Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 123575 dokumen yang sesuai dengan query
cover
Siregar, Riyandi Chairul
"Evaluasi dan perbaikan desain scale-up reaktor katalis terstruktur gauze untuk memperoleh 1 kg/hari nanokarbon dengan prinsip geometric similarity. Menggunakan basis data scale up laju alir metana 140 L/h, diameter reaktor 8 cm, panjang reaktor 32 cm, diameter wire 0,64 mm, jumlah mesh/inch 10, dan luas permukaan katalis 2938,982 cm2. Penelitian ini bertujuan untuk memperbaiki desain reaktor dan sistem produksi pada reaktor dengan katalis terstruktur wire melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-Al untuk memproduksi nanokarbon dan hidrogen. Pada reaktor katalis terstruktur wire ini dilakukan uji kinerja selama 860 menit pada suhu 700_C. Konversi metana tertinggi adalah 41,66% dan kemurnian hidrogen tertinggi adalah 30,45%. Yield karbon yang dihasilkan oleh 4,71 gram katalis adalah 179,15 gram karbon.

Evaluation and improvement design of Scale-up of gauze-type structural catalyst reactor to produce 1 kg/day nanocarbon by geometric similarity. Seize on scale up data, 140 L/h methane flow, 8 cm reactor diameter, 32 cm reactor length, 0,64 mm wire diameter, 10 meshes/inch, and 2938,982 cm2 catalyst surface area. The purpose of this experiment is to improve reactor design and production system by gauze-type structural catalyst reactor through catalytic decomposition of methane with Ni-Cu-Al catalyst. Performance experiment that have already done during 860 minutes at 700_C are stability test for 17 hours and activity test for 20 minutes of gauze structural catalyst at 700_C. The highest conversion of methane is 41,66% and the highest hydrogen purity is 30,45%. Yield carbon that produced by 4,71 gram catalyst is 179,15 gram carbon."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51701
UI - Skripsi Open  Universitas Indonesia Library
cover
Ajeng Nurcahyani
"Produksi Carbon Nanotube (CNT) mengalami permasalahan dengan terbatasnya hasil CNT jenis Aligned yang dikarenakan oleh banyaknya parameter desain yang mempengaruhi proses sintesis. Penelitian dengan tujuan untuk mendapatkan ACNT dilakukan dengan memvariasikan parameter desain yang digunakan, yaitu konsentrasi metana, jenis substrat, dan penghilangan hidrogen dari proses sintesis. Sintesis ACNT dilakukan dengan menggunakan Floating Catalyst CVD (FC-CVD) melalui reaksi dekomposisi katalitik metana. Hasil karakterisasi FE-SEM belum menunjukkan adanya CNT yang terbentuk sempurna dikarenakan proses deposisi katalis yang belum tepat terjadi sehingga menyebabkan karakteristik karbon berdiameter besar dan berbentuk amorf. Konsentrasi metana yang digunakan adalah 0,003M; 0,006 M; 0,012 M; 0,0148 M. Peningkatan konsentrasi metana menghasilkan peningkatan ukuran diameter CNT dari 28,28 nm untuk konsetrasi terendah hingga 66,72 nm untuk konsentrasi tertinggi. Konversi metana dan kemurnian hidrogen untuk 0,003 M adalah 80,57% dan 38,37% dan terus menurun untuk konsentrasi 0,0148 M mencapai 30,46% dan 19,21%. Sintesis dengan substrat SiO2 dan Al2O3 menghasilkan kualitas CNT, konversi metana, serta kemurnian hidrogen yang lebih baik dan lebih tinggi untuk SiO2. Nilai konversi metana serta kemurnian hidrogen yang dihasilkan pada reaksi tanpa hidrogen menghasilkan nilai yang rendah, yaitu 9,00% dan 1,26%. Hal tersebut secara signifikan menunjukkan bahwa peran hidrogen pada proses sintesis ACNT dengan metode FC-CVD sangat besar karena hidrogen mampu menurunkan suhu perengkahan ferrocene.

The production of Carbon Nanotubes (CNT) are having problem with the limited results of the Aligned CNT due to multiplicity of design parameters that affect the process of synthesis. Research with the goal to get the ACNT performed by varying the design parameters are used, namely methane concentration, type of substrate, and the removal of hydrogen from the process of synthesis. ACNT synthesis performed using Floating Catalyst CVD (FC-CVD) through catalytic decomposition of methane. Results of the characterization of FE-SEM has not shown the existence of CNT formed perfect due to the catalyst deposition process that has not exactly happened that caused a large diameter and amorphous-shaped carbon characteristics. Methane concentration used was 0,003 M; 0,006 M; 0,012 M; 0,0148 M. Increasing concentrations of methane generating augmenting the size of CNT diameter, out of the lowest concentrations was 28,28 nm to 66,72 nm for the highest concentration. Methane conversion and hydrogen purity to 0,003 M was 80,57% and 38,37% and continues to decline reach 30,46% and 19,21% for concentration of 0,0148 M. Synthesis with SiO2 and Al2O3 substrates produced quality of CNT, methane conversion, and hydrogen purity as well as a better and higher for SiO2. The value of methane conversion as well as the purity of the hydrogen produced in the reaction without hydrogen produces a low value, i.e. 9,00% and 1,26%. This significantly indicating that the role of hydrogen in ACNT process synthesis with FC-CVD method is enormous because hydrogen is able to lower the temperature of ferrocene decomposition."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41849
UI - Tesis Membership  Universitas Indonesia Library
cover
Nurul Dela
"Dekomposisi katalitik metana adalah salah satu alternatif untuk memproduksi hidrogen dan nanokarbon bermutu tinggi. Penggunaan reaktor unggun tetap untuk reaksi dekomposisi metana masih menjadi pilihan karena desainnya yang ekonomis dengan konversi dan yield yang cukup besar. Penelitian ini dilakukan untuk mengetahui kinerja reaktor unggun tetap skala laboratorium dengan menggunakan dimensi jumlah loading katalis yang lebih besar untuk menghasilkan karbon nanotube. Penelitian ini menggunakan variasi umpan dan laju alir untuk meninjau pengaruhnya terhadap reaksi dekomposisi katalitik metana. Katalis Ni-Cu-Al dipreparasi menggunakan metode kopresipitasi dengan perbandingan 2:1:1. Reaksi dilakukan dengan mengalirkan umpan yang divariasikan (CH4: H2 = 1:0 dan CH4: H2 = 1:1) pada tekanan atmosferik dengan memvariasikan laju alir ( 65 ml/menit dan 100 ml/menit) dan suhu reaksi 700 ̊ C. Produk gas dianalisis menggunakan gas chromatography yang terpasang secara online. Kinerja reaktor ditinjau dari konversi metana, yield karbon, dan kualitas nanokarbon yang dihasilkan. Adapun berdasarkan hasil penelitian diketahui bahwa kinerja reaktor terbaik ditinjau dari konversi dan yield karbon yang dihasilkan terjadi pada reaksi dengan laju alir umpan 100 ml/menit yang memberikan hasil konversi 99,38 % dan yield karbon 1,21 gr C/gr katalis. Hasil analisis menggunakan TEM menunjukkan bahwa morfologi nanokarbon yang paling baik didapat pada umpan CH4: H2 = 1:1.

Catalytic decomposition of methane is an alternative way to produce high quality carbon nanotubes (CNTs). The use of fixed bed reactors for catalytic decomposition of methane are still an option because its economical design with high conversion and yield. This research was perfomed to study laboratory scale fixed bed reactor performance using larger amount of catalyst loading dimension to produce carbon nanotube. This research uses a variation of feed composition and flow rate to review its influence on catalytic methane decomposition reaction. Ni-Cu-Al catalyst is prepared by coprecipitation method with atomic ratio 2:1:1. The reaction is carried out with the feed flow varied (CH4: H2 = 1:0 dan CH4: H2 = 1:1) at athmospheric pressure by varying the flowrate ( 65 ml/menit dan 100 ml/menit) and the reaction temperature is 700°C. An online gas chromatograph is used to detect the gas products. Reactor performances were observed from methane conversion, carbon yield and quality of nanocarbon that have been produced. Experiment result showed that the highest reactor performance of conversion and the resulting carbon yield in catalytic decomposition of methane with feed flowrate 100 ml/min which give conversion 99.38 % and carbon yield 1.21 gr C/gr catalyst, respectively. Based on TEM analysis indicated that the best nanocarbon morphology can be gained at CH4: H2 ratio of 1:1.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Refani Iskandar
"Penelitian ini dilakukan untuk mendapatkan rancangan reaktor katalis terstruktur pelat sejajar yang digunakan untuk memproduksi nanokarbon dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis multimetal Ni-Cu-Al 3:2:1. Pada reaktor katalis terstruktur pelat sejajar ini dilakukan pengujian untuk 20 menit dan 355 menit reaksi. Pada 20 menit reaksi, konversi metana tertinggi yang didapat adalah 70,16% dengan kemurnian hidrogen 74,29% dan yield karbon 2,58 gram. Pada 355 menit reaksi, didapatkan bahwa konversi metana mengalami penurunan dari 76,15% hingga 46,06% dan naik kembali pada menit ke-235 sebesar 59,90% kemudian cenderung stabil setelah menit ke-235. Pada 6 jam reaksi uji stabilitas, yield karbon yang dihasilkan 17,25 gram.

The purpose of this research is to construct plate catalyst structured to produce nanocarbon and hydrogen with catalytic decomposition of methane. Catalyst which is used in this research is multimetal catalyst, Ni-Cu-Al 3:2:1. Two experiment that had already done were twenty minutes and 355 minutes reactions. The highest conversion of methane is 70,16% and 74,29% hydrogen purity for twenty minutes reaction and yield carbon was 2,58 gram. For 355 minutes reaction, the conversion of methane decreasing from 76,15% to 46,06% and increase to 59,90%. After that, methane conversion relative stabil. After 355 minutes reaction , yield carbon was 17,25 gram."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51732
UI - Skripsi Open  Universitas Indonesia Library
cover
Febrini Cesarina
"Dekomposisi katalitik metana merupakan salah satu metode yang paling sering digunakan dalam memproduksi carbon nanotube (CNT). Penggunaan reaktor unggun tetap untuk reaksi dekomposisi katalitik metana cukup banyak diminati karena desainnya yang sederhana dan ekonomis. Agar kinerja reaktor yang optimal dapat diperoleh, perlu dilakukan serangkaian uji coba terhadap pengaruh dari berbagai kondisi operasi melalui pemodelan dan simulasi.
Pada penelitian ini, dibentuk suatu pemodelan dan simulasi reaktor unggun tetap untuk reaksi dekomposisi katalitik dengan memvariasikan berbagai parameter operasi yang dapat mempengaruhi kinerja reaktor. Konversi metana dan yield hidrogen yang dapat dicapai pada saat reaksi 60 menit adalah sebesar 34.4% dan 42.7%. Kenaikan pada tekanan, laju alir, komposisi umpan dan radius partikel akan memperkecil konversi dan yield, sementara kenaikan pada temperatur umpan berlaku sebaliknya. Kondisi operasi yang memberikan konversi dan yield terbesar, yaitu 43.3% dan 51.5%, adalah pada saat temperatur umpan sebesar 1023 K dengan radius partikel sebesar 0.10 mm.

Catalytic decomposition of methane (CDM) is one of the most popular method used in producing carbon nanotube (CNT). The use of fixed bed reactor in catalytic reaction is common for its simple design and low prices. In order to get an optimal condition to the reactor, observing which parameters gives influence most to the reactor is needed to be done by modelling and simulation.
This thesis is proposed a modelling and simulation of fixed bed reactor for catalytic decomposition of methane by varying the values of operating parameters which influence the reactor performance. The methane conversion dan hydrogen yield obtained at 60 minutes reaction are 34.4% dan 42.7%. The increasing feed pressure, velocity, particle radius and composition decrease conversion and yield significantly, while the decreasing feed temperature results in opposite. An optimal condition obtained when using feed temperatur at 1023 K and radius particle at 0.10 mm, which gives highest conversion and yield, 43.3% and 51.5% in result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32582
UI - Tesis Membership  Universitas Indonesia Library
cover
Ramaniya Anindita Wandawa
"Penelitian dilakukan untuk melakukan uji kinerja reaktor katalis terstruktur pelat untuk produksi carbon nanotube dan hidrogen melalui reaksi dekomposisi katalitik metana. Katalis yang digunakan adalah katalis Ni-Cu-Al dengan perbandingan molar 2:1:1. Reaksi dekomposisi katalitik metana dilakukan pada suhu 700oC selama 5 jam, dengan variasi space time 0,0006; 0,0032; 0,006 gr min/mL. Hasil uji kinerja tertinggi didapatkan pada space time 0,006 gr min/mL dengan konversi metana tertinggi 83,01% , kemurnian hidrogen tertinggi 70,23% , dan yield karbon 2,5 gr/gr katalis. Carbon nanotube yang dihasilkan memiliki diameter dalam 7,5-15 nm dan berbentuk Y-junction.

Abstract
The purpose of this research is to test the performance of plate structured catalyst to produce carbon nanotube and hydrogen via catalytic decomposition of methane. In this research, catalyst of Ni-Cu-Al with the molar ratio by 2:1:1 was used. The decomposition reaction took place at 700oC temperature for 5 hours, using 0,0006; 0,0032; and 0,006 gr min/mL space time variations. The maximum performance space-time was 0,006 gr min/mL with 83,01% for the highest number of methane conversion, 70,23% for the highest number of hydrogen purity, and 2,5 gr C/ gr catalyst carbon yield. The carbon nanotubes produced from the research were Y-junction-shaped and have 7,5-15 nm inner diameter.
;"
Fakultas Teknik Universitas Indonesia, 2012
S43475
UI - Skripsi Open  Universitas Indonesia Library
cover
Anindya Adiwardhana
"Optimasi desain reaktor merupakan salah satu tahap penting dalam usaha peningkatan produksi karbon nanotube dan hidrogen melalui reaksi dekomposisi katalitik metana. Untuk mendukung hal ini, maka diperlukan suatu persamaan kinetika matematis yang akurat dan berlaku untuk kondisi operasi yang lebar. Pada penelitian, dilakukan studi kinetika reaksi dekomposisi katalitik metana menggunakan katalis Ni-Cu-Al dengan target komposisi 2:1:1 yang dipreparasi dengan metode kopresipitasi menggunakan presipitan larutan sodium karbonat.
Penelitian diawali dengan memformulasikan beberapa model persamaan kinetika dengan pendekatan analisis kinetika mikro (adsorpsi isotermis). Masing-masing model persamaan kinetika kemudian diuji dengan data kinetika yang diperoleh secara eksperimental. Data kinetika eksperimental diambil dengan variasi temperatur dari 650 °C sampai 750 °C pada tekanan amosferik kemudian data tersebut lalu diuji dengan model kinetika mikro yang diturunkan dari mekanisme reaksi permukaan katalis dan didapat model kinetika yang paling representatif dengan eksperimen adalah model kinetika reaksi adsorpsi metana sebagai tahap pembatas laju reaksi dengan energi aktivasi yang dibutuhkan 40.6 kJ/mol dan faktor pra-eksponensial sebesar 0.02.

Optimization of reactor design is one important step in efforts to increase production of carbon nanotubes and hydrogen via methane catalytic decomposition reaction. To support this, it needs an accurate mathematical kinetic equation and is valid for a wide operating conditions. In the study, carried out the reaction kinetics study of catalytic decomposition of methane using the catalyst Ni-Cu-Al with a target composition of 2:1:1 which was prepared with coprecipitation method using sodium carbonate as a precipitating solution.
The research began by formulating a model kinetic equation with kinetic microanalysis approach (adsorption isotherm). Each kinetic equation model was then tested with kinetic data obtained experimentally. Experimental kinetic data were taken with temperature variation from 650 °C to 750 °C at atmospheric pressure Then data can then be tested with a micro kinetic model derived from the surface of the catalyst and the reaction mechanism obtained the most representative model of the kinetics experiment is a model adsorption of methane as a limiting step reaction rate with activation energy 40.6 kJ / mol and pre-exponential factor of 0.02.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51022
UI - Skripsi Open  Universitas Indonesia Library
cover
Herry Prasetyo Anggoro
"Reaktor terstruktur gauze digunakan sebagai solusi dari masalah yang ditemukan pada penggunaan reaktor fixed bed untuk reaksi dekomposisi katalitik metana. Reaktor terstruktur gauze memiliki beberapa kelebihan, yaitu memiliki pressure drop yang rendah dan konversi lebih tinggi.
Pada penelitian ini, dilakukan pemodelan dan simulasi reaktor terstruktur gauze menggunakan Computational Fluid Dynamics yang mengacu pada kinetika Snoeck, 1997. Pemodelan hanya mempertimbangkan neraca massa dan momentum, di mana reaktor diasumsikan bersifat isotermal.
Simulasi dilakukan dengan mengubah-ubah variabel proses seperti temperatur reaktor, komposisi masukkan, tekanan masukkan, dan kecepatan masuk. Melalui simulasi variasi proses, dapat diketahui pengaruh perubahan kondisi operasi terhadap kinerja reaktor, seperti pada kenaikan temperatur akan menyebabkan konversi reaktor semakin meningkat.

Gauze structured reactors are used as the solution of problems found in the use of fixed bed reactor for reaction of catalytic decompotition methane. Gauze structured reactor has several advantages, having a low pressure drop and higher conversion.
In this study, the modeling and simulation of structured gauze reactor using Computational Fluid Dynamics refers to the kinetic Snoeck, 1997. Modelling only consider the mass balance and momentum, where the reactor is assumed to be isothermal.
Simulations carried out by varying process variables such as reactor temperature, inlet composition, inlet pressure and inlet velocity. Through the simulation process variations, we can know the effect of changing operating conditions on reactor performance, such as the rise in temperature will cause the reactor conversion increases.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51793
UI - Skripsi Open  Universitas Indonesia Library
cover
Praswasti Pembangun Dyah Kencana Wulan
"Penelitian ini bertujuan memproduksi hidrogen (H2) dan carbon nanotube (CNT) secara simultan melalui reaksi dekomposisi katalitik metana dengan katalis Ni-Cu-AL. Secara garis besar, penelitian dibagi menjadi dua tujuan besar yaitu studi kinetika intrinsik dan pemodelan reaktor. Studi kinetika didekati dengan tiga cara. Model reaktor yang dibuat adalah reaktor pelat sejajar. Studi kinetika dengan internal reaktor pelat sejajar menghasilkan kinetika non-intrinsik. Pelapisan katalis pada pelat sebanyak 4 kali tidak mempunyai pengaruh yang signifikan pada loading katalis.
Hasil eksperimen diverifikasi menggunakan kriteria-kriteria limitasi tahanan massa dan panas (eksternal dan internal). Hasil verifikasi menunjukkan bahwa kinetika pelat sejajar tidak mampu mengatasi limitasi tahanan internal. Studi kinetika diperbaiki dengan internal reaktor berupa katalis serbuk. Studi kinetika serbuk menghasilkan kinetika intrinsik. Tetapi hasil ini tidak akurat karena deposisi karbon dihitung melalui neraca karbon terhadap waktu (pendekatan dinamik) padahal rata-rata 43,45% karbon hilang di akhir reaksi. Studi kinetika dilanjutkan menggunakan reaktor yang dilengkapi dengan microbalance. Kinetika model ini dapat mengukur pertambahan karbon sebagai fungsi waktu dan suhu pada tekanan atmosfer.
Hasil penelitian sebelum deaktivasi menunjukkan bahwa tahap pembatas laju reaksi adalah tahap adsorpsi. Energi aktivasi yang diperoleh sebesar 67,76 kJ/mol dan faktor pre-eksponensial 5,15 x 1018. Model persamaan kinetika deaktivasi katalis mempunyai persamaan laju deaktivasi orde satu. Reaktor katalis terstruktur pelat sejajar dimodelkan tiga dimensi (3D) kondisi stedi. Model 3 dimensi diselesaikan dengan program aplikasi computional fluid dynamics (CFD) yaitu COMSOL. Konversi metana dan yield hydrogen digunakan sebagai data validasi antara model dan data hasil eksperimen. Hasil simulasi mempunyai persentase kesalahan konversi total metana dan yield H2 berturut-turut 0,77% dan 2,38%. Validasi menunjukkan bahwa hasil model reaktor sesuai dengan data hasil percobaan laboratorium.

This study aims to produce hydrogen (H2) and carbon nanotube (CNT) simultaneously through methane decomposition reaction over a Ni-Cu-Al catalyst. The research is divided into two major objectives namely intrinsic kinetics study and reactor modeling. Kinetics studies were approached in three ways. Reactor model is made parallel flat plate reactor.
The result of kinetics study using internal reactor parallel-plate was nonintrinsic kinetics. Coating 4 times on the parallel plate had no significant effect on catalyst loading. The experimental results are verified using the criteria for limitation of mass and heat resistance (external and internal). Verification results show that kinetics of parallel-plate are not able to overcome the internal resistance limitation. Kinetics studies corrected with the reactor's internal form of the catalyst powder.
This experiment result is not accurate because of carbon deposition is calculated by carbon balance versus time (dynamic approach) whereas the average 43.45% of carbon lost by the end of the reaction. The last study using the reactor which is equipped with a microbalance. This model can measure carbon growth as a function of time and temperature at atmospheric pressure. The results before deactivation suggests that the limiting step is the adsorption. The activation energy of 67.76 kJ/mol and preexponential factor of 5.15 x 1018. Deactivation kinetics model have first order. Parallel-plate structured catalyst reactor is modeled three-dimensional (3D) with steady condition. 3-dimensional model solved by the application program computational fluid dynamics (CFD) namely COMSOL. Methane conversion and hydrogen yield used as validation between model and experimental data. The simulation results have an error percentage of the total methane conversion and H2 yield respectively 0.77% and 2.38%. Validation showed that the model in line with experimental data."
Depok: Fakultas Teknik Universitas Indonesia, 2011
D1276
UI - Disertasi Open  Universitas Indonesia Library
cover
Ernawati Munir
"Nanokarbon merupakan salah satu produk nanoteknologi yang dapat diperoleh melalui Dekomposisi Katalitik Metana atau Methane Decomposition Reaction (MDR). Penentuan kondisi optimum proses diperlukan untuk menghasilkan nanokarbon dengan kualitas baik. Pada penelitian ini dilakukan analisis korelasi dan signifikansi variabel proses terhadap respon konversi metana menggunakan metode ANOVA. Kondisi operasi yang divariasikan adalah suhu reaksi dengan rentang 650°C-750°C, waktu reaksi rentang 5-40 menit dan laju alir metana pada 120 mL/menit - 160 mL/menit. Proses penentuan kondisi optimum dilakukan dengan metode respon permukaan. Eksperimen dilakukan dalam 2 tahap, yaitu orde I dan orde II. Desain eksperimen pada tahap orde satu menggunakan desain faktorial dua level, sedangkan desain eksperimen pada tahap orde dua menggunakan Central Composite Design (CCD). Hasil penelitian menunjukkan aplikasi metode respon permukaan pada eksperimen mendapatkan konversi optimum nanokarbon pada suhu reaksi 716°C dengan laju alir 118 mL/menit dan waktu reaksi 20 menit.

Nanocarbon,as one of the nanotechnology product is produced by Methane Decomposition Reaction (MDR). Identification of optimum process required to produce nanocarbon with good quality. In this experiment conducted a correlation analysis and significance of process variable on the response of methane conversion using ANOVA methode. Operation parameter for reaction temperature was varied in the range 650°C-750°C, reaction time on the range 5-40 minutes and methane flow rate at 120 mL/minute - 160 mL/minute. Optimum process was conducted with Response Surface Methodology. The experiments was done in two steps, that's first orde and second orde. Design of experiment on the first orde was done with two level factorial design and design of experiment on the second orde was done using Central Composite Design (CCD). The results of experiment show that response surface methodology application in experiment give optimum conversion of the methane at 716°C reaction temperature with a flow rate 118 mL/minute and reaction time 20 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43199
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>