Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 179048 dokumen yang sesuai dengan query
cover
M. Nadrul Jamal
"Saat ini krisis energi dan permasalahan lingkungan makin meningkat. Bahan baker fosil terbatas jumlahnya karena sifatnya yang tidak dapat diperbaharui serta dapat menimbulkan polusi udara. Penelitian mengenai penganti bahan bakar fosil telah lama dimulai. Jenis energi alternatif yang cukup berkembang saat ini adalah sel bahan baker atau fuel cell yang dapat mengkonversi energi kimia secara langsung menjadi energi listrik. Pengembangan teknologi ini diharapkan mampu mengatasi kebutuhan energi yang semakin meningkat dewasa ini. Departemen Teknik Kimia Fakultas Teknik Universitas Indonesia (DTK FTUI) telah memulai riset mengenai fuel cell yang berjenis Polymer Electrolyte Membrane (PEM) sejak awal tahun 2004. Namun, dalam perkembangannya sampai saat ini masih masih dihasilkan kinerja yang rendah. Salah satu penyebabnya adalah kualitas Membrane Electrode Assembly (MEA) yang kurang baik. Sistem fuel cell di DTK juga dapat menurunkan kinerja fuel cell.
Skripsi ini membahas menganai penggunaan teknik sputtering untuk fabrikasi MEA. Teknik sputtering memberikan hasil yang baik pada fuel cell berbahan bakar hydrogen (PEMFC). MEA dengan taknik sputtering menghasilkan power density maksimum 138,6 dengan loading katalis 0,08 mg/cm2, sedangkan MEA konvensional dengan loading 0,2 mg/cm2 hanya menghasilkan 93,7 mW/cm2. Tetapi sputtering memberikan hasil yang rendah pada fuel cell berbahan bakar metanol (DMFC). MEA DMFC dengan teknik sputtering hanya memberikan power density maksimum 0,51 mW/cm2, sementara MEA konvensional mencapai 2,23 mW/cm2. Hal ini karena deposisi katalis Ru dilakukan secara terpisah dengan Pt sehingga keduanya tidak dapat membentuk logam paduan (alloy), yang pada akhirnya menurunkan kinerja MEA. Sistem fuel cell sebagai salah satu penyebab rendahnya kinerja pada DMFC telah dievaluasi. Penyebab utama rendahnya kinerja fuel cell di DTK adalah sistem aliran bahan bakar yang menyebabkan rendahnya tekanan gas reaktan. Yang kedua adalah kualitas cell stack sehingga yang menyebabkan tingginya resistensi sel. Dan yang terakhis adalah pembacaan DC E-Load di DTK memberikan nilai yang lebih rendah dari nilai yang sebenarnya.

World concern about energy and environmental issues is now increasing. Fossil fuels as a main source of energy is begin to deplete. Fossil fuels also cause severe damage to air quality due to its contaminant and incomplete combustion. Development for another energy source has begun since long ago. Fuel cells are one of the most developing alternatives. A fuel cell is able to produce electricity from a fuel directly, thus increasing its efficiency. Fuel cells can run with many renewable energy source such hydrogen and alcohol. Development of fuel cell is expected to respond the energy demand nowadays. Chemical Engineering University of Indonesia has begun a research on Polymer Electrolyte Membrane (PEM) based fuel cells since 2004s. But its development still features a low performance. This low outcome is caused by the quality of Membrane Electrode Assembly (MEA) and the system itself.
This research paper has been investigated the sputter deposition method as a tool for manufacturing fuel cell electrodes. This method gave a good result for hydrogen fuel cell PEMFC compared to conventional method. MEA with sputtering has 138.6 mW/cm2 maximum power densities with 0.08 mg/cm2 catalyst loading, since conventional method only gave 93.7 mW/cm2 maximum power densities with 0.2 mg/cm2 catalyst loading. But sputtering has an unexpected result for methanol fuel cell DMFC. Performance of DMFC MEA used sputtering only has 0.51 mW/cm2 maximum power densities, since conventional gave 2.23 mW/cm2 maximum power densities. This low performance was due to the sputtering method that deposit ruthenium catalyst separately with platinum. It made both of them wasn't able to form alloy metal, thus lowering performance. The fuel cell system as cause of low performance was also evaluated in this research. The main problem in fuel cell system is in the fueling system and oxidant. It contributed in lowering reactant pressure. The second problem is in fuel cell stack that contributed in high resistance of cell. The last problem is placed on the measurement instrument, the DC Electronic Load. Its reading was lower than the actual values.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49714
UI - Skripsi Open  Universitas Indonesia Library
cover
cover
Dewi Anggraini
"Saat ini, dunia sedang mengalami krisis energi dan lingkungan akibat menipisnya cadangan bahan bakar fosil dunia dan polutan yang dihasilkan pembakaran bahan bakar fosil. Salah satu solusi yang potensial untuk mengatasi masalah-masalah tersebut adalah penerapan teknologi polymer electrolyte membrane fuel cell (PEMFC). Namun, pemanfaatan PEMFC secara massal masih mengalami banyak kendala, antara lain harga katalis Pt yang mahal dan usia pemakaian PEMFC yang masih rendah. Salah satu faktor penyebab rendahnya usia PEMFC adalah terjadinya degradasi pada karbon penyangga katalis yang digunakan.
Saat ini, solusi yang paling menjanjikan dari permasalahan tingginya harga katalis tanpa menurunkan kinerja PEMFC adalah penerapan teknik sputtering untuk mendeposisikan katalis platina pada penyangga karbon. Sementara itu, degradasi pada karbon penyangga katalis dapat diatasi dengan mengganti penyangga katalis carbon black Vulcan XC 72 dengan carbon nanotube (CNT) yang lebih tahan terhadap lingkungan korosif. Selain mengatasi masalah degradasi, penggunaan CNT juga dapat menurunkan loading katalis Pt karena luas permukaan efektifnya yang lebih tinggi. Luas area MWNT yang digunakan dalam penelitian ini adalah 500 m_/gr, sementara luas carbon black Vulcan XC72 adalah 250 m_/gr.
Penelitian ini mengkombinasikan aplikasi CNT sebagai penyangga katalis dan teknik deposisi sputtering untuk mengoptimalkan kinerja dan memperpanjang usia pemakaian PEMFC. Penelitian ini terdiri dari 3 tahap utama, yakni fabrikasi membrane electrode assembly (MEA), set up sistem PEMFC, dan uji kinerja single cell PEMFC.
Hasil yang diharapkan dari penelitian ini adalah terbentuknya prototype PEMFC dengan kinerja yang lebih baik dan usia pemakaian yang lebih panjang dari hasil-hasil penelitian sebelumnya. Power density maksimum yang dihasilkan MEA CNT-sputtering adalah 12,57 mW/cm_. Hasil tersebut masih lebih rendah dari power density maksimum yang dihasilkan MEA komersial, yaitu 98,36 mW/cm_. Hal tersebut disebabkan rendahnya jumlah katalis Pt yang terdeposisi pada MEA. Namun, kelekatan carbon paper dan membran Nafion pada MEA CNT-sputtering lebih kuat sehingga pengelupasan carbon paper tidak terjadi setelah pengujian selama 6 jam dengan DC Electronic Load.

At present, the world is facing an energy crisis due to the declining reserve of fossil fuel and the environmental damage that is caused by the combustion of it. One of the most potential solution for the crisis is the application of polymer electrolyte membrane fuel cell (PEMFC) technology. Unfortunately, the mass application of PEMFC is still limited due to the high price of platinum catalyst and PEMFC's short lifetime that is caused by the degradation of carbon catalyst support.
Application of sputtering technology in the catalyst deposition is one of the best solution to overcome the high cost of platinum. Meanwhile, degradation of the catalyst support can be overcome by the usage of carbon nanotube (CNT) to replace the conventional Vulcan XC72 carbon support. CNT has more resistance to acid environment, thus more resistant to corrosion. Moreover, CNT can reduce the catalyst loading due the high effective surface area.
Therefore, this research combined the application of sputtering technology and the usage of CNT as catalyst support to optimize PEMFC performance and increase its lifetime. This research consists of three main step, i.e. the fabrication of membrane electrode assembly (MEA), set up of PEMFC system, and single cell PEMFC performance test.
The expected result of this research is the fabrication of a better PEMFC prototype with longer lifetime than the previous researches. The maximum power density result of the CNT ' sputtering MEA is 12,57 mW/cm_. Meanwhile, the maximum power density of commercial MEA is 98,36 mW/cm_. The low amount of Pt that deposited in the MEA is the main reason for this low power density. However, the MEA's resistance to the peeling of carbon paper after 6 hours test in DC Electronic Load is increasing.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51792
UI - Skripsi Open  Universitas Indonesia Library
cover
Ivan
"Pelat bipolar merupakan komponen utama dalam Polymer Electrolyte Membrane Fuel Cell (PEMFC). Pada penelitian ini pelat bipolar dibuat dari grafit komposit yang terdiri dari matriks grafit Electric Arc Furnace (EAF), carbon black sebagai filler, dan resin epoksi sebagai binder. Semua bahan dicampur dengan menggunakan high speed mixer dengan variabel waktu pencampuran 10, 30, 60, 90, dan 120 detik. Metode compression moulding dilakukan dalam pembuatan pelat bipolar dengan menggunakan tekanan 55 MPa selama 4 jam pada temperatur 100°C.
Hasil penelitian menunjukkan bahwa waktu pencampuran selama 90 detik menghasilkan pelat bipolar dengan karakteristik optimum dengan nilai konduktivitas tertinggi sebesar 5,3 S/cm. Kekuatan fleksural sebesar 78,129 MPa dicapai pada waktu pencampuran 30 detik. Namun demikian, densitas terendah sebesar 1,74 g/cm3 diperoleh dengan melakukan 120 detik pencampuran, dan porositas terkecil 3,19% diperoleh pada 60 detik waktu pencampuran. Pengamatan visual menunjukkan bahwa seluruh pelat bipolar mempunyai penampakan yang baik, tidak retak, dan permukaan yang rata.

Bipolar plate is the main component in the Polymer Electrolyte Membrane Fuel Cell (PEMFC). In this study, bipolar plates made of carbon-carbon composites consisting of EAF (Electric Arc Furnace) graphite matrix, carbon black as filler, and epoxy as the binder. All subtances were mix together with high speed mixer with variable mixing time is 10s, 30s, 60s, 90s, 120s. Compression moulding is used in the process with 550 MPa pressure, for four hours with temperature of 100°C.
The result of this study shows that 90s mixing time has the highest value for conductivity 5,3 S/cm. Highest flexural strength 78,129 MPa reached when 30s mixing time applied. The lowest density 1,74 g/cm3 attained in 120s mixing time, and the lowest porosity 3,19% attained in the variation 60s. Visual examination shows that all the bipolar plate have a good appereance, no cracks, and flat surface.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1509
UI - Skripsi Open  Universitas Indonesia Library
cover
Sri Handayani
"Membran polimer elektrolit untuk aplikasi direct mtehanol fuel cell (DMFC) suhu tinggi harus tahan terhadap suhu tinggi, konduktivitas proton tinggi dan permeabilitas metanol rendah. Padahal kecenderungan membran elektrolit jika konduktivitas proton tinggi selalu diikuti dengan permeabilitas metanol yang tinggi. Polieter-eter keton (PEEK) termasuk polimer yang tahan terhadap senyawa-senyawa kimia dan kestabilan panas yang cukup tinggi. PEEK merupakan polimer yang hidrofobik. Untuk menjadi membran elektrolit perlu diberi gugus elektrolit (sulfonat) melalui proses sulfonasi. Untuk mendapatkan membran elektrolit yang tahan pada aplikasi DMFC suhu tinggi, perlu dibuat membran komposit. Aditif yang digunakan yaitu polisulfon, H-Yzeolit dan silika. Tujuan penelitian ini adalah membuat membran elektrolit berbasis PEEK tersulfonasi (sPEEK) untuk dapat diaplikasikan dalam DMFC suhu tinggi. Variasi untuk proses sulfonasi adalah suhu yaitu 40, 45, 50, 60 dan 70°C sedangkan waktu reaksi dibuat tetap yaitu 3 jam. Pada pembuatan membran, konsentrasi aditif anorganik (silika dan H-Yzeolit) adalah 0, 3, 5 dan 10%. Dan aditif organik (polisulfon), perbandingan sPEEK dengan polisulfon adalah 100/0, 90/10, 80/20, 70/30, 50/50 %. Parameter yang diukur adalah kapasitas penukar ion (KPI), derajat sulfonasi (DS), swelling air, konduktivitas proton (σ), permeabilitas metanol (DK), suhu transisi glass (Tg) dan tensile strength (TS). Sulfonasi PEEK menggunakan 5 g polimer PEEK dalam 100 ml asam sulfat pekat. Kondisi suhu sulfonasi optimum adalah 50°C yang menghasilkan polimer elektrolit DS 68%. Aditif yang memberikan peningkatan terhadap karakteristik membran elektrolit adalah silika dan H-Yzeolit pada konsentrasi 3%. Karakteristik dari sPEEK, sPEEK+HYzeolit dan sPEEK+silika yaitu swelling air = 7, 10 dan15 %; σ = 0,067, 0,07 dan 0,072 S/cm (suhu 140°C); DK = 7x10-6, 8,6 x10-6 dan 8,7x10-6 (suhu 140°C); Tg sekitar 200°C dan selektivitas lebih besar dibanding Nafion-117 (pada suhu 25-90°C) dan selektivitas masih tetap tinggi pada suhu 140°C. Alternatif pengganti Nafion-117 telah berhasil disintesa dengan proses mudah dan murah. Membran elektrolit berbasis polieter-eter keton dengan derajat sulfonasi 68% (tanpa menggunakan aditif atau pemakaian aditif H-Yzeolit dan silika) dapat digunakan pada pemakaian suhu tinggi sehingga berpeluang besar sebagai membran elektrolit padat dalam pemakaian sistem DMFC suhu tinggi.

Electrolyte membrane for high temperature direct methanol fuel cell (DMFC) applications has to stable in high temperature, high proton conductivity and low methanol permeability. Then again, electrolyte membrane at high proton conductivity has a tendency to be followed with high methanol permeability. The polyether-ether ketone is a polymer that has good resistance to chemical and has good thermal stability. And it is a hydrophobic polymer. In order to apply the PEEK as electrolyte membrane, it has to have sulfonate group through sulfonation pr°Cess. Thus for high temperature DMFC application, PEEK should be develop as composite membrane. The additives used are i.e. polysulfone, H-Yzeolite and silica. The objective of this research is to synthesize electrolyte membrane based on sulfonated polyether-ether ketone (sPEEK) for high temperature DMFC applications. The temperatures (40, 45, 50, 60 and 70°C) were varied in sulfonation pr°Cess, whereas reaction time is setted constant for three hours. For membrane preparation, the concentration of inorganic additive (silica and H-Yzeolite) was varied as follow; 0, 3, 5, and 10%. On the other hand, for organic additive (polysulfone), the ratios sPEEK/polysulfone (100/0, 90/10, 80/20, 70/30, and 50/50 %) were applied. Characterization of membrane were determine by some calculation of i.e. ion exchange capacity, sulfonation degree (SD), swelling of water, proton conductivity (σ), methanol permeability (DK), glass transition temperature (Tg) and tensile strength (TS), Sulfonation of PEEK was carried out by using 5 g of PEEK polymer into 100 ml concentrated sulfuric acid. The optimum temperature condition for sulfonation is at 50°C that produced 68% of sulfonation degree. The additives that increased electrolyte membrane characteristic are silica and H-Yzeolite at concentration of 3%. The characteristic of sPEEK, sPEEK+H-Yzeolite and sPEEK+silica in respective order: i.e. swelling of water = 7, 10 and 15 %; σ = 0,067, 0,07 and 0,072 S/cm (at 140°C); DK = 7x10-6, 8,6 x10-6 and 8,7x10-6 (at 140°C); Tg about 200°C. Those membranes also have selectivity much higher than Nafion-117 membrane (at 25-90°C) and still has high selectivity at 140 °C. The alternative substitution membrane of Nafion-117 has been successfully synthesized by straightforward and inexpensive pr°Cess. The electrolyte membrane polyether-ether ketone based on with sulfonation degree of 68% and those modified composite ones can be used at high temperature applications so that available as solid electrolyte membrane in high temperature DMFC system."
Depok: Universitas Indonesia, 2008
D893
UI - Disertasi Open  Universitas Indonesia Library
cover
Ricky Ardhi Wibowo
"Fuel Cell merupakan sumber energi alternatif yang mengkonversi hidrogen menjadi energi listrik. Salah satu jenis fuel cell yang potensial dikembangkan adalah Polymer Electrolyte Membrane Fuel Cell (PEMFC) berbahan dasar komposit. Namun, pengembangan PEMFC masih terkendala oleh material penyusun pelat bipolar yang hanya memiliki kemampuan konduktivitas rendah. Penelitian ini bertujuan untuk menemukan komposisi ideal material komposit bermatriks polimer yang akan digunakan sebagai pelat bipolar pada PEM fuel cell. Pelat bipolar yang diharapkan mempunyai sifat konduktivitas tinggi, ringan, dan murah. Pada penelitian ini, formulasi yang digunakan antara lain polipropilena (PP), Polyphenylene Sulfide (PPS), material pengisi konduktif (karbon hitam, serat karbon, grafit sintetik), dan antioksidan. Semua bahan dicampur dalam hot blender dan dicetak menjadi sampel. Setiap formulasi diukur kekuatan tarik, kekuatan tekuk, dan konduktivitas listrik. Pengaruh dari penambahan aditif PPS dan karbon ini menunjukan bahwa kekuatan tarik dan kekuatan tekuk dipengaruhi oleh konsentrasi pengisi dan penambahan PPS dalam matriks PP. Konduktivitas tertinggi yang diperoleh adalah 0,847 S/cm.

Fuel Cell is an alternative energy source that converting hydrogen into electric energy. One of potential developed fuel cell is Polymer Electrolyte Membrane Fuel Cell (PEMFC) composite material-based. However, its bipolar plate's low conductivity become obstacle in its development. This research aimed to find ideal composition of polymer matrix composite materials for PEMFC's bipolar plate which is having high conductivity, light weight, and low cost. The formulation in this research are polypropylene (PP), Polyphenylene Sulfide (PPS), conductive filler materials (synthetic graphite, carbon black, carbon fibers), and antioxidant. All materials mixed in a hot blender and molded as testing samples. Each formulation were measured to find its tensile-strenght, flexural-strenght, and conductivity value. The influence of the addition aditive PPS and Carbon showed that tensile strength and flexural strength influenced by the concentration of PPS in PP matrix. The highest conductivity value in this research is 0,847 S/cm."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51107
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Hatta Adam
"Tujuan penelitian ini adalah untuk mendapatkan material komposit bermatriks polimer yang digunakan untuk aplikasi pelat bipolar pada PEM fuel cell dengan konduktivitas tinggi, ringan, dan murah. Pada studi ini komposit konduktif dihasilkan melalui kombinasi berbagai bahan, antara lain polipropilena (PP), etilena-propilena-diena terpolimer (EPDM), material pengisi konduktif (karbon hitam, serat karbon, grafit sintetik), dan antioksidan. Semua bahan dicampur dalam hot blender dan dicetak menjadi sampel untuk pengujian dengan muatan pengisi 44 wt% dan 80 wt%. Setiap campuran komposit diukur kerapatan massanya dan sampel pelat digunakan untuk uji kekuatan tarik, kekuatan tekuk, dan konduktivitas listrik. Pengaruh dan efek sinergis dari jenis pengisi karbon yang berbeda-beda dalam matriks PP/EPDM dievaluasi. Dari hasil penelitian, diketahui bahwa kekuatan tarik dan kekuatan tekuk dipengaruhi oleh konsentrasi pengisi dan penambahan EPDM dalam matriks polipropilena. Konduktivitas tertinggi 8,607 S/cm diperoleh pada komposit dengan konsentrasi pengisi 80 wt%.

The objective of this research is to investigate a feasibility of a conductive composite family to be used as bipolar plates in a PEM fuel cell, in order to get highly conductive, light weight, and low cost bipolar plates. This work utilized a combination of a polypropylene (PP), ethylene-propylene-diene terpolymer (EPDM), low cost conductive filler materials (synthetic graphite, carbon black, carbon fibers), and antioxidant. The components were combined in a hot blender and compression molded into samples for testing with loadings up 44 wt% and 80 wt% of fillers. The novel blends were measured for density, and sample plates were tested for tensile strength, flexural strength, and electrical conductivity. The impact of different types of fillers on the composite properties was evaluated, as well as the synergetic effect of mixtures of fill types within a polypropylene matrix. From the results, the mechanical properties such as tensile strength and flexural strength were influenced by fillers concentration and EPDM added to the polypropylene matrix composite. The highest conductivity of 8.607 S/cm was obtained with the 80 wt% conductive fillers."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S51101
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Zaki Azizi
"Pelat bipolar merupakan komponen penting pada pemanfaatan sistem fuel cell. Penelitian-penelitian yang ada sebelumnya berusaha untuk menghasilkan pelat bipolar yang ringan dan biaya produksi yang sangat murah. Pada penelitian ini bertujuan untuk mendapatkan dan mengembangkan pelat bipolar dari proses hot press molding pada suhu 70°C dengan waktu 3 jam, ukuran cetakan panjang 15 cm, lebar 10 cm, dan tebal 4 mm. Pelat bipolar grafit komposit menggunakan karbon pengisi yang berbeda yaitu grafit sintetik pabrikan, grafit elektroda tungku busur listrik (EAF), karbon hitam dan menggunakan epoxy thermoset polimer sebagai binder, dan methanol. Komposisi dari masing-masing pelat bipolar terletak pada variasi grafit elektroda tungku busur listrik (EAF) pada rentang 0-20 % volume. Semua bahan dicampur dan dicetak menjadi sampel untuk pengujian sehingga menghasilkan karakterisasi masing-masing. Dari pengujian karakterisasi dihasilkan pelat bipolar yang memiliki rapat massa ?1,902 gr/cm3 , konduktivitas listrik ? 3,79 S/cm, porositas memiliki nilai terkecil yaitu 4,2 % pada komposisi 20 % grafit EAF, kekuatan tekuk sebesar 22,28 MPa. Hasil tersebut masih bisa ditingkatkan pada nilai konduktivitas pada pelat bipolar ini sehingga diharapkan mampu digunakan sebagai pelat bipolar pada sistem fuel cell.

Bipolar plate is an important key component of fuel cell system application. In the present investigation effort was made to develop bipolar plate which has light weight and effective cost. The objective of this research is to investigate and develop bipolar plate by hot press molding process at temperature 70°C as long as 3 hours with size 15 cm in length, 10 cm width, and 4 mm in thick. The composites were prepared by mixing different carbon filler such as graphite synthetic, graphite from waste of electrode EAF, carbon black, epoxy resin as a binder and methanol. The differential between each bipolar plate were based on ratio 0-20 % graphite waste of electrode electric arc furnace volume fraction. All material was mixing, mold, and become sample that will be measured by properties test each other. Bipolar plate has on density ?1,902 gr/cm3, conductivity ? 3,79 S/cm, flexural stress 22,28 MPa as optimum results. Result of porosity 4,2% as optimum result from ratio 20% graphite EAF. The result of conductivity can be increase so material was good candidate to be use bipolar plate on fuel cell system."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51488
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahmat Yulianto
"Komponen utama dalam sebuah rangkaian PEM fuel cell adalah pelat bipolar yang mempunyai fungsi utama sebagai pengumpul dan pemindah elektron dari anoda menuju katoda. Karena fungsi tersebut sehingga pelat bipolar harus memunyai konduktivitas yang tinggi sesuai dengan standart yang ditetapkan DOE (Department of Energy) Amerika. Agar diperoleh pelat bipolar yang ringan dan murah tapi memiliki kemampuan yang tinggi, maka dikembangkanlah palet bipolar yang terbuat dari komposi PP/C - Cu. Dalam proses pembuatan pelat bipolar komposit PP/C - Cu ini menggunakan proses compounding, hot blending, dan hot pressing. Penelitian ini menggunakan variasi bahan komposisi PP - g - MA yaitu 5 wt % PP - g - MA, 6 wt % PP - g - MA, 7 wt % PP - g - MA. Berdasarkan hasil penelitian menunjukan bahwa penambahan butiran PP - g - MA secara umum meningkatkan kekuatan tarik dan densitas dan menurunkan kekuatan tarik, konduktivitas listrik, dan porositas pelat bipolar.

Major component in PEM fuel cell is bipolar plates that have major function as loading and move is electron of anode wends cathode. Since that function so bipolar plate that shall tall conductivity according to standard which established by DOE (Department of Energy ) America. Plate gets that light in weight and cheap but has tall ability, therefore developed bipolar plate one made from Composite PP / C'Cu. In makings process lisps bipolar composite PP / C'Cu this utilizes process compounding, hot blending , and hot pressing . This research utilizes composition material variation PP'g'MA which is 5 wt % PP'g'MA, 6 wt % PP'g'MA, 7 wt % PP'g'MA. Base observational result that added particulate PP'g'MA in common increase tensile strength and density and downs tensile strength, electric conductivity, and bipolar plate porosity."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51535
UI - Skripsi Open  Universitas Indonesia Library
cover
Kenya Diestha Langen Citra
"Fuel Cell merupakan sumber energi alternatif yang mengkonversi hidrogen menjadi energi listrik, dimana fuel cell yang potensial dikembangkan adalah Polymer Electrolyte Membrane Fuel Cell (PEMFC) berbahan dasar polimer komposit. Peluang pengembangan PEMFC masih terbuka, terutama pada material pelat bipolar sebagai bagian dari fuel cell untuk menurunkan harganya.
Penelitian ini bertujuan untuk mendapat komposisi optimum pelat bipolar tersebut dengan menggunakan bahan utama grafit sintetis, polimer termoset epoxy, serta penambahan carbon black dengan lima komposis variabel carbon black yaitu 10; 12,5; 15; 17,5 dan 20 wt% menggunakan metoda compression moulding pada temperatur 70 °C dengan tekanan 300 kg.cm-2 selama 4 jam.
Konduktivitas listrik tertinggi sebesar 0,32 S.cm-1dicapai pada penambahan carbon black 12,5 wt% dan kekuatan fleksural hanya mencapai 16,21 MPa, sedangkan kekuatan fleksural dan porositas yang optimum terjadi pada penambahan carbon black sebesar 10 wt%. Densitas pelat bipolar tidak mempunyai dampak yang signifikan terhadap penambahan carbon black.

Fuel Cell is an alternative energy source that converting hydrogen into electric energy. One of potential developed fuel cell is Polymer Electrolyte Membrane Fuel Cell (PEMFC) composite material based. PEMFC development opportunities are still open, especially on the bipolar plate material as part of fuel cell that can reduce the cost.
This research aimed to obtain the optimum composition of PEMFC's bipolar plate using the main ingredient of synthetic graphite, epoxy thermoset polymer, and addition of carbon black with five variable composition, 10; 12.5; 15; 17.5 and 20 wt% using a compression moulding method at temperature of 70 °C and at pressure of 300 kg.cm-2 for 4 hours.
The highest electrical conductivity is 0.32 S.cm-1, which is achieved in the addition of 12.5 wt% carbon black and flexural strength only reaches 16.21 MPa, while the optimum flexural strength and porosity occurred on the addition of 10 wt% carbon black. Density of the bipolar plate has no significant effect on the addition of carbon black.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51659
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>