Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 146007 dokumen yang sesuai dengan query
cover
Irwan
"Logam busa merupakan salah satu material yang sedang berkembang pada saat sekarang, karena memiliki beberapa kelebihan seperti rasio kekakuan dan berat yang baik, daya serap energi, serta daya redam getaran yang baik pula. Salah satu cara membuat logam busa adalah dengan Sintering and Dissolution Process (SDP). SDP ini melibatkan proses metalurgi serbuk terhadap campuran serbuk logam dan material pengisi.
Dalam penelitian ini menggunakan serbuk tembaga dan silika gel sebagai bahan baku pembuatan tembaga busa. Perbedaan perbandingan antara logam dengan silika gel menghasilkan jumlah pori-pori yang berbeda sehingga mempengaruhi sifat fisis dan mekanis yang berbeda. Variabel yang digunakan dalam penelitian ini adalah persentase berat 20%, 30%, 40%, dan 50% silika gel. Tiap variabel dikompaksi dengan tekanan 100 bar, lalu disinter pada temperatur 850_C selama 2 jam dan setelah itu dilakukan proses pelarutan silika gel dengan larutan asam Hydrofluoride (HF). Kemudian untuk mengetahui sifat fisis dan mekanis pada tiap tembaga busa diuji porositas, densitas, kekuatan tekan dan dilakukan pengamatan struktur makro dan mikro dengan menggunakan mikroskop optik dan Scanning Electron Microscope (SEM).
Hasil dari penelitian ini berupa tembaga busa yang mempunyai ukuran pori-pori sebesar 0,3 - 2,92 mm. Densitas tembaga busa yang paling tinggi yaitu 2,77 gr/cm3 pada tembaga busa dengan persentase berat 20% silika gel dan yang paling rendah yaitu 1,63 gr/cm 3 pada persentase berat 50% silika gel. Porositas tembaga busa yang paling tinggi yaitu 81,77% pada tembaga busa dengan persentase berat 50% silika gel dan yang paling rendah yaitu 68,95% pada persentase berat 20% silika gel. Pada hasil pengamatan morfologi tembaga busa busa menunjukkan bentuk pori - pori yang bulat, berjenis open cell dan memiliki jaringan koneksi antar pori. Hasil pengujian tekan menunjukkan bahwa tegangan dan regangan maksimum yaitu 95,51 MPa dan 21,56% terjadi pada persentase berat 30% silika gel.

Metallic foam is one of advanced the material recently developed, with some advantages, such as good stiff-to-weight ratio, energy absorption, and damping insulation. One of the methods in manufacturing metallic foams is by Sintering and Dissolution Process (SDP). SDP involves powder metallurgy process toward mixed powder of metal and filler material.
In this research, copper powder and silica gel was used as raw material for metal foam manufacturing. The ratio between metal and silica gel produced different amounts of pores that influenced their physical and mechanical properties. The ratio of silica gel used in this research was 20%, 30%, 40%, and 50%. Each ratio were compacted with 100 bar pressure, and sinterized in 850_C for 2 hours, and then the silica gel was dissolved by hydrofluoride acid solution. To investigate their physical and mechanical properties, on each copper were tested its porosity, density, compressive strength, then macro and micro structural analysis were conducted by optical microscope and Scanning Electron Microscope (SEM).
The result of this research were copper foams with pores ranging from 0.3 - 2.92 mm. The highest copper foam density was 2.77 gr/cm3 on 20% silica gel ratio, and the lowest was 1.63 gr/cm3 on 50% silica gel density. The highest copper foam porosity was 81,77% on 50% silica gel, and the lowest was 68,95% on 20% silica gel. The morphology observation of the copper foams showed sphere-like pores, open cell, and interconnected with each other. Compression test result showed that maximum stress and strain was 95.51 MPa and 21,56% on 30% silica gel.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51505
UI - Skripsi Open  Universitas Indonesia Library
cover
Iman Firmansyah Ika
"Logam busa merupakan material yang memiliki banyak rongga atau pori-pori sehingga banyak dipertimbangkan oleh para peneliti untuk diaplikasikan di dunia industri otomotif karena material ini memiliki sifat mekanis, termal, akustik, elektrik, dan kimia yang baik. Pembuatan logam busa dapat dilakukan dengan beberapa macam cara, salah satunya dengan cara menggunakan sinter dan pelarutan yang merupakan suatu proses pembentukan pori-pori pada logam dengan menggunakan jalur metode metalurgi serbuk.
Dalam penelitian ini menggunakan serbuk tembaga dan kalium karbonat sebagai bahan baku pembuatan tembaga busa. Perbedaan perbandingan antara logam dengan garam menghasilkan jumlah pori-pori yang berbeda sehingga mempengaruhi sifat fisis dan mekanis yang berbeda. Variabel yang digunakan dalam penelitian ini adalah persentase berat 60%, 50 %, 40 %, 30 %, 0 % kalium karbonat. Tiap variabel dikompaksi dengan tekanan 200 bar, lalu disinter pada temperatur 850 °C selama 2 jam dan setelah itu dilakukan proses pelarutan kalium karbonat dalam air hangat selama 2 jam. Kemudian untuk mengetahui sifat fisis dan mekanis pada tiap tembaga busa diuji porositas, densitas, kekuatan tekan dan dilakukan pengujian struktur mikro dengan menggunakan Scanning Electron Microscope (SEM) dan mikroskop optik.
Hasil dari penelitian ini berupa tembaga busa yang mempunyai ukuran pori-pori sebesar 197-928 µm. Densitas tembaga busa yang paling tinggi yaitu 2.75 gr/cm3 pada tembaga busa dengan persentase berat 30 % kalium karbonat dan yang paling rendah yaitu 1.28 gr/cm3 pada persentase berat 60 % kalium karbonat. Porositas tembaga busa yang paling tinggi yaitu 85.69 % pada persentase berat 60 % kalium karbonat dan yang paling rendah yaitu 69.29 % pada persentase berat 30 % kalium karbonat. Pada hasil pengamatan morfologi tembaga busa menunjukan bentuk pori-pori yang bulat dan memiliki jaringan koneksi antar pori. Hasil pengujian tekan menunjukan bahwa semakin tinggi persentase kalium karbonat dalam tembaga busa maka energi yang diserap oleh tembaga busa secara kualitatif semakin rendah.

Metal foams are materials which have many pores and are considered by the researchers to be applied in automotive industries because they have good mechanical, thermal, acoustic, electric, and chemical properties. The manufacturing of metal foams could be carried in several methods, one of these methods is to use lost carbonate sintering and dissolution process, which is a method to produce pores on metal by using powder metallurgy.
In this research, copper powder and potassium carbonate was used as raw materials for metal foam manufacturing. The ratio between metal and salt produced different amounts of pores that influenced their physical and mechanical properties. The ratio of potassium carbonate used in this research was 60%, 50%, 40%, 30%, and 0%. Each ratio were compacted with 200 bar pressure, and sinterized in 850°C for 2 hours, and then the potassium carbonate was dissolved in warm water for 2 hours. to investigate their physical and mechanical properties, on each copper were tested its porosity, density, compressive strength, and micro structural analysis were conducted by SEM and optical microscope.
The results of this research were copper foams with pores ranging from 197 ? 928 µm, the highest copper foam density was 2.75 gr/cm3on 30% potassium carbonate ratio, and the lowest was 1.28 gr/cm3 on 60% potassium carbonate density. The highest copper foam porosity was 85.69 % on 60% potassium carbonate, and the lowest was 69.29 % on 30% potassium carbonate. The morphology observation of the copper foams showed sphere-like pores and interconnected with each other. Compression test result showed that the higher potassium carbonate ratio on copper foams resulted in lower energy absorption by copper foams qualitatively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41761
UI - Skripsi Open  Universitas Indonesia Library
cover
Khalid Mawardi
"Metalurgi serbuk merupakan salah satu proses produksi logam busa yang banyak digunakan untuk memperoleh struktur pori yang seragam. Dengan menggunakan variasi temperatur sinter 825°C, 850°C, 900°C dan 950°C serta variasi rata-rata ukuran partikel garam karbonat sebusar 841 m, 542 m, dan 420 m, memberikan pengaruh terhadap berbedanya struktur pori yang terbentuk pada tembaga busa pada masing-masing variabel. Penelitian ini bertujuan agar struktur pori yang terbentuk pada tembaga busa yang diproduksi dengan metoda ini dapat dikontrol sesuai dengan variabel yang digunakan.
Penelitian ini menunjukkan bahwa dengan semakin tingginya temperatur sinter, maka tingkat porositas tembaga busa akan semakin menurun hingga mencapai 71,748% dan densitasnya akan semakin meningkat hingga mencapai 2,531 gr/cm3 pada temperatur 950_C selama 2 jam. Hasil pengamatan makro dan mikro yang dilakukan juga menunjukkan bahwa semakin tinggi temperatur sinter dan semakin kecil ukuran butir garam karbonat, maka semakin banyak terbentuk sel pori yang bersifat terbuka.

Powder metallurgy is one kind of process to produce metal foam that is commonly used to achieve uniformity of pore structure. By using the temperatures 825°C, 850°C, 900°C, 950°C in sintering process and 841 m, 542 m, 420 m particle size of carbonate, have affected the differences in pore structures that are formed in the copper foam at each variabel. The purpose of this research is to control the pore structure in the copper foam that were made by this process by using the variation of sintering temperatures and particle sizes of carbonate.
The results show that the higher the temperature is used in sintering, the copper foam will have lower porosity as 71,748% and higher density as 2,531 gr/cm3 at 950_C for 2 hours. In addition, macrostructure and microstructure observation show that the higher the temperature is used in sintering and the smaller the particle size is used as the filler, the more opened cell pores are formed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51509
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Effendi
"Salah satu material yang sedang berkembang pada saat sekarang adalah logam busa. Logam busa memiliki ciri-ciri fisik yaitu memiliki pori-pori disetiap sisi logam. Logam ini sekarang memiliki potensial yang besar dalam aplikasi otomotif, konstruksi, dan industri kimia karena memiliki beberapa sifat mekanis yang baik diantaranya daya serap energi yang tinggi, memiliki berat yang ringan, dan kekakuan spesifik yang tinggi. Pembuatan logam busa dapat dilakukan dengan beberapa metode. Salah satunya adalah dengan proses sinter dan pelarutan garam (Sintering and Dissolution Process) dengan metode metalurgi serbuk konvensional.
Penelitian yang dilakukan menggunakan serbuk aluminium dengan garam NaCl. Variabel yang digunakan adalah fraksi berat garam dengan nilai 0%, 30%, 50%, 70%, dan 90%. Perbedaan variabel ini akan menghasilkan jumlah pori yang berbeda dan sifat mekanis yang berbeda. Dalam proses pembuatan, serbuk-serbuk tersebut dicampur hingga merata kemudian dikompaksi dengan tekanan 250 bar dan disinter pada temperatur 670°C selama 2 jam. Setelah itu dilakukan pelarutan garam dengan menggunakan air pada temperatur ±65°C selama kurang lebih 2 jam. Untuk mengetahui karakteristik dan sifat mekanis logam busa dilakukan pengujian kuat tekan, pengujian densitas dan porositas, serta pengamatan struktur makro dan mikro (dengan SEM).
Hasil yang didapat pada penelitian ini bahwa pori-pori yang dihasilkan pada aluminium busa sebesar 45,92-350,80 µm dengan persentase porositas yang dihasilkan sebesar 16,71% pada 0% garam hingga 91,70% pada 90% garam. Densitas tertinggi didapat pada 0% garam sebesar 2,25 gram/cm3 sedangkan densitas terendah didapat pada 90% garam sebesar 0,22 gram/cm3. Hasil pengujian kuat tekan menunjukkan dengan meningkatnya porositas (penurunan tegangan tekan) maka energi yang diserap lebih tinggi dan kurva uji tekan semakin landai. Hasil pengamatan mikrostruktur dengan SEM menunjukkan besar pori yang terdistribusi secara merata pada fraksi garam 50%, 70%, dan 90% dengan bentuk pori yang tidak beraturan.

Metallic foam is one of advanced the material recently developed. It has a physical pores cells on every single side material. Metallic foams have great potential for wide applications in the transportation, construction and chemical industries because of their good mechanical properties like heavy energy absorbers, their lightweight, and high specific strength and stiffness. There are some methods in manufacturing metallic foams. Sintering and Dissolution Process (SDP) is one of the methods of conventional powder metallurgy route to produce metallic foam.
This experiment used a powder aluminium and sodium chloride as raw materials. Sodium chloride used as variable ratio with the specific amounts are 0%, 30%, 50%, 70%, and 90%. The difference of variables will produce the differences amounts of porosity and physical properties. The mixture of Al/NaCl powders were compacted at 250 bar, and then sintered at 670°C for 2 hours. And then sodium chloride was removed by dissolution process in warm water for around 2 hours. To investigate the characteristics and the mechanical properties, aluminium foam were tested its compressive strength, percentage of porosity and density, and macrostructure and microstructure analysis by using Scanning Electron Microscope (SEM).
The results of this experiment shows that the pore size of aluminium foam were in the range of 45,92-350,80 µm and the percentage of porosity were 16,71% on 0 wt% NaCl until 91,70% on 90 wt% NaCl. The highest density on 0 wt% was 2,25 gram/cm3 and the lowest density on 90 wt% was 0,22 gram/cm3. In compressive strength behaviour performs in increasing the porosity (decreasing compressive stress), the capability in absorbing the energy increased and the curve of stressstrain becomes slope gently. In microstructure analysis by SEM performs the pore cells distributed spread flat on fraction 50%, 70%, and 90% within the morphology of pores irregular.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41760
UI - Skripsi Open  Universitas Indonesia Library
cover
Indro Baskoro
"Logam busa dalam dekade terakhir ini mulai menjadi perhatian bagi para peneliti dan industri otomotif. Hal ini karena logam busa memiliki rasio kekakuan dan berat yang baik, daya serap energi, serta daya redam getaran yang baik pula. Sifat ini didapatkan dari pori yang ada pada logam busa tersebut. Salah satu cara membuat logam busa adalah dengan Sintering and Disolution Process (SDP). SDP ini melibatkan proses metalurgi serbuk terhadap campuran serbuk logam dan garam yang digunakan. Hasil dari proses metalurgi serbuk kemudian dilakukan pelarutan garam, sehingga terbentuk pori.
Tujuan penelitian ini adalah untuk mendapatkan gambaran mengenai kondisi optimum proses SDP untuk logam Al-4Cu (1,73 %at), serta mengetahui karakteristik dari logam busa yang dihasilkan. Penelitian ini menggunakan material Al-4Cu (1,73 %at) dan garam NaCl. Penelitian ini menggunakan variabel fraksi berat garam 0%, 10%, 30%, 50%, 70%, dan 90%. Campuran tersebut diproses metalurgi serbuk dengan tekanan kompaksi 300 Bar dan temperatur sinter 660_C selama 120 menit. Kemudian sampel direndam dalam air hangat selama 120 menit untuk melarutkan garam NaCl.
Sampel hasil pelarutan dilakukan pengujian densitas dan porositas, kuat tekan, mikrostruktur serta SEM untuk mengetahui karakteristiknya. Logam busa hasil penelitian memiliki karakteristik, densitas tertinggi 1,59gr/cm3 (densitas relatif 0.57 gr/cm3) didapat dari campuran 10% garam dan terendah 0,7 gr/cm3 (densitas relatif 0.25 gr/cm3) dari campuran 70% garam. Porositas tertinggi 74,8 didapat dari campuran 70% garam, terendah 42,81% dari campuran 10% garam.
Pada pengujian kuat tekan, nilai tertinggi adalah dimiliki campuran 10% dengan 30,946 MPa, terendah 0,293 Mpa dimiliki campuran 70%. Pada kurva kuat tekan, dengan semakin tinggi persentase porositas, kemampuan logam busa untuk menyerap energi akan semakin baik. Pengamatan struktur mikro dan SEM didapatkan bahwa morfologi pori yang terbentuk mengikuti morfologi garam NaCl yang dipakai, yaitu berbentuk kubik dengan ukuran dalam rentang 66,67 - 866,67 _m. Namun dari parameter proses yang digunakan masih belum optimal. Salah satunya adalah temperatur sinter. Pada temperatur 660_C Al cair akan keluar membentuk tetesan (droplet). Hal tersebut menandakan bahwa temperatur sinter terlalu tinggi.

In the last decade metallic foam became the attention for researcher and automotive industry. It is caused by its good stiff-to-weight ratio, energy absorption, and damping insulation. These properties are the results of its pores all over the materials. The manufacturing of metallic foam could be carried by Sintering and Dissolution Process (SDP). SDP involve powder metallurgy process toward mixed powder of metal and salt. Then the precursor is carried away in the dissolution process in order to create pore structure.
The aim of this experiment is to describe the optimum conditions of SDP in producing Al-4Cu (1,73 %at) foam, and to observe about the characteristic of metallic foam. Al-4Cu (1,73 %at) powder and sodium chloride used as a raw material in this experiment. The variable used are 0%, 10%, 30%, 50%, 70%, and 90% wt% of salt. The mixed powder then compacted for 300 Bar, and sintered at 660_C for 120 minutes. The burn compact then submerged in the hot-stream water for 120 minutes to remove the sodium chloride.
To investigate physical and mechanical properties of Al-4Cu (1,73 %at) foams, their density, porosity, compressing behavior, and microstructure were tested, by optical microscopy and Scanning Electron Microscopy (SEM). For metallic foam the highest density (1,59gr/cm3) was obtained by 10 wt% NaCl, while the lowest (0,7gr/cm3) was obtained by 70 wt% NaCl. 74,8% was the highest porosity obtained by 70 wt% NaCl and the lowest one was obtained by 10 wt% NaCl. The highest compression strength 30,946 MPa was obtained by 10 wt% NaCl, while the lowest 0,293 MPa was obtained by 70 wt% NaCl.
From the compressing behavior, it was indicated that with increasing amount of pore, the capability of metallic foam to absorb the energy increased. Meanwhile, it was found in the microstructure, that the cell morphology of the final Al foam closely matched those of the NaCl particles. Which is cubic-shaped with the size range of 66,67 - 866,67 _m. But, from the parameters used in the powder metallurgy process are still not optimum yet. The sintering temperature used in this experiment was still exceedingly the optimum temperature. At 660_C liquid Al will ooze out of the surface of the compacts in the form of globules.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41738
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aji Priombodo
"Silika (SiO2) adalah material yang berdaya guna tinggi, aplikasinya sangat luas baik dalam kegiatan industri maupun kehidupan sehari-hari. Salah satunya sebagai silika gel yaitu utnuk mengurangi kelembaban udara. Pada umumnya silika gel dibuat dengan melebur pasir kuarsa dengan sodium karbonat pada suhu 1300°C. Proses ini sangat boros energi dan menimbulkan masalah lingkungan akibat eksploitasi pasir kuarsa yang terus-menerus karena tidak dapat diperbaharui. Oleh karena itu diperlukan sumber silika baru yang mudah didapat dan dapat diperbaharui.
Berdasarkan penelitian yang telah dilakukan diketahui bahwa abu sekam padi memiliki kandungan silika yang tinggi (berada pada kisaran 90 %). Hal ini memungkinkan sekam padi untuk menjadi sumber silica baru pengganti kuarsa. Indonesia memiliki potensi besar dengan alternatif ini, karena pada tahun 2006 produksi gabah kering giling Indonesia mencapai lebih dari 54,4 juta ton. Dari sini setidaknya Indonesia memproduksi paling sedikit 10 juta ton sekam padi per tahun. Melalui penelitian ini diharapkan dapat memperoleh proses produksi silika gel yang lebih ramah lingkungan dan hemat energi.
Penelitian ini bertujuan memproduksi silika gel dari sekam padi. Pengabuan sekam padi dilakukan dengan furnace pada suhu 600°C selama 1 jam. Silika dari abu sekam padi diekstrak dengan cara mereaksikannya dengan larutan NaOH 1M. Larutan hasil ekstraksi kemudian disaring dan dititrasi dengan HCl sampai pH tertentu (4 sampai dengan 9) dan diinkubasi untuk membentuk hydrogel. Hydrogel yang terbentuk kemudian dikeringkan pada suhu 60°C dan 80°C hingga membentuk xerogel. Xerogel merupakan produk silika gel yang diinginkan.
Hasil dari penelitian ini menunjukkan bahwa pH yang menghasilkan silika gel dengan kemampuan terbaik dalam menyerap kelembaban udara adalah pH 6 yaitu sebesar 47.48 % (60°C) dan 48.28 % (80°C). Adapun selisih kemampuan silica gel pH 6 dengan silika gel komersial yaitu sebesar 23.11 % (60°C) dan 23.90 % (80°C). Dari uji BET diperoleh luas area permukaan silika gel pH 6 yaitu sebesar 344.6 m2/g (60°C) dan 361.4 m2/g (80°C).

Silica is a valuable material, it is widely used in industry or in our daily lifes. One of its uses is to reduce air moisture. Usually silica gel is made by melting of quartz sand along with sodium carbonate at 1300 oC. So the process need large amount of energy and also harmfull to the environment because quartz sand mining is unrenewable. Henceforth, we need a new source of silica that easy to find and renewable.
Based on the research that has been done, it is discovered that rice hull ash contain a high amount of silica (about 90 %). So that, the rice hull is a potential new source of silica to replace quartz sand mining. With this alternatives Indonesia has a big potential, because in the 2006 Indonesia produce dry milled rice of more than 54,4 million tonnes. From this number, at least Indonesia produces 10 million tonnes of rice hull each year.
Therefore, this research was intended to get a new process of silica gel production which more environment friendly and use less energy. This research is intended to produce silica gel from rice hull. To convert rice hull into ashes, the rice hull is burndt in a furnace at 600°C for 1 hour. Silica was extracted from the ashes by reacting it with 1M NaOH solution. The resulted solution then filtered and titrated with HCl until reach certain pH (4 to 9). The solution then incubated to form hydrogel. The hydrogel then dried at temperature of 60°C and 80°C to produce xerogel. Xerogel is the form of silica gel we want.
The result of this research showed that the best silica gel to adsorb moisture is the silica gel that made at pH 6 which are 47.48 % (60°C) and 48.28 % (80°C). This silica gel gives a better performance than commercial silica gel, their differences are 23.11 % (60°C) and 23.90 % (80°C). The result of BET test showed that the silica gel pH 6 have the specific surface area of 344.6 m2/g (60°C) and 361.4 m2/g (80°C).
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49688
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Zaki Anshori
"Ampas tebu merupakan limbah industri gula yang pemanfaatan sampai saat ini belum optimal. Abu ampas tebu memiliki kandungan silika yang cukup besar yakni berkisar 70 % sehingga abu ampas tebu memungkinkan digunakan sebagai bahan baku pembuatan silika gel. Prinsip pembuatan silika gel ini yakni dengan ekstraksi silika dalam abu ampas tebu dengan larutan NaOH 1 N kemudian dengan polimerisasi hydrogel dan pengeringan sampai menjadi silika gel. Secara khusus, penelitian ini mempelajari pengaruh pH serta suhu pengeringan terhadap sifat silica gel sebagai adsorban. Dari penelitian ini diharapkan menjadi solusi dalam pembuatan silika gel yang hemat energi dan ramah lingkungan. Hasil penelitian ini menunjukkan silika gel yang memiliki kemampuan terbaik untuk menyerap uap air adalah silika gel yang terbentuk pada pH 7 yaitu sebesar 35.21 % (60°C) dan 37.20 % (80°C). Silika gel ini memberikan kemampuan terbaik dibanding silika gel komersial, dengan selisih kemampuannya yaitu sebesar (8.32 % (60°C) dan 10.31 % (80°C). Selain itu silika gel ini memberikan kemampuan lebih buruk dibanding silika gel dari sekam padi,dengan selisih kemampuannya yaitu sebesar 10.99 % (60°C) and 8.71 % (80°C). Dari uji FTIR dan BET didapatkan silika gel memiliki puncak spektrum siloksan (Si-O-Si) 1074.35 cm-1, puncak spektrum silanol (Si-OH) 1624 and 3622 cm-1 serta memiliki luas permukaanya sebesar 147.8 m²/g.

Bagasse is a waste of sugar industry that the useful have not optimal until now. The ash of bagasse is containing about 70 % of silica. Because of that, Ash Bagasse is possible as a basic commodity to produce a silica gel. The principe of making a silica gel is by extraction silica from the ash bagasse with NaOH 1 N solution until become hydrogel, than with polymerization and drying, hydrogel become a silica gel. Especially, this research to learn about the influence of pH and drying temperature a silica gel as an adsorbance. Expectation of this research is become a solution to the making of a silica gel which conserve energy and friendly to the environment. The result of this research showed the best silica gel to adsorb moisture that made at pH 7 which are 35.21 % (60°C) and 37.20 % (80°C). this silica gel gives a better performance than silica gel commercial, their difference 8.32 % (60°C) and 10.31 % (80°C) beside that this silica gel gives a worse performace than silica gel from rice hull, their difference 10.99 % (60°C) and 8.71 % (80°C). The result of FTIR and BET test showed that silica gel having peak siloksan (Si-O-Si) spectrum 1074.35 cm-1, silanol (Si-OH) spectrum 1624 and 3622 cm-1 and having surface area 147.8 m²/g."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52210
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Riyadh
"Sistem adsorpsi pada padatan atau sistem adsorpsi fisik banyak sekali digunakan dewasa ini. Sistem adsorpsi digunakan pada sistem penjernihan air, penyerapan limbah, gas storage (penyimpan gas), sistem pendingin, pemurnian gas (gas purification) dan lain-lain. Pada sistem adsorpsi media penyerapannya biasa disebut sebagai adsorben dan zat yang terserap disebut sebagai adsorbat. adsorben adalah zat atau material yang mempunyai kemampuan untuk mengikat dan mempertahankan cairan atau gas didalamnya.
Sistem ini menggunakan silica gel sebanyak 150 gr sebagai adsorben dan air sebanyak 120 ml sebagai adsorbat. Alat pengujian adsopsi dirancang untuk tidak mengalami kebocoran pada tekanan sampai dengan -29 inHg gauge untuk mendapatkan temperatur saturasi air yang mencukupi untuk proses penyerapan kalor. Sedangkan material yang dipilih pada komponen alat ini adalah material yang tahan terhadap korosi akibat air seperti kaca dan stainless steel. Perbedaan temperature terendah yang dicapai di adsorbat storage sebesar 137ºC.

Adsorption in solid surface is used by research and industrial. Adsorption system has used for water purity, gas storage, cooling system, gas purification etc. In adsorption system, Material or physic media is conceiving call adsorbent and the material is permeated call adsorbate. Absorbent is material, which is having ability to fasten and maintain liquid or gas.
In this system using 150 gr of silica gel as an adsorbent and 120 ml water as an adsorbate. This device is designed to be able to prevent leakage at pressure up to -29 inHg gauge to reach the saturation temperature which is enough for heat absorption process. While, material selected for component of this machine is a material that capable to resist the corrosion effect caused by methanol such as glass and stainless steel. Lowest temperature difference achieved on adsorbate storage is 13ºC.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50955
UI - Skripsi Open  Universitas Indonesia Library
cover
Avencia Yemima Harvena
"Peningkatan konsentrasi karbon dioksida (CO2) di atmosfer meningkatkan penyerapan panas dan memancarkan panas, sehingga membuat bumi menjadi lebih hangat. Untuk mengurangi dampak CO2, dilakukan usaha-usaha untuk konversi CO2 menjadi bahan bakar atau bahan baku kimia yang lebih bermanfaat. Konversi CO2 menjadi bahan bakar dan bahan kimia dengan metode elektrokimia dianggap menjanjikan karena elektroreduksi CO2 dapat dilakukan pada tekanan dan suhu atmosfer sehingga ideal untuk diaplikasikan dalam skala besar. Tembaga merupakan salah satu logam yang dapat mengkatalisis reduksi CO2 secara elektrokimia menjadi berbagai produk seperti CO, metana, asam format, etanol, etilena dan hidrokarbon yang lebih tinggi. Aktivitas dan selektivitas busa tembaga diharapkan dapat meningkat dengan memodifikasi busa tembaga menggunakan metal organic framework (MOF) untuk memperoleh luas permukaan aktif elektroda yang lebih besar serta menurunkan perbedaan energi antara CO2 dan intermedietnya sehingga proses elektroreduksi CO2 dapat berlangsung lebih efektif. Pada penelitian ini, dilakukan modifikasi elektroda busa tembaga dengan Cu-MOF-74 menggunakan metode solvotermal. Karakterisasi dengan menggunakan X-Ray Diffraction (XRD) mengonfirmasi keberhasilan sintesis Cu-MOF-74 di atas permukaan busa tembaga. Selain itu, hasil karakterisasi Scanning Electron Microscope-Energy-Dispersive X-Ray (SEM-EDX) juga mengkonfirmasi adanya Cu-MOF-74 pada permukaan busa tembaga dengan diameter pori 27,1 mm.Selanjutnya dilakukan reduksi elektrokimia CO2 menggunakan sistem flow cell dengan laju alir elektrolit 75 mL/menit dan potensial -1,3 V; -1,5 V; -1,7 V; dan -1,9 V (vs Ag/AgCl). Efisiensi Faraday dihitung dari produk utama (asam format dan hidrogen) dengan menggunakan elektroda Cu@Cu-MOF-74, diperoleh EF sebesar 72,30% untuk asam format dan 68,57% untuk hidrogen, lebih tinggi apabila dibandingkan dengan elektroda busa tembaga yang memperoleh nilai efisiensi Faraday asam format tertinggi sebesar 56,29% dan 63,63% untuk hidrogen.

Carbon dioxide (CO2) is a greenhouse gas that absorbs and emits heat, which also warms the earth. To reduce these negative impacts, it is necessary to convert CO2 into fuel or chemical raw materials that are more useful. The conversion of CO2 into fuels and chemicals by the electrochemical method is considered promising because the electroreduction of CO2 can be carried out at atmospheric pressure and temperature making it ideal for large-scale applications. Copper foam is a metal that can catalyze the electrochemical reduction of CO2 into various products such as CO, methane, formic acid, ethanol, ethylene and higher carbon. The activity and selectivity of copper foam is expected to increase by modifying the copper foam using a metal organic framework (MOF) to obtain a larger active electrode surface area and reduce the energy difference between CO2 and its intermediary so that the CO2 electroreduction process can take place more effectively. In this study, modification of copper foam electrodes will be carried out using the Cu-MOF-74 with solvothermal method. The physical characterization of the electrode using X-Ray Diffraction (XRD) confirmed that Cu MOF-74 has been successfully synthesized on the surface of copper foam. In addition, the results of the Scanning Electron Microscope-Energy-Dispersive X-Ray (SEM-EDX) characterization also confirmed the presence of Cu-MOF-74 on the surface of copper foam with a pore diameter of 27,1 mm. Furthermore, electrochemical reduction of CO2 was carried out using a flow cell system with a flow rate of 75 mL/minute and a potential of -1.3 V; -1.5V; -1.7V; and -1.9 V (vs Ag/AgCl). Faraday efficiency was calculated from the main products (formic acid and hydrogen) using Cu@Cu-MOF-74 electrodes, obtained an EF of 72.30% for formic acid and 68.57% for hydrogen, higher when compared to copper foam electrodes which obtained the highest Faraday efficiency values for formic acid of 56.29% and 63.63% for hydrogen."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Ismail
"Kerusakan jalan umum terjadi karena beberapa faktor diantaranya oleh buruknya drainase sehingga menyebabkan terjadinya genangan air di jalan yang dapat menurunkan kualitas bitumen. Upaya meningkatkan performa bitumen dilakukan yaitu dengan menambahkan bahan polimer dan membuat permukaan jalan memiliki sifat superhidrofobik sehingga suatu permukaan memiliki sifat anti adesif dan anti basah. Salah satu material yang dapat digunakan sebagai material superhidrofobik adalah silika nanopartikel. Silika nanopartikel superhidrofobik dapat disintesis dari pasir silika. Penelitian ini dilakukan dengan gabungan metode mechanical milling dan sol–gel. Pada Mechanical milling, digunakan rasio pasir silika dan bola zirconia sebanyak 1:20 dengan variasi waktu bertujuan untuk mengecilkan ukuran partikel dan sol–gel untuk membuat silika nanopartikel dengan ukuran 100-200 nm. pH pada sistem reaksi juga merupakan faktor penting yang mempengaruhi perolehan hasil sintesis sehingga dilakukan kontrol medium reaksi menggunakan asam (HNO3) dan basa (NH3) yang juga berfungsi sebagai katalis untuk menghindari terjadinya aglomerasi. Untuk mendapatkan silika nanopartikel dengan sifat superhidrofobik, maka dilakukan modifikasi permukaan menggunakan asam stearat.
Hasil penelitian ini menunjukkan bahwa ukuran partikel pada silika nanopartikel yang dihasilkan dalam metanol, etanol dan propanol memiliki ukuran berturut-turut 149,1 ± 10,7 nm, 170,3 ± 14,3 nm, dan 198,6 ± 19,5 nm. Hasil zeta potensial juga menunjukkan bahwa silika nanopartikel yang disintesis dalam pelarut etanol memiliki zeta potensial tertinggi yaitu -50,4 ± 0,3 mV, diikuti dalam metanol (-72,2 ± 1,6 mV) dan propanol (- 67,5 ± 0,2 mV). Proses modifikasi permukaan silika nanopartikel dari hidrofilik menjadi hidrofobik optimal dilakukan dengan perbandingan massa 1:5 antara silika nanopartikel dengan asam stearat. Pengujian yang dilakukan pada substrat kaca, menghasilkan sudut kontak air sebesar 137,9 ± 1,2˚, 153,7 ± 2,9˚, dan 135,7 ± 1,0˚ untuk pelarut alkohol metanol, etanol, dan propanol. Hasil pengujian sifat hidrofobik pada bitumen memberikan hasil sudut kontak air yang dilapisi dan bercampur dengan nanopartikel silika termodifikasi berturut-turut 149,2˚ dan 148,1˚, sedangkan bitumen tanpa silika nanopartikel termodifikasi memberikan nilai sudut kontak air sekitar 89,80˚. Hasil ini menunjukkan bahwa kombinasi silika nanopartikel dalam bitumen mendekati sifat superhidrofobik

Road damage is common due to several factors including poor drainage causing puddles on the road that can decrease the quality of bitumen. Efforts to improve the performance of bitumen are carried out by adding polymer materials and to make the road surface has superhydrophobic properties so that a surface has anti-adhesive and anti-wet properties. One of the materials that can be used as a superhydrophobic material is silica nanoparticles. Superhydrophobic nanoparticle silica can be synthesized from silica sand. This research was conducted by a combination of mechanical milling and sol-gel methods. In Mechanical milling, silica sand and zirconia balls ratio is used as much as 1:20 with a time variation aimed at shrinking the particle size and sol–gel to synthesize silica nanoparticles about 100-200 nm. pH in the reaction is also an important factor that affects the acquisition of synthesis results so that the control of reaction medium using acids (HNO3) and bases (NH3) which also serve as a catalyst, in order to avoid the occurrence of agglomeration. To obtain silica nanoparticles with superhydrophobic effect, surface modification is carried out using stearic acid.
The results of this research showed that particle sizes in silica nanoparticles produced in methanol, ethanol and propanol had consecutive sizes of 149.1 ± 10.7 nm, 170.3 ± 14.3 nm, and 198.6 ± 19.5 nm. Potential zeta results also showed that silica nanoparticles synthesized in ethanol solvents had the highest potential zeta of about -50.4 ± 0.3 mV, followed in methanol (-72.2 ± 1.6 mV) and propanol (-67.5 ± 0.2 mV). The process of modifying the surface of silica nanoparticles from hydrophilic to hydrophobic is done with a ratio of 1:5 between silica nanoparticles with stearic acid. Superhydrophobic test was conducted on the glass substrate resulted with water contact angle of 137.9 ± 1.2°, 153.7 ± 2.9°, and 135.7 ± 1.0° for methanol, ethanol and propanol alcohol solvents, respectively. The results of hydrophobic properties on bitumen resulted in water contact angles coated and mixed with modified silica nanoparticles at 149.2° and 148.1°, while bitumen without modified silica nanoparticles gave a water contact angle value of about 89.80. These results showed that the combination of modified silica nanoparticles in bitumen is close to superhydrophobic properties.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>