Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 149056 dokumen yang sesuai dengan query
cover
Mohamad Niko Alfredo
"Campuran iso-oktana dengan n-heptana merupakan bahan bakar acuan utama gasoline yang disebut juga sebagai PRF (primary reference fuel) dalam penentuan nilai RON (research octane number). Nilai RON pada PRF menyatakan n jumlah persen iso-oktana yang terkandung dalam campuran tersebut. Penelitian ini mengembangkan mekanisme kinetika kimia untuk reaksi oksidasi dan pembakaran PRF, yang dapat memprediksi produk antara yang dihasilkan, pengaruh komposisi iso-oktana dan n-heptana, tekanan, temperatur dan rasio ekivalensi. Model kinetika kimia oksidasi dan pembakaran PRF yang dikembangkan memiliki rentang validitas yang luas dan representatif terhadap kondisi oksidasi dan pembakaran yang sebenarnya. Model kinetika reaksi yang diperoleh divalidasi dengan menggunakan data percobaan yang diperoleh untuk profil konsentrasi dari eksperimen Dagaut dkk. [1] pada reaktor jet-stirred untuk RON 10, 50, 70, dan 90 yang dilakukan pada rentang temperatur 550 K - 1150 K, tekanan 10 atm dan rasio ekuivalen 1. Selain itu juga dilakukan validasi terhadap waktu tunda ignisi (ignition delay time) dengan menggunakan data percobaan Fieweger dkk. [3] pada reaktor shock tube pada variasi RON 0, 60, 80, 90, dan 100. Dengan tekanan operasi 40 atm dan rasio ekuivalen 1. Secara umum, hasil validasi mekanisme menunjukkan bahwa model kinetika mampu mereproduksi hasil percobaan dengan baik. Hasil analisis sensitivitas yang dilakukan dapat mengidentifikasi reaksi-reaksi yang paling penting dan relevan dalam kondisi tersebut. Hasil simulasi reaktor jet-stirred menunjukkan bahwa kondisi optimum pembakaran sempurna terjadi pada PRF dengan nilai RON 90 pada tekanan 10 atm, dan temperatur 1200 K dan campuran stoikiometri. Kemudian, hasil simulasi shock tube menunjukkan bahwa ignisi tercapai dengan cepat pada tekanan dan temperatur awal yang tinggi.

Iso-octane and n-heptane mixture known as Primary Reference Fuel were use as reference for gasoline in determining Research Octane Number (RON). The nominal after RON shows the mole percentage of iso-octane in the mixture. This research aim to make mechanisms of chemistry kinetics to react oxidation and combustion iso-octane and n-heptane mixture, knows ignition delay times, pollutant that is possibly and temperature influence, pressure and equivalence ratio at reaction of oxidation and combustion iso-octane. To reach all purpose, required an oxidation chemistry kinetics model and combustion of iso-octane and n-heptane mixture which totally causing has wide validity spread and representative to an actual condition of oxidation and combustion. Model kinetics obtained, through calculation, were validated by using attempt data obtained for profile concentration from Dagout experiments at reactor jet-stirred on RON 10, 50, 70 and 90, range temperature 550 K-1150 K, pressure at 10 atm and equivalence ratio 1,0. And also Fieweger experiments at shock tube for ignition delay times profile with range temperature 550-1150 K, pressure 40 tm and equivalence ratio 1,0. Generally, result of validity of mechanisms indicates that kinetics model has reproduced result of attempt carefully. Sensitivity analysis result in each operating condition of combustion can identify reactions most important and relevant under the condition. Result of simulation of jet-stirred reactor indicates that optimum condition of a perfect combustion for RON 90 happened at initial pressure 10 atm and temperature 1200 K at stoichiometric mixture. Then, result of simulation shock tubes indicates that ignition is reached swiftly at high initial pressure and temperature."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49810
UI - Skripsi Open  Universitas Indonesia Library
cover
Yuli Aulia Yuhana
"Iso-oktana dapat dikompres sampai volume kecil tanpa mengalami pembakaran spontan. Hal itu terjadi karena iso-oktana memiliki temperatur autoignition yang tinggi (417_C). Iso-oktana merupakan suatu senyawa kimia yang dapat digunakan untuk meningkatkan bilangan oktan yang terkandung dalam suatu bahan bakar. Sebagai tambahan, pencampuran iso-oktana dengan n-heptana dijadikan acuan utama untuk bahan bakar (primary reference fuel) yang menyatakan jumlah persen iso-oktana yang terkandung dalam campuran tersebut menunjukkan bilangan oktana.
Penelitian ini bertujuan membuat mekanisme kinetika kimia untuk reaksi oksidasi dan pembakaran iso-oktana, mengetahui ignition delay time, polutan yang mungkin dihasilkan dan pengaruh temperatur, tekanan dan rasio ekivalensi pada reaksi oksidasi dan pembakaran iso-oktana. Untuk mencapai semua tujuan tersebut, diperlukan suatu model kinetika kimia oksidasi dan pembakaran iso-oktana yang menyeluruh (comprehensive) sehingga memiliki rentang validitas yang luas dan representatif terhadap kondisi oksidasi dan pembakaran yang sebenarnya.
Model kinetika yang diperoleh, melalui perhitungan, akan divalidasi dengan menggunakan data percobaan yang diperoleh untuk profil konsentrasi dari eksperimen Dagout pada reaktor jetstirred dengan 0,1 % iso-oktana, rentang temperatur 550 K - 1150 K, tekanan 10 atm dan rasio ekuivalen 0,3 - 1,5 dan eksperimen Fieweger dkk. pada shock tube untuk profil ignition delay times dengan rentang temperatur 550 - 1700 K, tekanan 1 - 45 atm dan rasio ekuivalen 0,3 - 1,5.
Secara umum, hasil validasi mekanisme menunjukkan bahwa model kinetika telah mereproduksi hasil percobaan dengan baik. Hasil analisis sensitivitas yang dilakukan pada setiap kondisi operasi pembakaran dapat mengidentifikasi reaksi-reaksi yang paling penting dan relevan dalam kondisi tersebut. Hasil simulasi reaktor jet-stirred menunjukkan bahwa kondisi optimum pembakaran sempurna terjadi pada tekanan 10 atm, temperatur 1200 K dan campuran stoikiometri. Kemudian, hasil simulasi shock tube menunjukkan bahwa ignisi tercapai dengan cepat pada tekanan dan temperatur awal yang tinggi.

Iso-octane can be compressed until small volume without experiencing spontaneous combustion. That because iso-octane have high temperature autoignition ( 417_C). Iso-octane is a chemistry compound which applicable to increase octane number which implied in a fuel, mixing of iso-octane and nheptane is primary reference fuel which expressing number of gratuities isooctane which implied in the mixture shows octane number.
This research aim to make mechanisms of chemistry kinetics to react oxidation and combustion iso-octane, knows ignition delay times, pollutant that is possibly and temperature influence, pressure and equivalence ratio at reaction of oxidation and combustion iso-octane. To reach all purpose of the, required an oxidation chemistry kinetics model and combustion of iso-octane which totally causing has wide validity spread and representative to an actual condition of oxidation and combustion.
Model kinetics obtained, through calculation, will be validation by using attempt data obtained for profile concentration from Dagout experiments at reactor jet-stirred with 0,1 % isooctane, range temperature 550 K-1150 K, pressure at 10 atm and equivalence ratio 0,3-1,5 and Fieweger experiments at shock tube for ignition delay times profile with range temperature 550-1700 K, pressure 1-45 atm and equivalence ratio 0,3-1,5.
Generally, result of validity of mechanisms indicates that kinetics model has reproduced result of attempt carefully. Sensitivity analysis result in each operating condition of combustion can identify reactions most important and relevant under the condition. Result of simulation of jet-stirred reactor indicates that optimum condition of a perfect combustion happened at initial pressure 10 atm, temperature 1200 K and stoichiometric mixture. Then, result of simulation shock tube indicates that ignisi is reached swiftly at high initial pressure and temperature.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49630
UI - Skripsi Open  Universitas Indonesia Library
cover
Shilka Miladian Tinas
"Pemodelan Kinetika Oksidasi dan Pembakaran Campuran Dimetil Eter (DME)-Propana dilakukan untuk mempelajari karakteristik pembakaran bahan bakar campuran DME dan propana (C3H8). Model kinetika oksidasi dan pembakaran campuran DME-propana terdiri dari 295 spesies dan 1584 reaksi elementer. Validasi model kinetika yang dikembangkan pada penelitian ini telah dilakukan menggunakan data percobaan waktu tunda ignisi yang dilakukan oleh Erjiang Hu dkk. Model kinetika yang dikembangkan memberikan kesesuaian yang baik terhadap data percobaan. Simulasi menggunakan model kinetika untuk mendapatkan profil waktu tunda ignisi dilakukan pada tekanan 2, 10, 40 bar; temperatur 550-1500K; rasio ekivalensi 0,5-2 dan komposisi DME 0-100%.
Hasil simulasi menunjukkan meningkatnya tekanan, waktu tunda ignisi akan semakin cepat, hal ini berlaku untuk semua rasio ekivalensi dan komposisi DME. Pengaruh penambahan DME pada waktu tunda ignisi campuran DME-propana sensitif terhadap konsentrasi bahan bakar. Semakin besar komposisi DME dalam campuran, waktu tunda ignisi semakin cepat. Waktu tunda ignisi campuran DMEpropana pada daerah temperatur 550-1000K menunjukkan adanya daerah NTC (Negative Temperature Coefficient) yaitu daerah dimana temperatur meningkat, laju reaksi oksidasi dan pembakaran menurun memperlambat terjadinya ignisi. Pengaruh rasio ekivalensi terhadap waktu tunda ignisi campuran DME-propana cukup besar pada daerah NTC. Pada temperatur dibawah dan diatas daerah NTC, pengaruh rasio ekivalensi terhadap waktu tunda ignisi sangat kecil.

Kinetic modeling of the oxidation and combustion of Dimethyl Ether (DME)-Propane mixtures is conducted to study the combustion characteristic of the fuel mixture of DME and propane (C3H8). Kinetic model of the oxidation and combustion of DME-propane mixture consists of 295 species and 1548 elementary reaction. Validation of kinetic model developed in this study has been carried out using the experimental data of ignition delay time by Erjiang Hu et.al. Kinetic model developed provides good agreement to the experimental data. The simulation using kinetic model to produce ignition delay time profile conducted at pressure 2, 20, 40 bar; temperature 550-1500K; equivalence ratio 0,5-2 and DME blending ratio 0-100%.
The result shows that with the increase of pressure, ignition delay time decrease for all equivalence ratio and DME blending ratio. The effect of DME addition on ignition delay time of DME-propane mixtures is sensitive on the fuel concentration. Increasing DME blending ratio, the faster the ignition delay time. Ignition delay time DME-propane mixtures at temperature 550-1000K show the NTC (Negative Temperature Coefficient) region, which the increasing of temperature, the rate of oxidation and combustion reaction decrease, inhibit the ignition. Effect of equivalence ratio on ignition delay time DMEpropane mixtures is quite large in NTC region. At temperature below and above the NTC region, the effect of equivalence ratio on ignition delay time is small.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41774
UI - Tesis Membership  Universitas Indonesia Library
cover
Hendra Fauzi
"Indonesia memiliki deposit Aspal Buton sebesar 650 juta ton dan merupakan deposit aspal alam terbesar di dunia. Aspal Buton ini memiliki potensi sebagai bahan tambah (additive) atau sebagai bahan substitusi aspal minyak sehingga bila dimanfaatkan secara maksimal maka dapat menghemat devisa negara dengan mengurangi ketergantungan pada aspal impor. Untuk dapat dimanfaatkan sebagaimana aspal minyak maka diperlukan proses pemisahan (ekstraksi) bitumen dari batuan Aspal Buton. Pada penelitian ini Aspal Buton akan diekstraksi menggunakan metode ekstraksi dengan bantuan gelombang mikro. Ekstraksi dilakukan dengan tiga variasi, yaitu rasio volume pelarut (n-heptana : toluena : etanol), variasi volume total pelarut dan waktu ekstraksi. Pada volume pelarut 50 mL dengan rasio volume pelarut n-heptana-toluena-etanol 5:3:2, dan waktu ekstraksi 5 menit, diperoleh yield bitumen sebesar 32,38%. Ekstrak yang didapat kemudian diuji menggunakan FTIR. Hasil spektrum FTIR ekstrak dari ekstraksi Aspal Buton menunjukkan adanya kesamaan dengan spektrum FTIR bitumen.

Abstract
Indonesia has 650 million tons deposit of Buton Asphalt. It is the largest deposit of natural asphalt in the world. Buton asphalt has a potential as an additive or as a substitution of petroleum asphalt, so that when it is fully utilized, it can save foreign exchange by reducing dependence on imported asphalt. A process of bitumen separation (extraction) from the rock of Buton Asphalt is required to be utilized as petroleum asphalt. In this study, Buton Asphalt will be extracted using microwave assisted extraction method. Extraction is conducted with three variations, the ratio of the volume of solvent (n-heptane: toluene: ethanol), total volume of solvent, and extraction time. On the volume of 50 mL of solvent with volume ratio of solvent n-heptane-toluene-ethanol 5:3:2, and extraction time 5 min, obtained bitumen yield 32.38%. The extract is tested using FTIR. The results of FTIR spectrum of the extract from the extraction of Buton Asphalt indicate a similarity with the FTIR spectrum of bitumen."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43803
UI - Skripsi Open  Universitas Indonesia Library
cover
Tri Wahyudi Purnomo
"Pemodelan pembakaran dan oksidasi bahan bakar B-35 yang mengandung MTBE dikembangkan supaya diperoleh kondisi pembakaran optimum. Pengembangan mekanisme kinetika reaksi secara detil melibatkan 1378 reaksi elementer dan 431 spesies yang dinormalisasi menjadi 7 spesies utama dan diselesaikan menggunakan solver Chemkin melalui persamaan differensial dengan model kuasi steady state.
Perhitungan menghasilkan profil waktu tunda ignisi dan konsentrasi. Profil waktu tunda ignisi divalidasikan terhadap data percobaan Edimilson, dkk. Profil konsentrasi dibuat berdasarkan validasi waktu tunda ignisi yang optimal. Validitas dicapai pada rentang suhu 860,8 - 932,6 K, tekanan 12,87 atm dan rasio ekivalensi stoikiometri. Kondisi optimum pembakaran terjadi pada suhu 1340 K, tekanan 25 atm untuk campuran stoikiometri dan pada suhu 1325 K, tekanan 25 atm untuk campuran lean fuel.

Modelling of combustion and oxidation of B-35 fuel containing MTBE has developed to reach the optimum combustion. Development of mechanism of kinetic reactions in detail consist of 1378 elementary reactions and 431 specieses which normalized into 7 main specieses and solved by Chemkin through differential equations by steady state quation model.
Results of the calculation are ignition delay time and concentration profiles. Ignition delay time profiles is validated with Edimilson, et. al. data experiment. Concentration profiles is made according to optimum ignition delay time profiles. Temperature validity reached at 860,8 - 932,6 K, 12,87 atm of pressure and stoikiometric equivalence ratio. Optimum condition of combustion reached at 1340 K of temperature, 25 atm of pressure in stoikiometric equivalence ratio and 1325 K of temperature, 25 atm of pressure in lean fuel equivalence ratio.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52214
UI - Skripsi Open  Universitas Indonesia Library
cover
Sukirman
"Suatu mekanisme kinetika kimia terinci untuk pembakaran toluena telah dilakukan dan dievaluasi pada rentang yang lebar dari suatu reaksi pembakaran. Dalam hal ini mencakup beberapa diantaranya adalah diterapkan dalam alat uji shock tubes, perfectly stirred reactor (PSR) dan plug flow reactor (PFR). Mekanisme reaksi yang dihasilkan dengan menggunakan program aplikasi Chemkin terdiri dari 617 reaksi elementer dan 107 spesies yang mana membutuhkan keahlian yang cukup untuk mengembangkan suatu mekanisme kinetika kimia yang bisa diaplikasikan pada reaksi oksidasi dengan temperaratur sedang hingga temperature tinggi. Dekomposisi termal dari toluene dan reaksi reaksi serangan spesies radikal yang mengarah pada terbentunya spesies teroksigenasi (oxygenated species) diberikan perhatian khusus.
Model kinetika toluena yang menyeluruh akan mendukung untuk mendapatkan profil konsumsi bahan bakar yang effisien baik itu untuk aplikasi shock tubes, perfectly stirred reactor maupun plug flow reactor. Penelitian ini menggunakan data sekunder yang dipakai sebagai acuan untuk validasi adalah hasil percobaan yang dilakukan terhadap campuran homogen pada rentang tertentu nisbah kesetaraan (equivalence ratios) pada tekanan yang dimampatkan dari 25 sampai 45 bar dan temperature 920 K hingga 1100 K. Data yang dipakai untuk validasi ini adalah data sekunder dari hasil percobaan Davidson [D.F. Davidson, B.M. Gauthier, R.K. Hanson, Proc. Combust. Inst. 30 (2005) 1175 - 1182] dengan memvariasikan konsentrasi oksigen, sementara konsentrasi toluenanya dijaga tetap untuk mengetahui seberapa jauh pengaruh dari oksigen dalam berkontribusi terhadap pola ignisi.
Percobaan tambahan dengan memvariasikan fraksi mol dari bahan bakar pada harga nisbah kesetaraan tertentu menunjukkan bahwa waktu tunda ignisi menjadi lebih pendek dengan makin tingginya konsentrasi bahan bakar. Prakiraan dari berbagai mekanisme kinetika rinci juga diperbandingkan dimana hasilnya menunjukkan belum didapatkannya keakuratan data mekanisme kinetika untuk toluene terhadap data percobaan untuk penentuan waktu tunda ignisi maupun jumlah panas yang dilepaskan. Analisa fluks dilakukan untuk mengidentifikasi arah reaksi yang paling dominan dan reaksi mana yang menunjukkan penyimpangan dari data yang bersumber dari percobaan dan data hasil simulasi.

A detailed chemical kinetic mechanism for the combustion of toluene has been assembled and investigated for a wide range of combustion regimes. The later includes shock tubes, perfectly stirred reactor (PSR) and Plug Flow Reactor (PFR). The reaction mechanism features 617 elementary reactions and 107 species and represents an attempt to develop a chemical kinetic mechanism applicable to intermediate and high temperature oxidation. Toluene thermal decomposition and radical attack reactions leading to oxygenated species are given a particular attention.
The final toluene kinetic model results in excellent fuel consumption profiles in both flame and plug flow reactors and sensible predictions of temporal evolution of hydrogen radical and pyrolysis products in shock tube experiments. Experiments are conducted for homogeneous mixtures over a range of equivalence ratios at compressed pressures from 25 to 45 bar and compressed temperatures from 920 to 1100 K. Experiments varying oxygen concentration while keeping the mole fraction of toluene constant reveal a strong influence of oxygen in promoting ignition.
Additional experiments varying fuel mole fraction at a fixed equivalence ratio show that ignition delay becomes shorter with increasing fuel concentration. Moreover, autoignition of benzene shows significantly higher activation energy than that of toluene. In addition, the experimental pressure traces for toluene show behavior of heat release significantly different from the results of Davidson et al. [D.F. Davidson, B.M. Gauthier, R.K. Hanson, Proc. Combust. Inst. 30 (2005) 1175'1182]. Predictability of various detailed kinetic mechanisms is also compared. Results demonstrate that the existing mechanisms for toluene fail to predict the experimental data with respect to ignition delay and heat release. Flux analysis is further conducted to identify the dominant reaction pathways and the reactions responsible for the mismatch of experimental and simulated data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49616
UI - Skripsi Open  Universitas Indonesia Library
cover
Danny Leonardi
"ABSTRAK
Sebuah penelitian komparatif berbasis simulasi telah dilakukan untuk menyesuaikan dan memvalidasi model kinetika pembakaran dari surogat biodiesel dan solar, dan untuk menggabungkan kedua model tersebut untuk memprediksi waktu tunda ignisi IDT dari campuran biodiesel dan solar nyata. Penelitian ini meliputi pengembangan model kinetika pembakaran dari surogat biodiesel dan surogat solar, penggabungan kedua model tersebut, dan validasi dengan data eksperimen IDT dari setiap bahan bakar yang bersesuaian. Model kinetika pembakaran surogat biodiesel dan solar telah disesuaikan dan divalidasi agar cocok dengan data eksperimen IDT dari metil 9-dekenoat pada tekanan 20 atm dan tiga nilai rasio ekuivalensi dengan IDT sebesar 2.7 ms pada simulasi dan 2.69 ms pada data eksperimen , dan dari n-heksadekana pada 2 - 5 atm dan rasio ekuivalensi 1.0 dengan IDT sebesar 0.37 ms dari simulasi dan 0.38 ms pada data eksperimen . Model kinetika pembakaran gabungan telah dibuat dengan memakai model surogat biodiesel dan solar untuk memprediksi IDT dari campuran biodiesel dan solar nyata. Model ini sudah divalidasi agar cocok dengan data eksperimen IDT dari campuran biodiesel dan solar nyata pada empat komposisi campuran B20, B40, B60, B80 , tekanan 1.18 atm, dan menghasilkan model yang valid dengan IDT sebesar 0.699 ms dari simulasi dan 0.69 ms pada data eksperimen .

ABSTRACT
comparative simulation based research has been set up to adjust and validate combustion kinetic models of biodiesel and solar surrogate and to combine the two models to predict ignition delay times IDT of real biodiesel and solar mixtures. This research consists of the development of combustion kinetics model for biodiesel surrogate and solar surrogate, the fusion of said models, and validation with the corresponding IDT experimental data for each fuel surrogates. Biodiesel and diesel combustion kinetic models have been adjusted and validated to fit the experimental IDT data of methyl 9 decenoate at 20 atm and three equivalence ratio values with IDT values of 2.7 ms from simulation and 2.69 ms from experimental data , and n hexadecane at pressure values of 2 5 atm and equivalence ratio of 1.0 with IDT values of 0.37 ms from simulation and 0.38 ms from experimental data . A combined combustion kinetic model has been made using biodiesel and solar surrogate models to predict the IDT of real biodiesel and solar mixtures. The model has been validated to fit the experimental IDT of real biodiesel and solar mixtures at four mixture compositions B20, B40, B60, B80 and 1.18 atm of pressure, resulting in a valid model with IDT values of 0.699 ms from simulation and 0.69 ms from experimental data ."
2017
S67677
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yendha Putri Wulandari
"Pemodelan kinetika oksidasi dan pembakaran bahan bakar bensin dikembangkan untuk memperoleh bahan bakar yang rendah polutan, heating value tinggi dan aman untuk mesin. Mekanisme reaksi terdiri dari 1314 reaksi elementer dan 1006 spesies. Simulasi dilakukan pada rentang temperatur 700 K - 1000 K, tekanan 5, 12 dan 40 bar, dan rasio ekivalensi 0,8; 1,0 dan 1,5. Simulasi menghasilkan profil waktu tunda ignisi, profil konsentrasi dan profil temperatur.
Hasil simulasi menunjukkan bahwa waktu tunda ignisi paling cepat tercapai pada tekanan 40 bar dan temperatur 1000 K, serta rasio ekivalensi 0,8. Profil temperatur menunjukkan energi paling besar dihasilkan pada kondisi tekanan 40 bar, temperatur 1000 K dan rasio ekivalensi 0,8. Kemudian, profil konsentrasi menunjukkan bahwa rasio ekivalensi 1,5 menghasilkan polutan CO dan CO2 paling rendah tetapi juga menghasilkan polutan toluena. Penurunan konsentrasi toluena 10% menghasilkan waktu tunda ignisi lebih cepat, polutan lebih rendah dan energi lebih rendah. Penurunan konsentrasi isooktana 10% menghasilkan waktu tunda ignisi lebih lambat dan energi lebih tinggi.

Kinetic modelling of oxidation and combustion of gasoline has developed to get fuel which are low pollutant, high heating value and safe for engine. The reaction mechanism features 1314 elementary reactions and 1006 species. Simulation is conducted at range temperature 700 K - 1000 K, pressures 5, 12 and 40 bar, and equivalence ratio 0,8; 1,0 and 1,5. The simulation produces ignition delay time profiles, fuel concentration profiles and temperature profiles.
Result of simulation indicates that the fastest ignition delay time is reached at 40 bar and 1000 K, and at equivalence ratio 0,8. Temperature profiles indicate that the highest energy is produced at 40 bar, 1000 K and equivalence ratio 0,8. Then, fuel concentration profiles indicate that rich fuel mixture produces the lowest of CO and CO2 but it also produces toluene pollutant. Decreasing of 10% toluene produces faster ignition delay time, lower pollutants and lower energy. Decreasing of 10% isooctane produces slower ignition delay time and higher energy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52187
UI - Skripsi Open  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S48828
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fadli Zein
"Spray combustion pada bahan bakar cair serta spray drying pada pengering makanan merupakan aplikasi fenomena perpindahan panas dan massa. Prinsip dasar yang digunakan untuk kedua aplikasi tersebut menggunakan droplet sebagai elemen dasar dari semprotan. Model analogi Ranz-Marshall dan model film stagnan adalah model yang umum digunakan untuk menghitung perpindahan panas dan massa suatu zat.
Tujuan dari penelitian ini adalah untuk menganalisa perpindahan panas dan massa tetesan dengan nilai bilangan Lewis (Le) lebih dari 1 untuk melihat kesesuaian model analogi Ranz-Marshall dengan meninjau nilai bilangan Nusselt (Nu) pada perhitungan perpindahan panas dan juga meninjau nilai bilangan Sherwood (Sh) pada perhitungan perpindahan massa. Serta dengan menganalisa model film stagnan dengan meninjau nilai C1 pada perhitungan perpindahan massa dan juga meninjau nilai C2 pada perhitungan perpindahan panas.
Hasil dari penelitian ini menunjukan perubahan pada kalor peguapan yang meningkat seiring dengan perubahan pada volume yang cenderung menurun. Perhitungan perpindahan panas dan massa untuk cairan masih menunjukkan kurangnya korelasi antara model Ranz-Marshall serta model Film Stagnan tersebut. Oleh karena itu, diperlukan suatu persamaan baru yang lebih umum yang mampu untuk menghitung perpindahan panas dan massa dari semua zat yang diujikan dengan kecepatan yang berbeda-beda.

Spray combustion on liquid fuels and also spray drying on food drying is one of the phenomenons of  heat and mass transfer applications. Basic principles that used for both applications are using droplet as the basic element of spraying. Ranz-Marshall analogy model and Stagnant Film model are one of the most common models to calculate heat and mass transfer of an element.
The purpose of this experiment is to analyze heat and mass transfer of droplet which has the lewis number (Le) of more than 1 to conclude the compatibility of Ranz-Marshall analogy which observe the value of Nusselt number for heat transfer calculation and observe Sherwood number for mass transfer calculation. Also analyzing stagnant film model which observes the value of C1 for mass transfer and the value of C2 for heat transfer calculation.
The results of this study show a change in heat of evaporation that increases with changes in volume that tend to decrease. Heat and mass calculation of the liquids shows the lack of correlation between Ranz-Marshall model and Stagnant Film model as well. Therefore, a new, more general equation which is capable of calculating the heat and mass transfer of all the substances being tested at different speeds is required.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>