metana adalah salah satu alternatif untuk memproduksi hidrogen dan nanokarbon bermutu tinggi secara simultan. Nanokarbon banyak diaplikasikan dalam penyimpanan hidrogen, support katalis, alat penyimpan memory, penyimpanan emisi, dan industri polimer, sedangkan hidrogen dapat digunakan sebagai umpan pada sel bahan bakar (fuel cell) yang ramah lingkungan karena apabila dibakar tidak menghasilkan polutan. Masalah yang biasanya timbul dalam reaksi dekomposisi katalitik metana ini adalah terjadinya deaktivasi katalis akibat deposit karbon dan terjadinya pressure drop di dalam reaktor. Penelitian ini bertujuan menguji kinerja reaktor dengan katalis terstruktur untuk mengatasi pressure drop di dalam reaktor. Katalis Ni/Cu/Al2O3 dipreparasi dengan menggunakan metode sol-gel. Katalis ini dilapisi pada kawat stainless steel yang telah dibentuk dengan metode dip coating. Reaksi dilakukan dengan mengalirkan metana ke dalam reaktor pada temperatur 650_C dan tekanan atmosferik. Produk gas dianalisis dengan menggunakan gas chromatography yang terpasang secara online dengan aliran keluar reaktor. Penggunaan katalis terstruktur ini dapat menghasilkan konversi metana hingga 59,57 %. Produk dari reaksi dekomposisi katalitik metana berupa hidrogen memiliki kemurnian hingga 99,32 %. Karbon yang dihasilkan memiliki yield 56,89 gr karbon/gr katalis. Karakterisasi dengan menggunakan TEM menunjukkan karbon yang dihasilkan berbentuk nanotube dengan diameter 30-50 nm dan ketebalan dinding 10- 20 nm. Pada reaktor dengan katalis terstruktur ini tidak terjadi pressure drop yang dapat mengakibatkan berakhirnya reaksi. Reaksi berakhir karena katalis sudah terdeaktivasi akibat tertutupnya permukaan katalis oleh deposit karbon. Lifetime katalis dapat mencapai 1340 menit atau 22,33 jam.

Methane decomposition is alternative way to produce high quality carbon nanotubes (CNTs) and hydrogen simultaneously. CNTs have been used for many applications such as hydrogen storage, electronic device, composite materials, field emission source, and catalyst support. Hydrogen can be used as clean energy sorce in the future. The solid CNTs products simultaneously produced make the catalyst deactive rapidly through blocking the active pores of catalyst or encapsulating the whole catalyst particle. Besides that, the CNTs products usually block the flow of methane and cause pressure drop. To solve that problem, reactor with structured catalyst is used in this research. Ni/Cu/Al2O3 catalyst was prepared by sol-gel method. Stainless steel gauze was coated with catalyst by dip coating method and was put in quartz reactor with 16 mm diameter. The experiment was done at 650 _C and atmospheric pressure. Methane (20 ml/min) was fed into the reactor and decomposed by the catalyst. An online chromatograph was used to detect the gas product. The morphologies of CNTs were characterized by using TEM. The using of structured catalyst in this experiment can give conversion of methane up to 59.57 % and yield carbon 56.89 gr carbon/gr catalyst. The hydrogen which is produced from reaction has high purity up to 99.32 %. TEM characterization shows carbon produced from this experiment has nanotubes morphologies with 30-50 nm diameter and 10-20 wall thickness. There was no pressure drop that happen in this experiment and the catalyst lifetime reach 1340 minutes or 22.33 hours."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S49717
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>