Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 85132 dokumen yang sesuai dengan query
cover
Muhammad Zaki Muliawan
"Penelitian adsorpsi masih sangat jarang, demikian juga model yang akurat menggambarkan adsorpsi gas. Model sekarang yang paling banyak dipakai dalam permodelan seperti adorpsi isoterm BET biasanya diterapkan untuk aplikasi adsorpsi gas tunggal. Sedangkan penggunaan dan akurasinya didalam adsorpsi multikomponen masih banyak dipertanyakan, terutama pada gas tekanan tinggi. Sehingga, diperlukan suatu kajian yang lebih untuk mengevaluasi penerapan model adsorpsi isoterm BET pada adsorpsi gas multikomponen dan tekanan tinggi, serta memodidikasinya jika diperlukan untuk dapat merepresentasikan data percobaan secara lebih akurat.
Penelitian dilakukan dengan menggunakan data eksperimen adsorpsi dari literatur baik berupa adsorpsi gas tunggal maupun gas campuran. Data eksperimen ini melibatkan adsorben yaitu karbon aktif dan zeolit, pada range suhu 213-373 K, dan tekanan 7x10-4-3,84 Mpa. Data adsorbsi gas tunggal digunakan untuk menentukan parameter-parameter setiap komponen yang ada dalam model BET dengan cara meminimalkan error dari model BET kemudian parameter ini digunakan untuk memprediksi adsorpsi campuran gas.
Hasil Penelitian menunjukkan bahwa model BET dapat merepresentasikan data experimen untuk adsorbsi gas tunggal baik dengan adsorben karbon aktif maupun zeolit hal ini dapat dilihat dari nilai AAPD total rata-rata dibawah 6 %. Model BET untuk campuran yang berasal dari modifikasi Langmuir kurang dapat memprediksi nilai adsobsi gas dua komponen dan tiga komponen yang ditunjukkan dengan AAPD total ± 20 %. Penambahan faktor koreksi Eij dapat memperbaiki model BET untuk sistem dua dan tiga campuran hal ini dilihat dari menurunnya AAPD total secara signifikan sebesar 8%.

Experiments in adsorption are seldom, and also about the model that can accurately represent adsorption gas. Current model that mostly used in adsorption as BET model is usually used for single gas adsorption. But its application and the accuracy in multi-component adsorption are still questioned, especially in high pressure gas adsorption. So we need to study to evaluate the use of BET adsorption isotherm model for multi-component and high pressure, and also modify it if necessary for accurately representing the adsorption gas experiment.
This study is done using experimental data adsorption from literature including single and mixture adsorption gas. This experimental data used active carbon and zeolite adsorbent. The range of temperature is 213-373 K and pressure from 7x10-4 to 3, 84 MPa. Single gas data adsorption is used to determine the parameters of each component in BET model, by minimalizing error in BET model. After that these parameters are used to predict mixture adsorption gas.
The result of study prove that the BET model can represent single gas adsorption data experiment reasonably good on carbon active and zeolite adsorbent represented by AAPD total under 6 %. BET model for mixture from Langmuir modification cannot reasonably predict the binary and ternary adsorption gas value, shown by AAPD total ± 20 %. Adding Eij corection factor on BET model can improve the binary and ternary gas adsorption prediction, this can be seen from significantly decreasing AAPD total to 8%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51902
UI - Skripsi Open  Universitas Indonesia Library
cover
Panji Dermawan
"Pada umumnya proses pengolahan gas yang berlangsung di dalam industri terjadi terjadi pada keadaan tekanan tinggi sehingga pengetahuan dan pengembangan teknik adsorpsi gas pada tekanan tinggi sangatlah diperlukan. Dalam suatu proses, biasanya dilakukan beberapa pendekatan melalui model atau persamaan empiric untuk mengoptimasikan proses secara efektif dan efisien.
Salah satu model yang biasa digunakan adalah model BET. Model BET memiliki kelebihan yaitu dapat digunakan untuk adsorpsi gas secara multilayer, tetapi juga memiliki kelemahan jika digunakan untuk merepresentasikan data adsorpsi gas pada tekanan tinggi. Hal ini disebabkan model adsorpsi BET merupakan adsorpsi absolut yaitu suatu angka hipotesis yang tidak pernah dapat terukur secara percobaan karena yang terukur dari suatu percobaan sebenarnya adalah apa yang disebut sebagai - adsorpsi Gibbs - .
Data adsorpsi Gibbs seiring dengan kenaikkan tekanan akan menunjukkan kenaikkan dari jumlah zat yang teradsorpsi sampai pada titik tekanan tertentu (maksimum) kemudian saat tekanan terus dinaikkan akan mengalami penurunan jumlah zat teradsorpsi sedangkan model BET nilainya akan terus naik. Perbedaan ini menggambarkan bahwa model BET merupakan kondisi yang nyata (absolut) sedangkan model Gibbs merupakan kondisi yang ideal dari eksperimen Untuk mengatasi permasalahan tersebut, kita memerlukan modifikasi pada model BET.
Hasil Penelitian menunjukkan bahwa model modifikasi BET dapat merepresentasikan data eksperimen adsorpsi gas pada tekanan tinggi dengan lebih baik dibandingkan dengan model BET. Hal ini dapat diketahui dari nilai Average Absolute Percent Deviation (AAPD) yang dihasilkan dari model modifikasi BET nilainya lebih kecil dibandingkan dengan nilai AAPD dari model BET. Hasil pengolahan data dari eksperimen adsorpsi gas dengan menggunakan adsorben karbon aktif, zeolit, batu bara, dan silika gel masing-masing diperoleh nilai AAPD untuk model modifikasi BET adalah 1,98 %; 1.00 %; 3,12 %; dan 3,38 % sedangkan model BET adalah 2,48 %; 2,02 %; 3,29 %; dan 3,36 %.

Gas treatment processes in industry are usually occurred at high pressure condition. In the gas adsorption process, some approach can be used a model or empirical equation to optimize gas adsorption process effectively and efficiently.
BET model is one of the popular models used. BET model can be used for multilayer gas adsorption, but it has also weakness to present the gas adsorption data at high pressure condition. As an absolute model, BET has hypothetical value that never be measured in practice because the result of the experiment is 'Gibbs adsorption'.
Gibbs adsorption shows that if the pressure increases it will also increase the amount of adsorption, until it reaches maximum value, then the amount of adsorption will decrease by increasing pressure, while the BET model will decrease. This phenomenon shows that BET model is a real (absolute) condition, while Gibbs model is an ideal condition of experiment. To solve this problem we need some modification of BET model to make better representation of the adsorption data.
The results of experiment prove that the modification of BET can represent gas adsorption data better than BET model. This can be shown by its lower value of AAPD, compared to BET without modification. The AAPD value for BET modification from gas adsorption evaluation using active carbon, zeolite, coal, and silica gel as adsorbent are 1,98 %; 1.00 %; 3,12 %; and 3,38 % while BET model are 2,48 %; 2,02 %; 3,29 %; and 3,36 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52205
UI - Skripsi Open  Universitas Indonesia Library
cover
Rizky Romadhona
"Pada proses pemurnian gas dari komponen - komponen pengotornya, diterapkan prinsip adsorpsi. Adsorpsi merupakan salah satu metode yang digunakan untuk memisahkan komponen-komponen yang ada dalam suatu campuran. Pemisahan yang terjadi pada adsorpsi ini terjadi karena adanya perbedaan afinitas suatu komponen terhadap adsorben yang ada pada kolom adsorpsi sehingga dengan demikian komponen tersebut dapat dipisahkan. Salah satu persamaan yang paling sering digunakan dalam menggambarkan proses adsorpsi adalah persamaan Langmuir. Persamaan ini dapat menjelaskan fenomena adsorpsi gas pada tekanan rendah dengan baik tetapi pada kondisi adsorpsi gas tekanan tinggi, data yang dihasilkan dengan menggunakan persamaan ini tidaklah baik. Hal ini disebabkan terutama karena persamaan Langmuir menggambarkan kondisi adsorpsi absolut sedangkan untuk data eksperimen didasarkan pada persamaan adsorpsi Gibbs, dimana ada perbedaan persepsi dalam menyatakan volum gas yang terlibat.
Penelitian ini bermaksud untuk melakukan modifikasi terhadap persamaan Langmuir dalam merepresentasikan data eksperimen adsorpsi gas pada tekanan tinggi. Sehingga kelemahan dari persamaan Langmuir dalam merepresentasikan data eksperimen pada kondisi ini dapat teratasi atau menjadi lebih baik. Hasil penelitian menunjukkan bahwa secara keseluruhan persamaan hasil modifikasi merepresentasikan data eksperimen lebih baik dibandingkan persamaan Langmuir. Hal ini dapat ditunjukkan secara umum dari nilai AAPD (Average Absolute Percent Deviation) persamaan modifikasi lebih rendah dibandingkan nilai AAPD persamaan Langmuir.
Hasil pengolahan data dengan persamaan modifikasi dengan menggunakan karbon aktif sebagai adsorben memiliki nilai AAPD sebesar 3,04 sedangkan untuk persamaan Langmuir sebesar 3,54. Begitu pula dengan hasil pengolahan data yang menggunakan zeolit dan batu bara sebagai adsorben. Nilai AAPD persamaan modifikasi dengan zeolit sebagai adsorben sebesar 3,75 dan nilai AAPD persamaan Langmuirnya sebesar 4,09. Nilai AAPD untuk sistem yang diolah dengan menggunakan persamaan modifikasi dengan batu bara sebagai adsorben lebih rendah dibandingkan dengan nilai AAPD persamaan Langmuirnya. Nilai AAPD persamaan modifikasi dengan batu bara sebagai adsorben sebesar 0,69 sedangkan nilai AAPD persamaan Langmuirnya sebesar 0,73.

Adsorption is a method which used to separate a mixed into components. Separation can occur because of affinity differentiation from one component into adsorbent than others component at adsorption coloumn. Principle of adsorption is applied for gas purification from impurities. Langmuir model is an equation which usually used for represent adsorption process. This model can explain gas adsorption phenomenon at low pressure very good but it couldn't do that at high pressure. At high pressure a data which represented by this model is not fit with experiment data, it's ultimately because of Langmuir model represented adsorption proces based on absolute adsorption, meanwhile experiment data represented adsorption process based on Gibbs adsorption. There are differentiation gas volume involved perseption between absolute adsorption and Gibbs adsorption. The experiment is conducted to modify Langmuir model.
An objective of experiment is try to solve a weakness of Langmuir model when it represent gas adsorption data at high pressure. From experiment a weakness of Langmuir model to represent gas adosprtion data at high pressure try to be solved so it will be better than before. We can know about it from AAPD (Average Absolute Percent Deviation) both for Langmuir model or modification model. As generally, result of experiment shows that modification model had better performance than Langmuir model on represent gas adsorption data which it's show AAPD value from modification lower than AAPD value from Langmuir model.
From data calculation with modification model the AAPD value of a system which used activated carbon as adsorbent is 3.04. Meanwhile for data calculation with Langmuir model in the same system, the AAPD value is 3,54. We also can find out this result in data calculation of a system which used zeolit and coal as adsorbent. Data calculation with modification model got AAPD value of a system which used zeolit as adsorbent is 3,75 but in the same system which used calculation with Langmuir model got it's value as 4,09. And for data calculation with modification model got AAPD value of a system which used coal as adsorbent is 0,69, in otherwise calculation with Langmuir model got AAPD value as 0,73.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52200
UI - Skripsi Open  Universitas Indonesia Library
cover
Asep Ruhiat
"Adsorpsi merupakan salah satu proses pemisahan yang biasa dilakukan dibidang industri gas dan petrokimia. Penelitian mengenai adsorpsi banyak dilakukan terutama mengenai adsorben dan peningkatan siklusnya. Penelitian juga dilakukan untuk pengembangan model-model mengenai adsorpsi. Banyak model adsorpsi yang telah dikembangkan diantaranya Langmuir, BET, Dubinin-Radushkevich (DR), dll. Setiap model yang digunakan dalam merepresentasikan data adsorpsi memiliki tingkat keakuratan yang berbeda. Model Langmuir dan BET memiliki tingkat akurasi yang tidak terlalu baik terutama dalam merepresentasikan data adsorpsi pada tekanan tinggi.
Dalam penelitian sebelumnya telah dilakukan modifikasi persamaan Langmuir dan BET dengan penambahan koreksi terhadap densitas gas teradsorpsi, tetapi modifikasi persamaan tersebut hanya merubah tingkat akurasi yang tidak terlalu signifikan. Oleh karena itu pada penelitian ini akan digunakan persamaan DR untuk merepresentasikan data adsorpsi dari literatur. Persamaan DR ini telah terbukti dapat merepresentasikan data adsorpsi dengan baik. Selain itu akan dilakukan modifikasi pada persamaan DR dengan harapan dapat memperbaiki tingkat akurasi dibandingkan dengan persamaan DR secara aslinya. Modifikasi model DR dilakukan dengan memasukan pengaruh densitas adsorpsi sehingga memiliki tingkat akurasi yang lebih baik. Tingkat akurasi yang dihasilkan dapat ditunjukan dengan suatu parameter yaitu Average Absolute Percent Deviation (AAPD).
Hasil pengolahan data dengan menggunakan model DR pada data adsorpsi dengan menggunakan karbon aktif sebagai adsorben memiliki nilai AAPD sebesar 1,75% sedangkan untuk model hasil modifikasinya sebesar 1,12%. Pada adsorben lainnya yaitu zeolit AAPD yang dihasilkan model DR adalah sebesar 2,18% sedangkan model hasil modifikasinya adalah 1,98%. Sedangkan adsorpsi dengan jenis adsorben batubara nilai AAPD yang dihasilkan model DR adalah 1,37% dan model hasil modifikasinya adalah 0,98%. Secara kesuluruhan nilai AAPD yang dihasilkan oleh model DR dan modifikasinya lebih baik dari model Langmuir dan BET yang ditunjukkan oleh nilai AAPD yang dihasilkan oleh model tersebut lebih rendah daripada kedua model lainnya.

Adsorption is one of the separation process commonly used in gas and petrochemical industry. Many research on adsorption have concerned on adsorbent development, lifecycle and regeneration process. There are many research carried out for the development of models concerning the adsorption. Many models adsorption that have been developed. Among of them are Langmuir, BET, and Dubinin-Radushkevich. Each model can represent the adsorption data in the different level of accuracy. Langmuir model and BET have less accuracy in the representing the adsorption data at the high pressure conditions.
Previous researches modified had the Langmuir and BET models by substituting the density of the absorbate, but this modification give in significant changes in the accuracy level. In this research, the DR equation is used represent to the adsorption data from the literature. DR equation has been proven to be able to represent the adsorption data very well. Modification of DR equation is carried out to improve the accuracy level of the original DR equation. Modification of DR equation has been conducted by considering adsorption density influence. Accuracy level had been showed by level of Average Absolute Percent Deviation (AAPD) parameter.
The results on the DR equation on the adsorption data which use activated carbon as adsorbent gave AAPD 1.75%, whereas on the modified DR equation was 1.12%. On zeolite adsorbent the AAPD using DR equation was 2.18% while on the modified DR equation was 1.98%. The adsorption with coal as adsorbent on the AAPD value using DR equation was 1.37% and the modified DR equation result was 0.98%. DR equation and the DR modified gave better accuracy than the Langmuir model and BET; shown by lower AAPD value than the two other models (Langmuir & BET).
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51745
UI - Skripsi Open  Universitas Indonesia Library
cover
Octaviandy Sabran Syahputra
"Bahan bakar minyak (BBM) merupakan salah satu sumber daya yang tidak dapat diperbaharui. Penggunaan bahan bakar minyak (BBM) tidak diimbangi dengan sumber daya yang ada. Penggunaan terbesar bahan bakar minyak (BBM) adalah kendaraan bermotor. Produksi kendaraan bermotor semakin meningkat sepanjang tahun sehingga mengakibatkan kebutuhan akan bahan bakar minyak (BBM) semakin besar dan makin lama sumber daya minyak yang ada akan habis sedangkan sumber bahan bakar gas (BBG) masih sedikit dimanfaatkan. Selain itu efek BBM di pembakaran kendaraan bermotor dapat menghasilkan CH4 dan CO2 serta gas lainnya yang bisa menyebabkan efek rumah kaca. Dari efek rumah kaca tersebut mengakibatkan suhu permukaan bumi memanas yang disebabkan kadar CO2 dan CH4 meningkat. Hal tersebut mempunyai dampak yang sangat berbahaya bagi kehidupan dibumi. Untuk itu kita perlu suatu cara agar emisi dari pembakaran kendaraan bermotor berkurang dan memanfaatkan sumber bahan bakar gas (BBG) yang ada. Walaupun ada, penggunaannya masih sedikit karena tabung yang digunakan berukuran besar dan bertekanan 150 bar yang membuat konsumen ragu untuk memakainya serta stasiun pengisian yang sangat langka. Adsorpsi adalah salah satu cara atau metode yang efektif untuk mengurangi emisi gas buang. Adsorpsi adalah fenomena fisik yang terjadi antara molekul-molekul gas atau cair dikontakkan dengan suatu permukaan padatan. Penelitian ini membahas tentang kapasitas adsorpsi CH4 murni pada karbon aktif. Dalam penelitian ini karbon aktif yang digunakan adalah karbon aktif komersial (Carbotech). Pengukuran adsorpsi menggunakan metode yang mendekati yaitu metode volumetrik (isotermal) pada temperatur 30ºC dengan tekanan 30 bar. Tujuan dari penelitian ini untuk mendapatkan data kapasitas dan laju penyerapan pada karbon aktif hingga beberapa siklus kerja.

Fuel is one of non renewable resources. The consumption of fuel are not balanced with another resources. The biggest consumption of fuel is vehicle. The production of vehicles are increasing every year so that the consumption of fuel to high and longer of time, the fuel resources will be lost while the gas resources are less to use. Furthermore, the effect of fuel in combustion engine can produce CH4 and CO2 and another gases can create green house effect. From green house effect make increase temperature in the earth because the content of CO2 and CH4 are increasing. It has a dangerous impact for another life in the earth. For that we need something way to decrease the emission from the engine combustion vehicles and utilizing the gas resources. Although the gas resources are utilized by vehicle, the consumption of gas still little because the vessel to big size and has the pressure about 150 bar, that is make the people are so confuse to use it and the gas stations are rare. Adsorption is effective way to reduce gas emission which released. Adsorption is phenomena physics which happen between molecule-molecule gas or liquid to contact with a solid surface. This study discusses the capacity adsorption CH4 at activated carbon. In this research the activated carbon used is a commercial active carbon (Carbotech). Adsorption measurement use volumetric method (isothermal) at temperatures 30ºC with 30 bar pressure. The objective from this research is to get capacity data and the rate adsorption at activated carbon until several work cycle."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S50974
UI - Skripsi Open  Universitas Indonesia Library
cover
Yuda Prihatama
"Gas CO yang dihasilkan dari kasus kebakaran merupakan gas yang berbahaya dan beracun. Untuk mengurangi kadar senyawa gas CO dapat dilakukan dengan proses adsorpsi dengan menggunakan zeolit alam lampung sebagai adsorben. Proses perlakuan pada zeolit alam ini meliputi : Proses dealuminasi zeolit alam dalam larutan HF 2% kemudian proses perendaman dengan larutan HCl. Kemudian dilanjutkan dengan proses kalsinasi pada temperatur 500°C. Proses adsorpsi berlangsung secara kontinyu. Berdasarkan hasil aktivasi zeolit diperoleh peningkatan rasio Si/Al dari 7,56 menjadi 12,15, dan pada uji coba adsorpsi pada gas CO diperoleh efesiensi optimal sebesar 9,7% dengan ukuran adsorber 50 µm.

CO gas produced from gas fires are dangerous and poisonous. To reduce levels of CO gas compounds can be done by adsorption process using Lampung natural zeolite as an adsorbent. Treatment process on the natural zeolite include: natural zeolite dealumination process in 2% HF solution and then soaking process with a solution of HCl. Then proceed with the kalsination process temperature at 500°C. Adsorption processes take place continuously. Based on the results obtained zeolite activation ratio increased Si/Al from 7,56 to 12,15, and the testing of gas adsorption of CO obtained at optimum efficiency of 9,7% with the adsorber size of 50 µm."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51819
UI - Skripsi Open  Universitas Indonesia Library
cover
Anyi Salim
"Pencemaran udara dalam ruang (indoor air polution) dapat memberikan dampak yang berbahaya bagi kesehatan manusia. Polutan utama dalam indoor air polution adalah gas formaldehida. Adsorpsi dengan karbon aktif efektif dapat digunakan untuk mengurangi kadar formaldehida dalam ruangan. Pada penelitian ini dilakukan pembuatan karbon aktif dengan menggunakan bambu petung Indonesia untuk dikarbonasi dan selanjutnya diaktivasi kimia dengan KOH. Hasil karbon aktif lalu ditempelkan dengan partikel nano Ag.
Dari hasil uji luas permukaan untuk karbon dengan aktivasi fisika (KAF) diperoleh 205 m2/g dan aktivasi kimia sebesar (KAK) 698,8 m2/g. Selanjutnya Penambahan partikel nano Ag pada karbon aktif juga meningkatkan luas permukaan sebesar 12,3% yaitu pada karbon aktif dengan aktivasi kimia yang telah ditambahkan partikel nano Ag (KAK-Ag) menjadi 784,5 m2/g.
Uji adsorpsi menunjukkan bahwa pada konsentrasi kesetimbangan sekitar 20 ppm, karbon aktif dengan aktivasi kimia dan penambahan partikel nano Ag (KAK-Ag) mengadsorpsi sebesar 0,0335 mg/g, karbon aktif dengan aktivasi fisika dan penambahan partikel nano Ag (KAF-Ag) mengadsorpsi sebesar 0,0254 mg/g dan karbon aktif dengan aktivasi fisika (KAF) mengadsorpsi sebesar 0,0181 mg/g sehingga adanya penambahan nano partikel Ag meningkatkan kapasitas adsorpsi sebesar 40%.

Indoor air polution can give harmful effects to human health. The main pollutans in indoor air pollution is formaldehyde gas. Adsorption by activated carbon can be effectively used to reduce indoor formaldehyde levels. In this research, the manufacture of activated carbon using bamboo petung Indonesia to carbonation and then chemically activated with KOH. The results of the activated carbon then added with Ag nano particles.
From the test results the surface area for activated carbon by activation of physics (KAF) obtained 205 m2/g and chemical activation (KAK) of 698,8 m2/g. Further addition of Ag nano particles on activated carbon also increases the surface area 12,3% for activated carbon with chemical activation added Ag nano particles (KAK-Ag) to 784,5 m2/g.
Adsorption test showed that the equilibrium concentration of about 20 ppm, Activated Carbon with chemical activation and addition of nano Ag particle (KAK-Ag) adsorbs at 0,0335 mg/g, Activated Carbon with physical activation and addition of nano Ag particle (KAF-Ag) adsorbs at 0,0254 mg/g and Activated Carbon with Physical activation (KAF) adsorbs at 0,0181 mg/g, so with addition of nano Ag particle can increases adsorption capacity by 40%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43917
UI - Skripsi Membership  Universitas Indonesia Library
cover
David Wibawa Aji
"Pemanasan global diakibatkan oleh adanya polusi dari penggunaan bahan bakar fosil. Metana (CH4) yang merupakan komponen utama dalam gas alam, dapat menjadi sumber energi alternatif yang ramah lingkungan. Kendala dalam pengembangan energi ini yaitu adanya masalah dalam sisi penyimpanannya. Adsorpsi gas metana dalam Carbon Nanotube merupakan teknik penyimpanan gas metana yang efektif dan sangat menjanjikan untuk diaplikasikan pada sistem Adsorptive Storage. Pada penelitian ini, diuji kemampuan adsorpsi dan desorpsi adsorben jenis purified MWCNT (lokal) dan ACNT (komersil) terhadap gas metana pada 3 temperatur isotermal dan tekanan dengan rentang 0-1000 psi.
Hasil penelitian menunjukan bahwa semakin tinggi tekanan maka semakin besar gas metana yang terserap ke dalam adsorben baik untuk adsorben komersil maupun adsorben lokal, sampai pada suatu titik tekanan dimana kemampuan adsorpsi adsorben sudah mencapai maksimum dan kemudian tren yang terjadi akan menurun. ACNT komersil mempunyai kapasitas adsorpsi yang lebih tinggi dibandingkan dengan purified MWCNT lokal. Kapasitas adsorpsi maksimum purified MWCNT lokal sebesar 0.94%-wt pada tekanan 700 psi-dan temperatur isotermal 10 oC sedangkan ACNT komersil sebesar 3.06%-wt pada tekanan 600 psi-dan temperatur isotermal 10 oC. Mekanisme adsorpsi yang terjadi pada kedua adsorben didasarkan pada interaksi fisik. Secara umum, data adsorpsi metana dari kedua adsorben dapat direpresentasikan dengan baik oleh permodelan Langmuir, dengan % AAD di bawah-10.
Dari hasil data dinamika dapat diketahui bahwa proses adsorpsi dan desorpsi pada kedua adsorben berlangsung sangat cepat. Pada tekanan tertinggi (950 Psia), kesetimbangan adsorpsi pada ACNT komersil tercapai mendekati waktu-16 detik, sedangkan pada purified MWCNT lokal tercapai pada waktu 24 detik. Waktu pencapaian kesetimbangan pada proses adsorpsi dan desorpsi baik pada purified MWCNT lokal maupun ACNT komersil pada tekanan tinggi lebih cepat dibandingkan pada tekanan rendah. Secara keseluruhan dinamika adsorpsi dan desorpsi yang terjadi pada kedua adsorben baik pada tekanan rendah sampai tekanan tinggi dapat direpresentasikan dengan baik oleh model dinamika Gasem dan Robinson dengan % AAD di bawah 10.

Global warming caused by pollution from the use of fossil fuel. Methane (CH4) as main component of natural gas, can be alternative energy source that is environmentally friendly. Constraint in this energy development is problems within the sides of storage. Adsorption of methane gas in carbon nanotube is storage technique of methane gas that effective and very promising to be applied on a adsorptive storage system. In this research, would be tested the ability of adsorption and desorption of purified MWCNT (local) and ACNT (commercial) of the methane gas in 3 isothermal temperature variation and 0-1000 psi of pressure range.
The results showed that higher the pressure, the greater the methane adsorbed into the both adsorbent, until the point where the pressure of the adsorbent adsorption capability has reached a maximum and then the trend will decrease. Commercial ACNT has a higher adsorption capacity than the purified local MWCNT. The maximum adsorption capacity of purified local MWCNT is 0.94% -wt at pressure of 700 psi and isothermal temperature of 10 oC while the commercial ACNT is 3.06% -wt at pressure of 600 psi and isothermal temperature of 10 oC. The adsorption mechanism that occurs in two adsorbents based on physical interaction. In general, the methane adsorption data from both the adsorbent can be represented well by the Langmuir modeling, with AAD% under 10.
From the result of the dynamics data, it can be seen that the adsorption and desorption processes at both adsorbent are take place very quickly. At the highest pressure (950 psia), the adsorption equilibrium of commercial ACNT is reached approaching 16 seconds, while the local MWCNT purified reached in 24 seconds. Time achievement of equilibrium in the adsorption and desorption processes both at the local purified MWCNT and commercial ACNT at high pressure faster than at low pressure. The overall dynamics of adsorption and desorption occurring in the both adsorbents either at low pressure to high pressure can be represented well by the model dynamics of Gasem and Robinson with AAD% below 10.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64003
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arkanata Akram
"ABSTRAK
Isoterm dari proses adsorpsi biasanya digunakan untuk karakterisasi distribusi ukuran pori dan biasanya diukur secara eksperimental dengan alat volumetrik, yang terdiri dari sel dosis dan sel sampel. Skripsi ini bertujuan untuk membangun keseimbangan antara fase gas dan fase adsorben dengan menggunakan Simulasi 2V-NVT Monte Carlo, dengan dua volume untuk mewakili perangkat tersebut. Efek dari ukuran pori dan volume dosis pada karakteristik isoterm adsorpsi yang dipelajari menggunakan model adsorpsi argon dalam pori graphitic carbon pada temperatur 87 K. Dalam simulasi Monte Carlo untuk sistem adsorpsi, potensi fluida-fluida dan potensi solid-fluida merupakan bagian penting. Potensi fluida-fluida umumnya digambarkan oleh persamaan 12-6 Lennard-Jones, sementara potensi solid-fluida membutuhkan penjumlahan dari semua interaksi antara molekul adsorbat dan semua atom yang ada di permukaan adsorben. Tujuan kedua dari skripsi ini adalah untuk mendapatkan potensi solid-fluida untuk luasan adsorben terbatas yang berbentuk persegi panjang dan lingkaran. Pencapaian utama dari skripsi ini adalah untuk menurunkan persamaan tersebut. Sebagai rekomendasi ke depan, model solid-fluida yang telah dikembangkan sebaiknya diintegrasikan ke dalam Simulasi Monte Carlo.

ABSTRACT
Adsorption isotherms are commonly used for the characterization for pore size distribution and are usually measured experimentally with a volumetric device, which consists of a dosing cell and a sample cell. This project aims to establish an equilibrium between the gas phase and adsorbed phase by using 2V-NVT Monte Carlo simulation, with two volumes to represent such device. The effects of the sizes of pore and dosing volume on the behaviour of the adsorption isotherm are studied, where the model used is argon adsorption at 87K in a graphitic pore. In a Monte Carlo simulation of an adsorption system, the fluid-fluid potential and the solid-fluid potential are important. The former is commonly described by the 12-6 Lennard-Jones equation, while the solid-fluid potential requires the summation of all interactions between adsorbate molecule and all solid atoms in the surface. The second major aim of the project is to obtain the solid-fluid potential for a finite rectangular and disk shape patches. Under certain conditions these potentials become intermediate, and the major achievement of this project is to derive the limits of these equations, resolving the issue of intermediate problem. For future works, the developed solid-fluid model should be implemented into the simulation"
2016
S64618
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adianto Subroto
"Pada penelitian ini digunakan H-Zeolit hasil preparasi menggunakan metode pertukaran ion dengan NH4NO3. H-Zeolit ini dipakai untuk mengadsorpsi gas NH; dalam campurannya dengan gas Nitrogen secara siklus yang terdiri atas tahap adsorpsi dan regenerasi. Uji pengaruh suhu terhadap kapasitas adsorpsi dilakukan pada rentang suhu 100-350°C. Uji stabilitas dilakukan sebanyak 2,5 siklus dengan adsorpsi pada suhu 125°C dan regenerasi pada suhu 475°C. Untuk uji pengaruh air terhadap kapasitas adsorpsi, maka HZ dijenuhkan dengan air sebelum digunakan untuk mengadsorpsi NH; pada suhu 125 dan 100°C. Pada penentuan laju adsorpsi, dilakukan adsorpsi dengan variasi konsentrasi umpan pada temperatur adsorpsi 100°C.
Hasil penelitian menunjukkan kapasitas adsorpsi NH3, pada temperatur operasi 100, 125, 200, 300 dan 350°C adalah sebesar 1.72, 1.35, 0.90, 0.47 dan 0.33 mmol/gr H-Zeolit. Kapasitas adsorpsi pada suhu rendah lebih besar dibandingkan suhu yang lebih tinggi karena terjadi adsorpsi fisika dan kimia secara simultan.
Dari basil uji stabilitas diperoleh kapasitas adsorpsi siklus ke 1, 2, 3 secara berturut-turut adalah 1.35, 1.26 dan 1.16 mmol NH3/gr HZ. Kapasitas adsorpsi karena adanya pengaruh air untuk temperatur operasi 100 dan 125°C adalah sebesar 1.56 dan 1.26 mmol NH3/gr HZ atau mengalami penurunan sekitar 20% dibandingkan dengan kapasitas 'fresh' HZ. Persamaan laju awal adsorpsi pada temperatur 100°C dan W/F=0.03 g.menit/ml adalah r = 1.06x10-2 [NH3]0.82 mol NH3/g HZ. menit.
Studi kasus untuk konsentrasi gas buang NH3 3000 ppm dengan Iaju total gas buang 12 ton/jam., membutuhkan HZ sebanyak 11.98 ton atau 21.89 m3 dengan waktu tahap adsorpsi 2 jam 30 menit dan regenerasi 40 menit. Temperatur operasi yang digunakan adalah 125 ºC, yang merupakan temperatur keluaran stripper dan untuk meregenerasinya digunakan steam HP pada temperatur 475°C."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S48934
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>