Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 138873 dokumen yang sesuai dengan query
cover
Ferdy
"Perubahan iklim telah memicu perkembangan green technology. Geopolimer berbahan dasar abu terbang merupakan material ramah lingkungan yang dapat digunakan sebagai semen instan untuk bahan reparasi jalan beton. Tujuan dari penelitian ini ialah mengetahui kondisi perlakuan temperatur dan waktu curing yang terbaik untuk menghasilkan pasta geopolimer dengan kuat tekan yang optimal.
Dua variabel temperatur dan tiga variabel waktu digunakan dalam penelitian ini untuk ditinjau pengaruhnya terhadap kuat tekan yang dihasilkan oleh pasta geopolimer. Dari penelitian ini dapat disimpulkan bahwa untuk waktu curing yang sama, temperatur yang lebih tinggi akan menghasilkan kuat tekan yang lebih tinggi. Pada temperatur yang sama kuat tekan dari pasta geopolimer meningkat seiring dengan bertambahnya waktu curing.

Climate change have been develop green technology. Geopolymer fly ash based is categorized as friendly environment material which is used as rapid setting cement for repair material of concrete road. The purpose of this research was aimed to study the best temperature and curing time to produce geopolymer paste with optimum compressive strength.
Two variable of temperature and three variable of time were used in this research to see their effect to compressive strength. The result from this research show that for the same curing time, elevated temperature achieve higher compressive strength. In same temperature, compressive strength from geopolymer paste increase along with curing time.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51515
UI - Skripsi Open  Universitas Indonesia Library
cover
Sembiring, Frederick Paulus
"Penelitian ini bertujuan untuk menganalisa pengaruh dari temperatur curing dan waktu curing terhadap kuat tekan dari pasta geopolimer. Kekuatan optimum geopolimer diperoleh dengan waktu yang lebih singkat bersamaan dengan proses pengerasan serta pengaruh temperatur. Pasta geopolimer yang diteliti disintetsis dari bahan dasar kaolin. Kaolin tersebut sebelumnya dikalsinasi pada temperatur tinggi (700°C selama 5 jam) untuk meningkatkan reaktivitas dan diaktivasi oleh larutan alkali aktivator, yang merupakan kombinasi dari natrium silikat dan natrium hidroksida. Sampel pasta akan dilakukan pengujian kuat tekan, pengujian XRD dan pengujian SEM.
Hasil dari penelitian ini menunjukkan bahwa sifat mekanis dari geopolimer berbahan dasar kaolin tidak mengalami kenaikan kuat tekan secara signifikan dengan bertambahnya waktu curing, terutama pada rentang waktu curing 4, 8, dan 24 jam. Selain itu, kekuatan tekan dari geopolimer akan berkurang dengan meningkatnya temperatur curing diatas 100°C.

This study aimed to analyze the effect of curing temperature and curing time toward a compressive strength of geopolymer paste. Geopolymer optimum strength obtained with a shorter time along with the hardening process and the influence of temperature. Geopolymers paste investigated were synthesized from kaolin. Kaolin is prepared by calcining at high temperatures (700°C for 5 hours) to arouse the activity and then activated by chemical activating systems, combinations of sodium silicate and sodium hydroxide. The samples were subjected to compressive strength, X-Ray Diffraction tests, and Scanning Electron Microscopy tests.
Result showed that the mechanical properties of the kaolin based geopolymer were not significantly enhanced by increasing curing time, especially from 4 hour to 24 hour curing time. It also can be observed that the compressive strength of geopolymer decrease with increasing of curing temperature above 100°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51655
UI - Skripsi Open  Universitas Indonesia Library
cover
Pebrida Nessya Arlis
"Semen Portland telah diteliti mampu digantikan oleh abu terbang kelas F yang memiliki kandungan tinggi aluminium dan silika, sebagai bahan dasar pada beton. Rendahnya kandungan kalsium mampu meningkatkan ketahanan beton terhadap lingkungan asam. Semakin banyak kation penyeimbang muatan anion yang terbebaskan, akan meningkatkan kompleksitas geopolimerisasi. Pada studi ini diteliti bahwa penggunaan NaOH memiliki nilai kuat tekan fleksural yang lebih tinggi, dibandingkan dengan KOH yang dicampurkan dengan aktivator natrium silikat karena ukuran molekul kalium lebih besar dari natirum. Nilai kuat tekan fleksural mampu dioptimasi sebanyak 95.79%, dari 12.2987 MPa hingga 24,0796 MPa, pada penggunaan NaOH 12M dan curing 900C. Peningkatan konsentrasi alkali akan mengakibatkan peningkatan alkalinitas seiring banyaknya OH- dan kation alkali, yang akan menyeimbangi muatannya melalui pemutusan pasangan anion. Baik kandungan H2O bebas maupun terperangkap, akan menguap membentuk pori ketika curing pada titik didihnya, yang mengakibatkan penurunan kekuatan.

Portland cement was observedly able to be replaced with F-class fly ash containing high aluminium and silica, as a raw material for concrete, since its manufacturing produces emission gas of CO2. The low calcium containing of fly ash can be increasing the high acidic environment resistance. The more charge balancing cation released as the fly ash mineral dissolution, the more complex its geopolymerization mechanism. In this study, was shown that NaOH gave higher flexural strength than KOH mixed with sodium silicate activator since sodium has a smaller molecule size than potassium does. Formulation of NaOH 12M using and 900C Curing, The flexural strength point optimizedly increase 95.79% reaching out 24,0796 MPa from 12,2987 MPa. The increasing of alkali concentration gives too high alkalinity representatively present excess OH- and its alkali cation, balancing their charge through anion pairing detachment. It?s either free H2O or trapped H2O could be evaporating leaving pores over its boiling point temperature in curing, and consequently gives strength decreasing."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42651
UI - Skripsi Open  Universitas Indonesia Library
cover
Rajagukguk, Christian Benedikt
"Geopolimer menjadi topik penelitian yang banyak dipelajari saat ini untuk sebagai bahan baku dalam kontruksi dan infrastruktur kerena lebih ramah lingkungan dibanding semen portland. Abu terbang kelas F yang didapat dari PLTU Paiton dimanfaatkan sebagai prekursor. Sintesis mortar dilakukan dengan teknik aktivasi alkali menggunakan larutan NaOH dan sodium silikat sebagai aktivator. Bahan pengisi serbuk TiO2 ditambahkan dengan variasi 2,5%, 5,0%, hingga 10,0% yang dihitung berdasarkan berat prekursor. Pembuatan mortar dilakukan dengan mencampurkan prekursor dan pengisi TiO2 dengan larutan aktivator. Pasta yang diperoleh kemudian di cetak menggunakan cetakan berbentuk kubus dengan ukuran sisi 5 cm. Pasta akan dibiarkan mengeras selama 24 jam, lalu akan dirawat pada oven selama 24 jam pada temperature 60 oC. Setelah itu, mortar akan di rawat selama 7 hari pada temperatur ruang. Mortar akan diuji kekuatan tekannya dan dikarakterisasi menggunaan SEM-EDS. Data yang diperoleh menunjukkan bahwa penambahan TiO2 pada geopolimer berpengaruh pada waktu ikat dan kekuatan tekan mortar. Waktu ikat pasta mengalami peningkatan seiring dengan penambahan TiO2. Penambahan TiO2 juga berpengaruh pada kuat tekan geopolimer, dimana penambahan pengisi TiO2 dapat menurunkan kuat tekan. Penambahan serbuk TiO2 sebanyak 2,5%. 5,0%, dan 10,0% dapat menurunkan kuat tekan sebesar 28,3%, 44,8%, dan 0,6%.

Geopolymer is a research topic that is currently being studied a lot as a raw material in construction and infrastructure because it is more environmentally friendly than Portland cement. Class F fly ash obtained from PLTU Paiton is used as a precursor. Mortar synthesis was carried out using an alkali activation technique using NaOH and sodium silicate solutions as activators. TiO2 powder filler is added with variations of 2,5%, 5,0%, and 10.0% which is calculated based on the weight of the precursor. Mortar is made by mixing TiO2 precursor and filler with activator solution. The paste obtained is then molded using a cube-shaped mold with sides measuring 5 cm. The paste will be pre-cured for 24 hours, then it will be cured in the oven for 24 hours at a temperature of 60 oC. After that, the mortar will be cured for 7 days at room temperature. The mortar will be tested for compressive strength and characterized using SEM-EDS. The data obtained shows that the addition of TiO2 to geopolymer has an effect on the setting time and compressive strength of the mortar, where paste setting time increased with the addition of TiO2. The addition of TiO2 also affects the compressive strength of the geopolymer, where the addition of TiO2 filler can reduce the compressive strength. Addition of 2,5%, 5.0%, and 10.0% TiO2 powder on geopolymer can reduce compressive strength by 28,3%, 44,8% and 0,6%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Fahira Jatiputro
"Pada penelitian ini, pembentukan geopolimer divariasikan rasio arang tempurung kelapa terhadap abu terbang sebagai sumber aluminasilikat sebesar 0%, 5%, 10%, dan 15%.  Sumber aluminasilikat yang divariasikan kemudian dicampur dengan larutan alkali aktivator yang berupa NaOH dan water glass dengan berbagai suhu yaitu, 30oC (suhu ruang), 40oC, dan 50oC. Karakterisasi yang akan diujikan berupa analisis kuat tekan, analisis komposisi XRF, analisis kristalinitas XRD, dan analisis gugus fungsi FTIR. Kuat tekan terbaik yang dihasilkan bernilai 21,34 MPa dengan rasio bahan baku 85% abu terbang dan 15% arang tempurung kelapa, yang melalui proses pencampuran alkali aktivator pada suhu 40oC. Nilai tersebut lebih tinggi dari sampel semen Portland sebagai sampel kontrolnya yang bernilai 19,42 MPa. Dalam variasi rasio arang tempurung kelapanya, nilai kuat tekan tersebut naik 48% dibanding variasi tanpa arang tempurung kelapa. Sementara dalam variasi suhu pelarutan alkalinya, nilai kuat tekan naik 62% dari pelarutan pada suhu ruang. Hasil analisis XRF menunjukan adanya peningkatan kadar Si dan Al pada sampel geopolimer dibanding bahan bakunya. Hail analisis XRD menunjukan adanya mineral pargasite, kuarsa, girolit, dan biotit pada geopolimer. Sementara hasil analisis FTIR menunjukkan adanya ikatan Si-O/Al-O pada bilangan gelombang 1399,69 dan ikatan Si-O-Si pada bilangan gelombang 1078,67

In this study, the ratio of coconut shell ash to fly ash as a source of aluminasilicate was varied by 0%, 5%, 10%, and 15%. The various aluminasilicate sources were then mixed with an alkaline activator solution in the form of NaOH and water glass at various temperatures, such as 30oC (room temperature), 40oC and 50oC. The characterization that will be tested is in the form of compressive strength analysis, composition analysis of XRF, crystallinity analysis of XRD, and functional groups analysis of FTIR. The best compressive strength is 21.34 MPa with a ratio of 85% fly ash and 15% coconut shell ash, which is mixed with an alkaline activator at 40oC. This value is higher than the Portland cement sample as the control sample which is 19.42 MPa. In the variation of the coconut shell ash ratio, the compressive strength value increased by 48% compared to the variation without coconut shell ash. Meanwhile, with variations in the temperature of the alkaline dissolving, the compressive strength increased by 62% from dissolution at room temperature. The results of the XRF analysis showed an increase in Si and Al levels in the geopolymer samples compared to the raw materials. The results of the XRD analysis showed the presence of pargasite, quartz, gyrolite and biotite minerals in the geopolymer. While the results of FTIR analysis showed the presence of Si-O/Al-O bonds at wave number 1399.69 and Si-O-Si bonds at wave number 1078.67."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fisabilla Magma Anggreia Vistha
"Penelitian mengenai penggunaan geopolimer sedang banyak dilakukan karena keunggulannya yang lebih ramah lingkungan sehingga menjadi pilihan dalam pembangunan infrastruktur. Semakin tingginya tingkat pembangunan menyebabkan dibutuhkannya waktu yang lebih efektif selama proses pembangunan. Pada penelitian ini, dilakukan penambahan accelerator Calcium Aluminate Cement (CAC) pada geopolimer untuk mempercepat waktu pengikatan, namun tetap memiliki nilai kuat tekan tinggi. Penelitian ini bertujuan untuk mengetahui pengaruh accelerator pada geopolimer, dosis accelerator yang lebih baik digunakan untuk meningkatkan kuat tekan, mekanisme kerja accelerator pada geopolimer, serta perbedaan morfologi permukaan struktur mikro. Penelitian dilakukan dengan membuat geopolimer fly ash dan menambahkan accelerator sebesar 0%, 1%, dan 2%, kemudian melakukan curing pada temperatur ruang selama 1, 3, 7, dan 28 hari. Selanjutnya, dilakukan pengujian kuat tekan, vicat, DSC, SEM, XRD, dan FTIR. Hasil penelitian menunjukkan bahwa penambahan accelerator meningkatkan kuat tekan dan mempercepat waktu pengikatan. Pada umur 28 hari, nilai kuat tekan geopolimer dengan 0%, 1%, dan 2% accelerator secara berturut-turut adalah 32,16 MPa, 48,4 MPa, dan 53,3 MPa. Penambahan 2% accelerator memberikan hasil kuat tekan yang lebih maksimal, namun dengan perbedaan yang tidak signifikan dengan penambahan 1% accelerator. Peningkatan kuat tekan kemungkinan disebabkan oleh terbentuknya gel N-A-S-H, C-S-H, dan C-A-S-H yang menyebabkan struktur mikro menjadi lebih rapat.

Research on the use of geopolymers is being widely conducted due to their environmental advantages, making them a preferred choice in infrastructure development. The increasing rate of construction necessitates more efficient construction processes. In this research, an accelerator in the form of Calcium Aluminate Cement (CAC) was added to geopolymer in order to achieve faster setting time while still maintaining high compressive strength. The purpose of this research was to investigate the effect of the accelerator on geopolymer, determine the better dosage of the accelerator to enhance compressive strength, understand the mechanism of the accelerator on geopolymer, and differences in microstructure morphology. The research was conducted by making fly ash-based geopolymer mortar with the addition of accelerator at concentrations of 0%, 1%, and 2%, followed by curing for 1, 3, 7 and 28 days. Then, compressive strength test, vicat test, and DSC test were carried out as well as SEM, XRD, and FTIR characterization. The test results showed that the addition of the accelerator improved the compressive strength and accelerated the setting time. At 28 days, the compressive strength values of the geopolymer with 0%, 1%, and 2% accelerator were 32,16 MPa, 48,4 MPa, and 53,3 MPa, respectively. The addition of 2% accelerator gives maximum compressive strength results in geopolymer, but with an insignificant difference with the addition of 1% accelerator. The increase in compressive strength possibly due to the formation of N-A-S-H, C-S-H, and C-A-S-H gels which caused the microstructure to become denser."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alya Aryasatiana Azzahra
"Geopolimer adalah bahan bangunan ramah lingkungan sebagai subtitusi semen portland. Penelitian ini bertujuan untuk menentukan kondisi optimal dalam proses pembentukan geopolimer untuk mencapai nilai kuat tekan terbaik. Fokus penelitian ini adalah pada pengaruh suhu pelarutan aktivator, yaitu NaOH dan Na2SiO3, dengan variasi suhu pelarutan 30°C, 40°C, dan 50°C, serta penambahan semen portland sebesar 5%, 10%, dan 15% terhadap berat fly ash sebagai prekursor. Nilai kuat tekan terbaik, yaitu 20,12 MPa, dicapai pada sampel dengan suhu pelarutan aktivator alkali 40°C dan substitusi semen portland sebesar 15% terhadap fly ash. Nilai tersebut lebih tinggi daripada sampel kontrol semen portland yang memiliki kuat tekan sebesar 19,42 MPa. Sampel terbaik tersebut kemudian dikarakterisasi dengan beberapa uji, yang mengindikasikan pembentukan beberapa kristal baru seperti kuarsa, okenite, faujasite-Na, anortit, dan aluminocoquimbite yang memiliki tingkat kekerasan mineral cukup tinggi. Selain itu, terdeteksinya ikatan-ikatan seperti Si-O-Si dan Al-O-Si yang lebih kuat pada sampel dengan nilai kuat tekan tertinggi.

Geopolymer is an environmentally friendly building material used as a substitute for Portland cement. This research aims to determine the optimal conditions in the geopolymer formation process to achieve the best compressive strength value. The focus of this research is on the influence of the dissolution temperature of activators, namely NaOH and Na2SiO3, with dissolution temperature variations of 30°C, 40°C, and 50°C, as well as the addition of Portland cement by 5%, 10%, and 15% by weight of fly ash as a precursor. The best compressive strength value, which is 20.12 MPa, was achieved in samples with an alkali activator dissolution temperature of 40°C and a substitution of 15% Portland cement for fly ash. This value is higher than the control sample of Portland cement, which has a compressive strength of 19.42 MPa. The best samples were then characterized with several tests, indicating the formation of several new crystals such as quartz, okenite, faujasiteNa, anorthite, and aluminocoquimbite, which have a relatively high mineral hardness level. In addition, the presence of stronger bonds such as Si-O-Si and AlO-Si was detected in samples with the highest compressive strength value."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kamil Afrizal
"Pemanfaatan zat aditif sebagai akselerator sebagai campuran beton untuk perbaikan jalan beton merupakan salah satu alternatif yang sering diterapkan dan mudah diperoleh dipasaran. Namun, Akselerator mengandung ion-ion klorida dapat menyebabkan korosi pada baja beton bertulang. Selain itu, industri semen menghasilkan emisi karbon dioksida, komponen terbesar gas rumah kaca.
Salah satu alternatif dalam masalah ini adalah pemanfaatan geopolimer sebagai semen instan. Bahan geopolimer digunakan berprekusor limbah batu bara dan bahan pembentuk porselen yang mudah didapatkan dan mengurangi dampak pencemaran lingkungan. Kedua bahan tersebut digunakan pada penelitian ini yaitu fly ash dan kaolonite. Kekuatan optimum geopolimer diperoleh dengan waktu yang lebih singkat bersamaan dengan proses pengerasan serta pengaruh suhu.
Penelitian ini bertujuan Mengetahui proses sintesis dan teknologi dalam pembuatan semen instan geopolimer dan mengetahui nilai kuat tekan pasta dan beton geopolimer yang paling optimum dalam waktu tersingkat dengan dibandingkan dengan curing suhu ruang dan suhu 60°C. Kuat tekan awal pasta geopolimer dimana kuat tekan di uji pada waktu singkat yaitu 4 jam, 8 jam, dan 1 hari dengan waktu pengerasan yang dibandingkan antara suhu 60°Celcius dan suhu ruang.
Dari penelitian ini didapat kesimpulan, untuk waktu curing yang sama, suhu lebih tinggi menghasilkan kuat tekan yang lebih tinggi. Pada suhu yang sama kuat tekan dari pasta geopolimer meningkat seiring dengan bertambahnya waktu curing khususnya untuk pasta geopolimer berbahan dasar fly ash.

Utilization of additives as an accelerator in concrete mix is often chosen to be an alternative for concrete road repair because it is easy to find. However, the additives contain chloride ions which can cause corrosion of steel reinforced concrete. In addition, the cement industry produces carbon dioxide emissions, the largest component of greenhouse gases.
The other alternative is to use geopolymer as rapid-setting cement. At this study, fly ash and kaolinites are used as a precursor in the geopolymer, these materials are made from coal waste and porcelain-forming material which are easy to find and also able to reduce the effect of pollution. Geopolymer optimum strength obtained with a shorter time along with the hardening process and the influence of temperature.
The aim of this study is to understand the synthetic process and technologies in manufacturing this rapid-setting cement. The other aim is to find the optimum value of compressive strength on geopolymer paste and geopolimer concrete in the short time (4, 8, and 24 hours of hardening) compared to the curing temperature of 60°C and room temperature.
The conclusions of this study are higher temperature, at the same curing time, produce higher value of compressive strength. Longer curing time, at the same temperature, also produce higher value of compressive strength especially on fly ash.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
S50593
UI - Skripsi Open  Universitas Indonesia Library
cover
M. Fajar Hermansyah
"Akhir-akhir ini, industri semen dan beton semakin sering disorot, khususnya oleh para pecinta lingkungan. Ini disebabkan emisi karbon dioksida, komponen terbesar gas rumah kaca, yang dihasilkan dari proses kalsinasi kapur dan pembakaran batu bara. Isu lingkungan ini tampaknya akan memainkan peran penting dalam kaitan dengan isu pembangunan berkelanjutan di masa mendatang. Hal ini menuntut para ilmuwan dan engineer untuk mencari cara untuk mengurangi emisi karbon dioksida, misalnya dengan mengurangi penggunaan semen dalam konstruksi.
Perkembangan mutakhir yang menjanjikan saat ini adalah penggunaan abu terbang sepenuhnya sebagai pengganti semen portland lewat proses yang disebut polimerisasi anorganik (geopolimer). Kegunaan abu terbang pada sejumlah proyek infrastruktur selain lebih ramah lingkungan, mengurangi jumlah energi yang diperlukan karena berkurangnya pemakaian semen portland, lebih awet dan lebih murah, bahan ini juga tetap menunjukkan perilaku mekanik memuaskan.
Dalam penelitian ini material geopolimer menggunakan bahan dasar abu terbang (fly ash) dan abu dasar (bottom ash) sebagai pengganti agregat halus, dimana bahan-bahan tersebut diklasifikasikan sebagai limbah B3 berdasarkan Peraturan Pemerintah (PP) No.18 Tahun 1999 dan Peraturan Pemerintah (PP) No. 85 Tahun 1999.

Recently, industry cement and concrete progressively is often floodlighted, specially by environmental community. This is caused by carbon dioxide emission, biggest component of glasshouse gas, is yielded of process tilery calsinasion and coal combastion. This environmental issue seems will play important role in relation to issue development of have continuation in period to come. This matter claim man of sciences and engineer to look for the way to lessen the carbon dioxide emission, for example by lessening usage of cement in construction.
Recent growth which promise in this time is usage of fly ash fully in the place of cement portland pass the process of so-called inorganic polymerize (geopolymer). Usefulness of fly ash at a number of infrastructure projects besides friendlier environment, lessen the amount energy needed because decreasing of usage of cement portland, more cheaper and durabel, this materials also fixed show behavior of mechanic characteristic.
In this research, geopolymer material use the elementary materials fly ash and bottom ash in the place of smooth aggregate, where the materials is classified as waste B3 pursuant to PP No.18 1999 and PP No. 85 1999.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S35793
UI - Skripsi Open  Universitas Indonesia Library
cover
Chiffia Hana Syabina
"Indonesia merupakan negara nomor satu dengan produksi minyak kelapa sawit atau crude palm oil (CPO) di dunia. Pada proses pengolahan kelapa sawit, tandan kosong, serat, dan cangkang kelapa sawit digunakan sebagai bahan bakar boiler yang menghasilkan produk samping berupa abu sawit. Hal tersebut meningkatkan perlunya pemanfaatan abu sawit sebagai material ramah lingkungan dan berkelanjutan. Geopolimer adalah produk ramah lingkungan yang dihasilkan dari pengolahan limbah industri yang dapat menggantikan semen karena kandungan aluminosilikat yang tinggi. Silika yang tinggi pada abu sawit juga berpotensi dimanfaatkan sebagai campuran larutan aktivator geopolimer. Selain itu, Indonesia juga memiliki cadangan nikel terbesar di dunia. Pengolahan nikel menghasilkan produk samping berupa terak feronikel yang juga sudah luas digunakan sebagai prekursor geopolimer. Penelitian ini dilakukan untuk mengetahui karakteristik geopolimer yang dihasilkan dengan memanfaatkan abu sawit (POFA) sebagai sumber silika untuk larutan aktivator geopolimer dengan bahan prekursor terak feronikel dibandingkan dengan penggunaan larutan aktivator natrium silikat (Na2SiO3). Komposisi larutan aktivator abu sawit terdiri dari 20.8% POFA, 61.6% air, dan 17.6% NaOH sedangkan larutan aktivator natrium silikat (Na2SiO3) dibuat dengan mencampurkan 44.8% Na2SiO3, 40.2% air, dan 15% NaOH. Pelarutan dilakukan secara manual dalam suhu ruang, kemudian digunakan untuk pencampuran setelah 24 jam. Kedua geopolimer dilakukan pengujian kuat tekan, mampu alir (flowability), waktu pengikatan (setting time), XRD, dan SEM. Geopolimer dengan aktivator abu sawit memiliki karakteristik yang lebih buruk dibandingkan dengan aktivator natrium silikat (Na2SiO3), yaitu dengan kekuatan tekan 28 hari senilai 7.57 MPa, mampu alir (flowability) 56.99%, initial setting time 95 menit dan final setting time 135 menit. Hasil XRD menunjukkan adanya puncak calcium silicate hydrate (C-S-H) dengan intensitas tinggi. Mikrostruktur yang dihasilkan memiliki permukaan kasar dan porous bawaan dari partikel abu sawit serta terdapat fasa ettringite yang mempengaruhi rendahnya kuat tekan yang dihasilkan. Dengan demikian, pemanfaatan abu sawit sebagai campuran larutan aktivator geopolimer tidak menghasilkan karakteristik yang optimum.

Indonesia is the world's number one producer of crude palm oil (CPO) derived from oil palm. In the process of processing palm oil, empty bunch, fibers, and palm kernel shells used as boiler fuel, resulting in a byproduct called Palm Oil Fuel Ash (POFA). This increases the need for utilizing palm ash as an environmentally friendly and sustainable material. Geopolymer is an environmentally friendly product produced from the processing of industrial waste, which can replace cement due to its high content of aluminosilicate. The high silica content in POFA also has the potential to be used as a mixture for geopolymer activator solutions. Furthermore, Indonesia also possesses the world's largest nickel reserves. Nickel processing produces a byproduct called ferronickel slag, which is already widely used as a geopolymer precursor. This research was conducted to determine the characteristics of geopolymer produced by utilizing Palm Oil Fuel Ash (POFA) as a source of silica for geopolymer activator solutions, compared to the use of sodium silicate (Na2SiO3) activator solutions. The composition of the POFA activator solution consists of 20.8% POFA, 61.6% H2O, and 17.6% NaOH, while the sodium silicate activator solution is prepared by mixing 44.8% Na2SiO3, 40.2% H2O, and 15% NaOH. The dissolution is manually conducted at room temperature and then used for mixing after 24 hours. Both geopolymers underwent testing for compressive strength, flowability, setting time, XRD, and SEM. Geopolymer with POFA activator exhibits inferior characteristics compared to sodium silicate activator (Na2SiO3), with a compressive strength after 28 days amounting to 7.57 MPa, flowability of 56.99%, initial setting time of 95 minutes, and final setting time of 135 minutes. XRD results indicate the presence of high-intensity peaks of calcium silicate hydrate (C-S-H). The resulting microstructure has a rough and porous surface inherent to POFA particles, and ettringite phase is also present, which affects the low compressive strength obtained. Thus, the utilization of POFA as a mixture for geopolymer activator solution does not yield optimum characteristics."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>