Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 165141 dokumen yang sesuai dengan query
cover
Frezer, Ronald
"Skripsi ini membahas tentang peristiwa adsorpsi gas nitrogen dan metana pada suatu padatan adsorben dalam hal ini zeolit alam Malang. Adapun penelitian ini dapat digunakan sebagai aplikasi untuk proses pemisahan gas alam dari nitrogen ataupun dapat digunakan untuk proses penangkapan kembali gas metana di dalam gas buang. Metodologi penelitian yang digunakan dalam penelitian ini terdiri dari preparasi zeolit, persiapan peralatan Adsorpsi Isotermis, adsorpsi isotermis N2, adsorpsi gas CH4, pemodelan adsorpsi gas N2 dan CH4 dengan model BET.
Adapun data yang diperoleh dalam penelitian ini menunjukkan bahwa kapasitas adsorpsi zeolit dalam mengasorpsi nitrogen dan metana lebih besar pada suhu 30°C dibandingkan pada suhu 40°C dan 50°C pada kondisi tekanan yang sama, dimana kapasitas adsorpsi pada tekanan 900 Psia (6 MPa) untuk gas nitrogen adalah 2,55 mmol/g zeolit, 2,43 mmol/g zeolit dan 2,20 mmol/g zeolit untuk temperatur 30°C, 40°C dan 50°C secara berturut-turut sedangkan kapasitas adsorpsi pada tekanan 900 Psia untuk gas metana adalah 3,02 mmol/g zeolit, 2,90 mmol/g zeolit dan 2,22 mmol/g zeolit untuk temperatur 30°C, 40°C dan 50°C secara berturut-turut.
Pemodelan BET yang digunakan dalam merepresentasikan data hasil uji percobaan menunjukkan persentase deviasi rata-rata (% AAPD) untuk Model BET pada adsorpsi gas nitrogen adalah adalah 1,69 dan gas metana adalah 4,16. Selektivitas zeolit pada suhu 30°C ditunjukkan dengan adanya harga yang maksimum dari perbandingan CH4ads/N2ads sebesar 1,15 pada 3 Mpa. Pada suhu 40°C diperoleh dengan tekanan tinggi maka daya adsorpsinya menurun, dengan tekanan maksimum 1 Mpa yaitu 1,27, dan pada suhu 50°C didapatkan bahwa zeolit lebih mudah menyerap nitrogen dibandingkan metana.

This 'skripsi' describes about adsorption of nitrogen and methane experiments into solid like Malang natural zeolite. The information gathered in this research can be used for natural gas separation from nitrogen or can catch methane in the off-gases. The experiment methods used involves preparation of zeolite, preparation of isotherm adsorption's equipment, isotherm adsorption N2, isotherm adsorption CH4, and the modelling of nitrogen and methane adsorption using BET's Model.
The results show that the adsorption capacity of nitrogen and methane on zeolite is greater at 30°C than 40°C and 50°C for the same pressure condition. Adsorption capacity of nitrogen at 900 Psia(6 MPa) are 2.55 mmol/g zeolite, 2.43 mmol/g zeolite, 2.20 mmol/g zeolite at 30°C, 40°C and 50°C respectively. Meanwhile, the adsorption capacity of methane at 900 Psia(6 MPa) are 3.02 mmol/g zeolite, 2.90 mmol/g zeolite, 2.22 mmol/g zeolite at 30°C, 40°C and 50°C respectively.
Modeling of BET in representing the data shows that, the average Absolute Percent Deviation (% AAD) of BET Model is 1.69% for nitrogen adsorption and 4.16% for methane adsorption. Selectivity of zeolite at 30°C is shown by a maximum value of ratio CH4/N2 = 1.15 at 3 MPa. At 40°C, ratio of CH4/N2 decreases as the pressure increases, and its maximum value is 1.27 at 1 MPa. Different phenomena occurs at 50°C, when adsorption capacity of methane is less than of nitrogen.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52226
UI - Skripsi Open  Universitas Indonesia Library
cover
Octaviandy Sabran Syahputra
"Bahan bakar minyak (BBM) merupakan salah satu sumber daya yang tidak dapat diperbaharui. Penggunaan bahan bakar minyak (BBM) tidak diimbangi dengan sumber daya yang ada. Penggunaan terbesar bahan bakar minyak (BBM) adalah kendaraan bermotor. Produksi kendaraan bermotor semakin meningkat sepanjang tahun sehingga mengakibatkan kebutuhan akan bahan bakar minyak (BBM) semakin besar dan makin lama sumber daya minyak yang ada akan habis sedangkan sumber bahan bakar gas (BBG) masih sedikit dimanfaatkan. Selain itu efek BBM di pembakaran kendaraan bermotor dapat menghasilkan CH4 dan CO2 serta gas lainnya yang bisa menyebabkan efek rumah kaca. Dari efek rumah kaca tersebut mengakibatkan suhu permukaan bumi memanas yang disebabkan kadar CO2 dan CH4 meningkat. Hal tersebut mempunyai dampak yang sangat berbahaya bagi kehidupan dibumi. Untuk itu kita perlu suatu cara agar emisi dari pembakaran kendaraan bermotor berkurang dan memanfaatkan sumber bahan bakar gas (BBG) yang ada. Walaupun ada, penggunaannya masih sedikit karena tabung yang digunakan berukuran besar dan bertekanan 150 bar yang membuat konsumen ragu untuk memakainya serta stasiun pengisian yang sangat langka. Adsorpsi adalah salah satu cara atau metode yang efektif untuk mengurangi emisi gas buang. Adsorpsi adalah fenomena fisik yang terjadi antara molekul-molekul gas atau cair dikontakkan dengan suatu permukaan padatan. Penelitian ini membahas tentang kapasitas adsorpsi CH4 murni pada karbon aktif. Dalam penelitian ini karbon aktif yang digunakan adalah karbon aktif komersial (Carbotech). Pengukuran adsorpsi menggunakan metode yang mendekati yaitu metode volumetrik (isotermal) pada temperatur 30ºC dengan tekanan 30 bar. Tujuan dari penelitian ini untuk mendapatkan data kapasitas dan laju penyerapan pada karbon aktif hingga beberapa siklus kerja.

Fuel is one of non renewable resources. The consumption of fuel are not balanced with another resources. The biggest consumption of fuel is vehicle. The production of vehicles are increasing every year so that the consumption of fuel to high and longer of time, the fuel resources will be lost while the gas resources are less to use. Furthermore, the effect of fuel in combustion engine can produce CH4 and CO2 and another gases can create green house effect. From green house effect make increase temperature in the earth because the content of CO2 and CH4 are increasing. It has a dangerous impact for another life in the earth. For that we need something way to decrease the emission from the engine combustion vehicles and utilizing the gas resources. Although the gas resources are utilized by vehicle, the consumption of gas still little because the vessel to big size and has the pressure about 150 bar, that is make the people are so confuse to use it and the gas stations are rare. Adsorption is effective way to reduce gas emission which released. Adsorption is phenomena physics which happen between molecule-molecule gas or liquid to contact with a solid surface. This study discusses the capacity adsorption CH4 at activated carbon. In this research the activated carbon used is a commercial active carbon (Carbotech). Adsorption measurement use volumetric method (isothermal) at temperatures 30ºC with 30 bar pressure. The objective from this research is to get capacity data and the rate adsorption at activated carbon until several work cycle."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S50974
UI - Skripsi Open  Universitas Indonesia Library
cover
Gerald Mayo Leopold
"Saat ini energi dianggap sebagai kebutuhan utama di dunia. Sayangnya, energi dari bahan bakar fosil menghasilkan karbon dioksida dalam jumlah besar sehingga meningkatkan efek rumah kaca di dunia ini. Untuk mengatasi masalah ini, banyak negara berkembang telah mengkonversi bahan bakar fosil ke gas alam. Selanjutnya, gas alam masih mengandung zat pengotor, sehingga pemurnian gas alam dari zat pengotor sangat penting.
Penelitian ini akan membangun simulasi pemurnian yang dicapai dengan dua simulasi yang berbeda. Pada simulasi pertama komponen akan terdiri dari metana, nitrogen dan karbon dioksida dengan persentase komposisi 80% metana dan 10% dari karbon dioksida dan nitrogen masing-masing. Simulasi kedua akan terjadi tanpa nitrogen dan dengan persentase 80% metana dan 20% dari karbon dioksida. Hasil penelitian menunjukkan bahwa karbon dioksida dapat terserap awal 50%. Di sisi lain metana tidak dapat dimurnikan dengan baik ketika ada nitrogen ada dalam proses adsorpsi.

Nowadays energy is considered as primary requirement in the world. Unfortunately, the energy from fossil fuel emits large number of carbon dioxide increasing the greenhouse effect in this world. In order to overcome this problem, many develop countries are converting fossil fuel into natural gas. Furthermore, natural gas is still occupied with impurities, therefore purification of Natural gas from impurities are very important.
This study observed the purification simulation process which attained with two different run. The first run components were consists of methane, nitrogen and carbon dioxide with percentage composition 80% of methane and 10% of carbon dioxide and 10 % nitrogen respectively. The second run occurred without nitrogen and with percentage 80% of methane and 20% of carbon dioxide. Result show that carbon dioxide can be adsorbed nearly 50 %. On the other hand methane cannot be well purified when there is nitrogen exist in the adsorption process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46592
UI - Skripsi Membership  Universitas Indonesia Library
cover
Awaludin Martin
"Penelitian ini terdiri atas dua bagian penelitian, yaitu proses produksi karbon aktif berbahan dasar batubara sub bituminus Indonesia yang berasal dari Kalimantan Timur dan Riau dan adsorpsi isotermal karbon dioksida dan metana pada karbon aktif hasil penelitian bagian pertama. Karbon aktif diproduksi di laboratorium dengan menggunakan aktivasi fisika dimana gas CO2 digunakan sebagai activating agent pada temperatur aktivasi sampai dengan 950oC. Karbon aktif yang diproduksi selanjutnya dilakukan pengujian untuk mengetahui kualitas karbon aktif berupa angka Iodine dan luas permukaan. Dari penelitian yang dilakukan didapat bahwa karbon aktif berbahan dasar batubara Kalimantan Timur lebih baik dibanding dengan karbon aktif berbahan dasar batubara Riau. Hal tersebut dikarenakan oleh perbandingan unsur oksigen dan karbon pada batubara Kalimantan Timur lebih tinggi daripada batubara Riau. Angka Iodine maksimum pada karbon aktif berbahan dasar batubara Riau adalah 589,1 ml/g, sementara karbon aktif berbahan dasar batubara Kalimantan sampai dengan 879 ml/g.
Adsorpsi isotermal karbon dioksida dan metana pada karbon aktif Kalimantan Timur dan Riau serta satu jenis karbon aktif komersial dilakukan di laboratorium Teknik Pendingin dan Pengkondisian Udara Teknik Mesin FTUI. Adsorpsi isotermal dilakukan dengan menggunakan metode volumetrik dengan variasi temperatur isotermal 27, 35, 45, dan 65oC serta tekanan sampai dengan 3,5 MPa. Data adsorpsi isotermal yang didapat adalah data kapasitas penyerapan karbon dioksida dan metana pada karbon aktif pada variasi tekanan dan temperatur isotermal yang kemudian di plot dalam grafik hubungan tekanan dan kapasitas penyerapan. Dari hasil penelitian didapat bahwa kapasitas penyerapan karbon aktif komersial lebih baik dibandingkan dengan karbon aktif Kalimantan Timur dan Riau, hal tersebut dikarenakan luas permukaan dan volume pori karbon aktif komersial lebih tinggi dibanding yang lain. Kapasitas penyerapan CO2 pada karbon aktif komersial (CB) maksimum adalah 0,349 kg/kg pada temperatur 27oC dan tekanan 3384,69 kPa, sementara untuk karbon aktif Kalimantan Timur (KT) adalah 0,227 kg/kg pada temperatur 27oC dan tekanan 3469,27 kPa dan untuk karbon aktif Riau (RU) adalah 0,115 kg/kg pada temperatur 27oC dan tekanan 3418,87 kPa. Kapasitas penyerapan CH4 pada karbon aktif CB maksimum adalah 0,0589 kg/kg pada temperatur isotermal 27oC dan tekanan 3457,2 kPa, sementara untuk karbon aktif KT adalah 0,0532 kg/kg pada temperatur 27oC dan tekanan 3495,75 kPa dan untuk karbon aktif RU adalah 0,0189 kg/kg pada temperatur 27oC dan tekanan 3439,96 kPa.
Data adsorpsi isotermal yang didapat selanjutnya dikorelasi dengan menggunakan persamaan model Langmuir, Toth, dan Dubinin-Astakhov. Dari hasil perhitungan korelasi persamaan didapat bahwa persamaan model Toth adalah persamaan model yang paling akurat, dimana nilai simpangan antara data eksperimen adsorpsi isotermal CO2 dengan korelasi persamaan model Toth adalah 3,886% (CB), 3,008% (KT) dan 2,96% (RU). Sementara untuk adsorpsi isotermal CH4 adalah 2,86% (CB), 2,817 (KT), dan 5,257% (RU). Dikarenakan persamaan model Toth adalah persamaan yang paling akurat, maka perhitungan panas adsorpsi isosterik dan adsorpsi isosterik dilakukan dengan menyelesaikan persamaan model Toth tersebut. Data panas adsorpsi dibutuhkan untuk mengetahui berapa besar panas yang dilepaskan ketika adsorben menyerap karbon dioksida dan metana, sementara data adsorpsi isosterik diperlukan untuk dapat memprediksi berapa besar tekanan yang dibutuhkan dan temperatur isotermal yang harus dikondisikan untuk menyerap gas karbon dioksida dan metana dalam jumlah yang telah diketahui.

This research is consists of two main topics, first is production of activated carbon from Indonesian sub bituminous coal as raw material. The raw material is from East of Kalimantan and Riau sub bituminous coal. And secondly is adsorption isotherms carbon dioxide and methane on activated carbon. Activated carbon was produced in laboratory with physical activation method by carbon dioxide as activating agent up to 950oC. Iodine number and surface area was used to characterize of activated carbon quality. From the research, the quality of activated carbon from East of Kalimantan sub bituminous coal is better than Riau sub bituminous coal. It caused the ratio of oxygen and carbon in from East of Kalimantan sub bituminous coal is higher than Riau sub bituminous coal. The maximum iodine number of activated carbon from Riau sub bituminous coal is 589.1 ml/g and activated carbon from East of Kalimantan sub bituminous coal is 879 ml/g.
Adsorption isotherms carbon dioxide and methane on activated carbon from East of Kalimantan and Riau sub bituminous coal and commercial activated carbon was done in Refrigeration and Air Conditioning Laboratory, Mechanical Engineering Department, Faculty of Engineering, University of Indonesia. Adsorption isotherms were done by volumetric method with variation of temperature is 27, 35, 45, and 65oC and the pressure of adsorption up to 3.5 MPa. Data of adsorption isotherm is adsorption capacity of carbon dioxide and methane on activated carbon with pressure and isotherms temperature variation. Data of adsorption capacity was plotted on pressure and adsorption capacity. From the research, adsorption capacity of commercial activated carbon is higher than Activated carbon from East of Kalimantan and Riau coal. It is caused; the surface area and pore volume of commercial activated carbon is higher than East of Kalimantan and Riau coal. The maximum adsorption capacity of CO2 on commercial activated carbon is 0.349 kg/kg at isotherm temperature 27oC and the pressure is 3384.69 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CO2 is 0.227 kg/kg at isotherm temperature 27oC and the pressure is 3469.27 kPa. For activated carbon from Riau, the maximum adsorption capacity of CO2 is 0.115 kg/kg at isotherm temperature 27oC and the pressure is 3418.87 kPa. The maximum adsorption capacity of CH4 on commercial activated carbon is 0.0589 kg/kg at isotherm temperature 27oC and the pressure is 3457.2 kPa. For activated carbon from East of Kalimantan, the maximum adsorption capacity of CH4 is 0.0532 kg/kg at isotherm temperature 27oC and the pressure is 3495.75 kPa. For activated carbon from Riau, the maximum adsorption capacity of CH4 is 0.0189 kg/kg at isotherm temperature 27oC and the pressure is 3439.96 kPa.
Adsorption isotherms data was correlated with Langmuir, Toth, and Dubinin- Astakhov equation models. From the calculation, Toth equation model more accurate than Langmuir and Dubinin-Astakhov. The deviation between experiment data of adsorption isotherm CO2 and calculation by using Toth equation model is 3.886% for commercial activated carbon data, 3.008% for East of Kalimantan activated carbon, and 2.96% for Riau activated carbon. The deviation between experiment data of adsorption isotherm CH4 and calculation by using Toth equation model is 2.86% for commercial activated carbon data, 2.817% for East of Kalimantan activated carbon, and 5.257% for Riau activated carbon.Isosteric heat of adsorption and adsorption isostere was calculated by using Toth equation model, caused the Toth equation model more accurate than Langmuir and Dubinin-Astakhov models. Isosteric heat of adsorption is needed to know the amount of heat of adsorption released when activated carbon adsorpt the adsorbate. The adsorption isostere data is needed to predict the pressure and isotherm temperature for adsorp the amount of adsorbate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
D998
UI - Disertasi Open  Universitas Indonesia Library
cover
Imam Taufani
"Global warming yang disebabkan oleh meningkatnya kadar CO2 di dalam udara mengakibatkan suhu permukaan bumi memanas. Hal tersebut mempunyai dampak yang sangat berbahaya bagi kehidupan di bumi. Untuk itu perlu suatu cara agar gas CO2 yang akan dilepaskan ke udara dapat ditangkap/disaring. Adsorpsi adalah salah satu cara atau metode yang efektif untuk mengurangi CO2 yang dikeluarkan. Adsorpsi adalah fenomena fisik yang terjadi antara molekul-molekul gas atau cair dikontakkan dengan suatu permukaan padatan. Penelitian ini membahas tentang kapasitas adsorpsi CO2 pada karbon aktif.
Dalam penelitian ini karbon aktif yang digunakan adalah karbon aktif komersial (Carbotech). Pengukuran adsorpsi menggunakan metode volumetrik (isotermal) pada temperatur 30ºC dengan tekanan 5 bar dan 7 bar. Variasi tekanan CO2 yang dialirkan akan mempengaruhi kapasitas dan laju penyerapan CO2 pada karbon aktif tersebut. Semakin tinggi tekanan maka kapasitas dan laju penyerapan CO2 juga semakin meningkat. Pada tekanan 5 bar karbon aktif komersial memiliki kapasitas sebesar 23,58 mg/gadsorben, sedangkan pada tekanan 7 bar sebesar 33,64 mg/gadsorben, dengan temperatur isotermal 30ºC.

Global warming caused by increase value of carbon dioxide in the air that contribute heat up temperature of earth. These situations have a dangerous impact to life in the earth. For that, we need some processes in order to carbon dioxide catch before release to the air, adsorption is effective way to reduce carbon dioxide which released. Adsorption is phenomena physics which happen between molecule-molecule gas or liquid to contact with a solid surface. This study discusses the capacity adsorption CO2 at activated carbon.
In this research the activated carbon used is a commercial active carbon (Carbotech). Adsorption measurement use volumetric method (isothermal) at temperatures 30ºC with 5 bar pressure and 7 bar. Variations in pressure CO2 will affect the capacity and the rate of adsorption of CO2 at activated carbon. The higher the pressure, capacity and the rate of adsorption of CO2 are also increasing. Commercial activated carbon has adsorption capacity of CO2 25,82 mg/gadsorbent at 5 bar pressure and 31,28 mg/gadsorbent at 7 bar pressure and 30ºC isothermal temperature.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50990
UI - Skripsi Open  Universitas Indonesia Library
cover
Suci Ayunda Rachmalia
"Kandungan air pada batubara mempunyai efek yang signifikan terhadap kapasitas adsorpsi gas. Oleh karena itu, dalam penelitian ini dilakukan uji adsorpsi gas metana untuk meneliti pengaruh kandungan air terhadap kapasitas adsorpsi gas pada batubara Indonesia. Batubara yang digunakan adalah batubara Barito dan Ombilin dengan kandungan air 0%, 3%, 7%, dan 10% untuk batubara Barito, dan 0%, 1%, 3%, dan 7% untuk batubara Ombilin. Uji adsorpsi dilakukan pada suhu 25-26oC dari tekanan 116-816 Psia, dengan rentang 100 psia. Uji adsorpsi metana menggunakan metode volumetrik dengan temperatur konstan sehingga dapat dilakukan dengan perhitungan adsorpsi isotermal Gibbs. Dalam penelitian ini, digunakan model Langmuir yang dimodifikasi untuk permodelan kapasitas adsorpsi batubara. Hasil uji adsorpsi menunjukkan bahwa kapasitas adsorpsi metana batubara kering Barito pada tekanan 816 psia adalah 2,01 mmol/gr, lebih besar 9,5% dibandingkan dengan batubara kering Ombilin (1,82 mmol/gr). Secara umum, kapasitas adsorpsi metana pada batubara berkurang dengan penambahan kandungan air sampai pada kandungan air kesetimbangannya. Kandungan air pada batubara diatas kesetimbangannya tidak berpengaruh signifikan terhadap pengurangan kapasitas adsorpsi lebih lanjut. Kapasitas adsorpsi batubara Barito dengan kandungan air 3% serta 7% (kesetimbangan) turun sebesar 20,96% dan 35,45% dibandingkan dengan batubara Barito kering, sedangkan kapasitas adsorpsi batubara Ombilin dengan kandungan air 1% serta 3% (kesetimbangan) turun sebesar 26,9% dan 37,76% dibandingkan dengan batubara Ombilin kering. Hasil data adsorpsi isotermal gas metana pada batubara Ombilin dan Barito tersebut dapat direpresentasikan dengan baik oleh permodelan adsorpsi isotermis Langmuir modifikasi dengan rata-rata %AAD sebesar 4,2%.

Moisture content in coal has significant effect on gas adsorption capacity. Therefore, this study of methane adsorption test are to examine the influence of moisture content on gas adsorption capacity of Indonesia coal. Barito and Ombilin Coal with moisture content 0%, 3%, 7%, and 10% for Barito coal, and 0%, 1%, 3% and 7% for Ombilin coal are used in the experiment. Adsorption tests are performed at 25-26oC temperature and 116- 816 psia pressure, with a range of 100 psia. Methane adsorption test in this study use volumetric method with a constant temperature, hence the method could be done with the calculation of isothermal Gibbs adsorption. In this study, Langmuir model modified is used for modeling adsorption capacity of coal. Adsorption test results show that methane adsorption capacity of dry Barito coal at 816 psia was 2.01 mmol/g, 9.5% higher than dry Ombilin coal (1.82 mmol/g). In general, methane adsorption capacity on coal is reduced in response to the addition of moisture content which were added until equilibrium moisture content is reached. Moisture content in coal above the equilibrium has no significant effect on further reduction of adsorption capacity. Adsorption capacity of Barito coal with moisture content of 3% and 7% (equilibrium) decreased by 20.96% and 35.45% compared with dry Barito coal, while the adsorption capacity of Ombilin coal with moisture content of 1% and 3% (equilibrium) decreased by 26.9% and 37.76% compared with dry Ombilin coal. The results of methane adsorption isotherm data in Barito and Ombilin coal could be appropriately represented by the Langmuir model modified with an average AAD percentage of 4.2%."
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1607
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahmawati Lestari
"Sebelum penggunaan bahan bakar hidrogen dan metana dapat diaplikasikan secara luas, metode penyimpanan yang efektif untuk gas-gas tersebut juga harus dikembangkan. Penyimpanan dalam bentuk compressed gas dan gas cair kriogenik masih mengalami berbagai kendala baik dari segi ekonomis maupun segi teknis. Penggunaan karbon aktif untuk menyimpan hidrogen dan metana teradsorpsi memungkinkan diperolehnya performa storage yang kompetitif dengan CNG pada tekanan rendah. Hal tersebut dapat mengurangi tekanan dan masalah dalam hal logistik.
Pada penelitian ini digunakan karbon aktif untuk mengadsorpsi gas metana dan hidrogen. Karbon aktif yang digunakan berasal dari bahan baku tempurung kelapa dan batubara dengan variasi perbandingan activating reagent KOH terhadap bahan baku yang digunakan dan suhu aktivasi. Uji adsorpsi dilakukan pada karbon aktif yang dibuat di Departemen Teknik Kimia UI yang terdiri dari empat macam adsorben, yaitu karbon aktif dari batubara dengan perbandingan KOH/bahan baku = 4/1 yang diaktivasi pada suhu 900°C (BB, 4:1, 900), karbon aktif dari tempurung kelapa dengan perbandingan KOH/bahan baku = 4/1 yang diaktivasi pada suhu 700°C (ATK, 4:1, 700), karbon aktif dari tempurung kelapa dengan perbandingan KOH/bahan baku = 3/1 yang diaktivasi pada suhu 700°C (ATK, 3:1, 700), dan karbon aktif dari batubara dengan perbandingan KOH/bahan baku = 3/1 yang diaktivasi pada suhu 700°C (BB, 3:1, 700). Uji kapasitas adsorpsi karbon aktif dilakukan terhadap adsorbat gas hidrogen dan metana pada tekanan yang bervariasi pada kisaran 0 - 900 Psia dalam kondisi isotermal (25°C).
Hasil yang diperoleh adalah daya adsorpsi karbon aktif terhadap metana lebih tinggi dibandingkan daya adsorpsinya terhadap hidrogen. Pada tekanan sekitar 900 psia, karbon aktif ATK, 4:1, 700 memiliki kapasitas adsorpsi yang paling tinggi dibandingkan tiga adsorben lainnya yang digunakan, yaitu dapat mengadsorp sebanyak 2.8 mmol gas metana per gram karbon aktif dan sekitar 0.6 mmol gas hidrogen per gram karbon aktif.

Before hydrogen and methane can widely used as fuels, an effective storaging method for these gases have to be developed. Compressed gas and criogenic liquid gas method were still have difficulties, technically and economically. The used of activated carbon as hydrogen and methane storage by adsorption method can performs a competitive method than CNG at lower pressure.
In this experiment, activated carbon from coal and coconut shell with varied comparison between KOH and raw materials and activation temperature was used to adsorp methane and hydrogen. Activated carbons used were locally made in Laboratory of Chemical Engineering Department, University of Indonesia. Adsorbent used are activated carbon from coal with KOH/raw material = 4/1 and activation temperature 900°C (BB, 4:1, 900), activated carbon from coconut shell with KOH/raw material = 4/1 and activation temperature 700°C (ATK, 4:1, 700), activated carbon from coconut shell with KOH/raw material = 3/1 and activation temperature 700°C (ATK, 3:1, 700), and activated carbon from coal with KOH/raw material = 3/1 and activation temperature 700°C (BB, 3:1, 700). Methane and hydrogen adsorption capacity of activated carbon measured at varied pressure with range 0 ' 900 Psia and isothermal condition (25° C).
Obtained result from this experiment, methane adsorption capacity of activated carbon is higher than its hydrogen adsorption capacity. At pressure about 900 psia, activated carbon from coconut shell, with KOH/shell 4:1 and activation temperature 700o C (ATK, 4:1, 700) was having higher methane and hydrogen adsorption capacity than others, it can adsorp 2.8 mmol methane per gram activated carbon used and 0.6 mmol hydrogen per gram activated carbon.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51945
UI - Skripsi Open  Universitas Indonesia Library
cover
Azmia Rizka Nafisah
"ABSTRAK
Gas emisi dari asap kendaraan bermotor merupakan contributor utama pada perubahan
iklim dengan menyumbang total 14% emisi tiap tahunnya. Asap buangan kendaraan
bermotor mengandung berbagai macam gas berbahaya, diantaranya adalah gas CO2 dan
CO. Potensi yang paling besar untuk mengurangi polusi adalah dengan adsorpsi. Salah
satu jenis adsorben yang menarik untuk dikembangkan adalah karbon aktif. Karbon aktif
memiliki luas permukaan yang tinggi dan daya serap yang baik. Penggunaan karbon aktif
komersial mulai ditinggalkan dan digantikan oleh karbon aktif berbahan baku biomassa.
Salah satu limbah biomassa yang jumlahnya berlimpah di Indonesia adalah cangkang
kelapa sawit. Dengan jumlah limbah sebanyak 4 ton pertahunnya, cangkang sawit dapat
menjadi bahan baku alternatif untuk pembuatan karbon aktif. Salah satu tantangan yang
dihadapi dalam pembuatan karbon aktif dari biomassa adalah struktur permukaannya
yang tidak baik sehingga menurunkan kemampuan adsorpsinya. Untuk meningkatkan
afinitas terhadap gas CO2 dan CO, dilakukan modifikasi menggunakan oksida logam
MgO. Struktur kristal menjadi salah satu faktor penting yang menentukan kapasitas
adsorpsi. Akan tetapi pengaruh perubahan struktur kristal karbon aktif modifikasi logam
yang diwakili oleh d002 (lapisan aromatis), Lc (tinggi kristalit), dan La (diameter kristalit)
terhadap adsorpsi emisi gas kendaraan bermotor belum banyak dikaji sehingga diperlukan
analisa lebih mendalam mengenai hal ini. Pembuatan karbon aktif dilakukan dengan dua
metode dan uij adsorpsi gas emisi dilakukan pada motor. Hasil penelitian menunjukkan
karbon aktif yang dibuat menggunakan metode two-step menghasilkan struktur
permukaan yang paling baik dengan nilai d002 sebesar 0.33 nm dan memiliki bilangan
iodin sebesar 1168 mg/g. Penambahan MgO pada karbon aktif juga meningkatkan
kemampuan penyerapan CO2 dan CO hingga 80%. Hasil karakterisasi menggunakan
SEM menunjukkan pembentukan pori yang baik pada permukaan sehingga meningkatkan
porositas dari karbon aktif. Kandungan utama dari karbon aktif adalah 80% karbon
dibuktikan dari pengujian menggunakan EDX.

ABSTRACT
Gas emissions from motor vehicle are a major contributor to climate change by
contributing a total of 14% of emissions annually. Motor vehicle exhaust contains various
kinds of dangerous gases, including CO2 and CO gases. The best potential option for
reducing pollution is using adsorption. One type of adsorbent that is interesting to be
developed is activated carbon. Activated carbon has a high surface area and good
adsorption capability. The use of commercial activated is replaced by activated carbon
made from biomass. One of the abundant biomass wastes in Indonesia is the palm shell.
With a total of 4 tons of waste per year, palm shells can be an alternative raw material for
activated carbon producstion. One of the challenges faced in the activated carbon
production from biomass is the ungood surface crystallite structure, thereby reducing the
adsorption capability. To increase the affinity of CO2 and CO gases, a modification was
carried out using a metal oxide, MgO. The crystallite structure is one important factor that
determines the adsorption capacity. However, deeper analysis is needed in the crystalline
structure modification represented by d002 (aromatic layer), Lc (crystallite height), and La
(crystallite diameter) on the adsorption of motor vehicle gas emissions. The production
activated carbon was carried out by two methods and the emission gas adsorption was
carried out on the motorcycle. The results showed that activated carbon made using the
two-step method produces the best surface structure with a d002 value of 0.33 nm and has
an iodine number of 1168 mg/g. The impregnation of MgO to activated carbon also
increases the ability to adsorb CO2 and CO up to 80%. The results of the characterization
using SEM showed pore formation on the surface which increases the porosity of
activated carbon. The main content of activated carbon is 80% carbon proven from EDX
characterization."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Maulana
"Penelitian ini bertujuan untuk mengembangkan adsorbent sebagai komponen vital pada sistem pendinginan adsorpsi yang nantinya dapat diterapkan untuk pembuatan es pada kapal nelayan. Krisis energi yang terjadi di Indonesia mengharuskan kita untuk mencari energi alternatif untuk menghasilkan es balok, agar dapat membantu para nelayan. Fluida refrigeran yang digunakan dalam penelitian ini adalah metanol dengan kadar 98%. Metanol merupakan refrigerant ramah lingkungan.
Pengujian telah dilakukan pada alat ini dengan suhu terendah yang dicapai pada evaporator sebesar 17°C. Adsorbent yang digunakan dalam penelitian ini adalah jenis karbon aktif granular yang terbuat dari batubara dengan bahan perekatnya seperti conventional castable, bestmittel, tepung ketan dan larutan air garam. Adsorbent yang dibuat ini memiliki sifat-sifat lebih baik dari adsorbent yang terbuat dari karbon aktif dan semen. Keunggulannya adalah sifatnya yang tahan abrasi, lebih kuat, dan porositas lebih baik.

The purpose of the research was for developing adsorbent as most important component at adsorption refrigeration system by using activated carbon, hoping it can be applied for making ice on fishing boat. Energy crysis happened in Indonesia forced us to find others alternatives in making ice, in other that helps fishermans. 98% consentration of methanol was used as refrigerant at the research. Methanol is considered as environment-friendly refrigerant.
Test of the adsorption refrigeration system has been carried out resulting lowest temperature at evaporator 17°C. Adsorbent used at the research is granulated activated carbon made from coal, with its adhesive such as conventional castable, bestmittel, glutinous rice and salt-water solution. The adsorbent has better properties than its predecessor used activated carbon and Portland cement. The advantages are resistance to abrasion, stronger, and bigger porosity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S37356
UI - Skripsi Open  Universitas Indonesia Library
cover
Rizky Romadhona
"Pada proses pemurnian gas dari komponen - komponen pengotornya, diterapkan prinsip adsorpsi. Adsorpsi merupakan salah satu metode yang digunakan untuk memisahkan komponen-komponen yang ada dalam suatu campuran. Pemisahan yang terjadi pada adsorpsi ini terjadi karena adanya perbedaan afinitas suatu komponen terhadap adsorben yang ada pada kolom adsorpsi sehingga dengan demikian komponen tersebut dapat dipisahkan. Salah satu persamaan yang paling sering digunakan dalam menggambarkan proses adsorpsi adalah persamaan Langmuir. Persamaan ini dapat menjelaskan fenomena adsorpsi gas pada tekanan rendah dengan baik tetapi pada kondisi adsorpsi gas tekanan tinggi, data yang dihasilkan dengan menggunakan persamaan ini tidaklah baik. Hal ini disebabkan terutama karena persamaan Langmuir menggambarkan kondisi adsorpsi absolut sedangkan untuk data eksperimen didasarkan pada persamaan adsorpsi Gibbs, dimana ada perbedaan persepsi dalam menyatakan volum gas yang terlibat.
Penelitian ini bermaksud untuk melakukan modifikasi terhadap persamaan Langmuir dalam merepresentasikan data eksperimen adsorpsi gas pada tekanan tinggi. Sehingga kelemahan dari persamaan Langmuir dalam merepresentasikan data eksperimen pada kondisi ini dapat teratasi atau menjadi lebih baik. Hasil penelitian menunjukkan bahwa secara keseluruhan persamaan hasil modifikasi merepresentasikan data eksperimen lebih baik dibandingkan persamaan Langmuir. Hal ini dapat ditunjukkan secara umum dari nilai AAPD (Average Absolute Percent Deviation) persamaan modifikasi lebih rendah dibandingkan nilai AAPD persamaan Langmuir.
Hasil pengolahan data dengan persamaan modifikasi dengan menggunakan karbon aktif sebagai adsorben memiliki nilai AAPD sebesar 3,04 sedangkan untuk persamaan Langmuir sebesar 3,54. Begitu pula dengan hasil pengolahan data yang menggunakan zeolit dan batu bara sebagai adsorben. Nilai AAPD persamaan modifikasi dengan zeolit sebagai adsorben sebesar 3,75 dan nilai AAPD persamaan Langmuirnya sebesar 4,09. Nilai AAPD untuk sistem yang diolah dengan menggunakan persamaan modifikasi dengan batu bara sebagai adsorben lebih rendah dibandingkan dengan nilai AAPD persamaan Langmuirnya. Nilai AAPD persamaan modifikasi dengan batu bara sebagai adsorben sebesar 0,69 sedangkan nilai AAPD persamaan Langmuirnya sebesar 0,73.

Adsorption is a method which used to separate a mixed into components. Separation can occur because of affinity differentiation from one component into adsorbent than others component at adsorption coloumn. Principle of adsorption is applied for gas purification from impurities. Langmuir model is an equation which usually used for represent adsorption process. This model can explain gas adsorption phenomenon at low pressure very good but it couldn't do that at high pressure. At high pressure a data which represented by this model is not fit with experiment data, it's ultimately because of Langmuir model represented adsorption proces based on absolute adsorption, meanwhile experiment data represented adsorption process based on Gibbs adsorption. There are differentiation gas volume involved perseption between absolute adsorption and Gibbs adsorption. The experiment is conducted to modify Langmuir model.
An objective of experiment is try to solve a weakness of Langmuir model when it represent gas adsorption data at high pressure. From experiment a weakness of Langmuir model to represent gas adosprtion data at high pressure try to be solved so it will be better than before. We can know about it from AAPD (Average Absolute Percent Deviation) both for Langmuir model or modification model. As generally, result of experiment shows that modification model had better performance than Langmuir model on represent gas adsorption data which it's show AAPD value from modification lower than AAPD value from Langmuir model.
From data calculation with modification model the AAPD value of a system which used activated carbon as adsorbent is 3.04. Meanwhile for data calculation with Langmuir model in the same system, the AAPD value is 3,54. We also can find out this result in data calculation of a system which used zeolit and coal as adsorbent. Data calculation with modification model got AAPD value of a system which used zeolit as adsorbent is 3,75 but in the same system which used calculation with Langmuir model got it's value as 4,09. And for data calculation with modification model got AAPD value of a system which used coal as adsorbent is 0,69, in otherwise calculation with Langmuir model got AAPD value as 0,73.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52200
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>